2024-07-02 17:59:10 -03:00
```python
# Install prettymaps using pip:
#!pip install prettymaps
2022-11-08 11:26:33 -03:00
```
2024-07-02 17:59:10 -03:00
# prettymaps
A minimal Python library to draw customized maps from [OpenStreetMap ](https://www.openstreetmap.org/#map=12/11.0733/106.3078 ) created using the [osmnx ](https://github.com/gboeing/osmnx ), [matplotlib ](https://matplotlib.org/ ), [shapely ](https://shapely.readthedocs.io/en/stable/index.html ) and [vsketch ](https://github.com/abey79/vsketch ) packages.
2022-11-08 11:26:33 -03:00
2023-02-15 16:48:08 -03:00
![](https://github.com/marceloprates/prettymaps/raw/main/prints/heerhugowaard.png)
2021-10-19 19:21:26 +02:00
2022-11-07 13:32:38 -03:00
2024-07-02 17:59:10 -03:00
This work is [licensed ](LICENSE ) under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must **disclose** the source code with the license and copyright notice)
## Note about crediting and NFTs:
2023-02-15 16:48:08 -03:00
- Please keep the printed message on the figures crediting my repository and OpenStreetMap ([mandatory by their license ](https://www.openstreetmap.org/copyright )).
- I am personally **against** NFTs for their [environmental impact ](https://earth.org/nfts-environmental-impact/ ), the fact that they're a [giant money-laundering pyramid scheme ](https://twitter.com/smdiehl/status/1445795667826208770 ) and the structural incentives they create for [theft ](https://twitter.com/NFTtheft ) in the open source and generative art communities.
- **I do not authorize in any way this project to be used for selling NFTs**, although I cannot legally enforce it. **Respect the creator** .
- The [AeternaCivitas ](https://magiceden.io/marketplace/aeterna_civitas ) and [geoartnft ](https://www.geo-nft.com/ ) projects have used this work to sell NFTs and refused to credit it. See how they reacted after being exposed: [AeternaCivitas ](etc/NFT_theft_AeternaCivitas.jpg ), [geoartnft ](etc/NFT_theft_geoart.jpg ).
- **I have closed my other generative art projects on Github and won't be sharing new ones as open source to protect me from the NFT community**.
2024-07-02 17:59:10 -03:00
< a href = 'https://ko-fi.com/marceloprates_' target = '_blank' > < img height = '36' style = 'border:0px;height:36px;' src = 'https://cdn.ko-fi.com/cdn/kofi1.png?v=3' border = '0' alt = 'Buy Me a Coffee at ko-fi.com' / > < / a >
## As seen on [Hacker News](https://web.archive.org/web/20210825160918/https://news.ycombinator.com/news):
2023-02-15 16:48:08 -03:00
![](https://github.com/marceloprates/prettymaps/raw/main/prints/hackernews-prettymaps.png)
2024-07-02 17:59:10 -03:00
## [prettymaps subreddit](https://www.reddit.com/r/prettymaps_/)
## [Google Colaboratory Demo](https://colab.research.google.com/github/marceloprates/prettymaps/blob/master/notebooks/examples.ipynb)
# Installation
2024-07-02 18:32:07 -03:00
To enable plotter mode:
```
pip install git+https://github.com/abey79/vsketch@1 .0.0
```
2024-07-02 17:59:10 -03:00
### Install locally:
Install prettymaps with:
```
2024-07-02 18:32:07 -03:00
pip install prettymaps
2024-07-02 17:59:10 -03:00
```
2023-02-15 16:48:08 -03:00
2024-07-02 17:59:10 -03:00
### Install on Google Colaboratory:
Install prettymaps with:
```
!pip install -e "git+https://github.com/marceloprates/prettymaps#egg =prettymaps"
```
Then **restart the runtime** (Runtime -> Restart Runtime) before importing prettymaps
2022-11-08 11:26:33 -03:00
2022-11-07 13:32:38 -03:00
# Tutorial
2021-03-05 11:06:57 -03:00
2022-11-07 13:32:38 -03:00
Plotting with prettymaps is very simple. Run:
```python
prettymaps.plot(your_query)
2021-08-23 22:13:16 -03:00
```
2022-11-07 13:32:38 -03:00
**your_query** can be:
1. An address (Example: "Porto Alegre"),
2. Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
3. A custom boundary in GeoDataFrame format
```python
import prettymaps
plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')
2021-08-23 22:13:16 -03:00
```
2021-03-05 11:06:57 -03:00
2021-10-19 19:21:26 +02:00
2022-11-07 13:32:38 -03:00
2024-07-02 18:32:07 -03:00
![png ](README_files/README_8_0.png )
2022-11-07 13:32:38 -03:00
2021-10-19 19:21:26 +02:00
2022-11-07 13:32:38 -03:00
You can also choose from different "presets" (parameter combinations saved in JSON files)
See below an example using the "minimal" preset
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
'Stad van de Zon, Heerhugowaard, Netherlands',
preset = 'minimal'
)
2021-10-19 19:21:26 +02:00
```
2022-11-07 13:32:38 -03:00
2024-07-02 18:32:07 -03:00
![png ](README_files/README_10_0.png )
2022-11-07 13:32:38 -03:00
Run
```python
prettymaps.presets()
2021-10-19 19:21:26 +02:00
```
2022-11-07 13:32:38 -03:00
to list all available presets:
2024-07-02 17:59:10 -03:00
```python
import prettymaps
prettymaps.presets()
```
2022-11-07 13:32:38 -03:00
< div >
2024-07-02 17:59:10 -03:00
< style scoped >
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
< / style >
2022-11-07 13:32:38 -03:00
< table border = "1" class = "dataframe" >
< thead >
< tr style = "text-align: right;" >
< th > < / th >
< th > preset< / th >
< th > params< / th >
< / tr >
< / thead >
< tbody >
< tr >
< th > 0< / th >
2024-07-02 17:59:10 -03:00
< td > abraca-redencao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 1< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona< / td >
< td > {'layers': {'perimeter': {'circle': False}, 's...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 2< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona-plotter< / td >
< td > {'layers': {'streets': {'width': {'primary': 5...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 3< / th >
2022-11-07 13:32:38 -03:00
< td > cb-bf-f< / td >
< td > {'layers': {'streets': {'width': {'trunk': 6, ...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 4< / th >
2022-11-07 13:32:38 -03:00
< td > default< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 5< / th >
2022-11-07 13:32:38 -03:00
< td > heerhugowaard< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 6< / th >
2022-11-07 13:32:38 -03:00
< td > macao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'cust...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 7< / th >
2022-11-07 13:32:38 -03:00
< td > minimal< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 8< / th >
< td > plotter< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 9< / th >
2022-11-07 13:32:38 -03:00
< td > tijuca< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< / tbody >
< / table >
< / div >
To examine a specific preset, run:
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
prettymaps.preset('default')
```
2024-07-02 17:59:10 -03:00
Preset(params={'layers': {'perimeter': {}, 'streets': {'width': {'motorway': 5, 'trunk': 5, 'primary': 4.5, 'secondary': 4, 'tertiary': 3.5, 'cycleway': 3.5, 'residential': 3, 'service': 2, 'unclassified': 2, 'pedestrian': 2, 'footway': 1}}, 'building': {'tags': {'building': True, 'landuse': 'construction'}}, 'water': {'tags': {'natural': ['water', 'bay']}}, 'forest': {'tags': {'landuse': 'forest'}}, 'green': {'tags': {'landuse': ['grass', 'orchard'], 'natural': ['island', 'wood'], 'leisure': 'park'}}, 'beach': {'tags': {'natural': 'beach'}}, 'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'background': {'fc': '#F2F4CB ', 'zorder': -1}, 'green': {'fc': '#8BB174 ', 'ec': '#2F3737 ', 'hatch_c': '#A7C497 ', 'hatch': 'ooo...', 'lw': 1, 'zorder': 1}, 'forest': {'fc': '#64B96A ', 'ec': '#2F3737 ', 'lw': 1, 'zorder': 2}, 'water': {'fc': '#a8e1e6 ', 'ec': '#2F3737 ', 'hatch_c': '#9bc3d4 ', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'beach': {'fc': '#FCE19C ', 'ec': '#2F3737 ', 'hatch_c': '#d4d196 ', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'parking': {'fc': '#F2F4CB ', 'ec': '#2F3737 ', 'lw': 1, 'zorder': 3}, 'streets': {'fc': '#2F3737 ', 'ec': '#475657 ', 'alpha': 1, 'lw': 0, 'zorder': 4}, 'building': {'palette': ['#433633 ', '#FF5E5B '], 'ec': '#2F3737 ', 'lw': 0.5, 'zorder': 5}}, 'circle': None, 'radius': 500})
2022-11-07 13:32:38 -03:00
Insted of using the default configuration you can customize several parameters. The most important are:
- layers: A dictionary of OpenStreetMap layers to fetch.
- Keys: layer names (arbitrary)
- Values: dicts representing OpenStreetMap queries
- style: Matplotlib style parameters
- Keys: layer names (the same as before)
- Values: dicts representing Matplotlib style parameters
```python
plot = prettymaps.plot(
# Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords)
your_query,
# Dict of OpenStreetMap Layers to plot. Example:
# {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}}
# Check the /presets folder for more examples
layers,
# Dict of style parameters for matplotlib. Example:
# {'building': {'palette': ['#f00 ','#0f0 ','#00f '], 'edge_color': '#333 '}}
style,
# Preset to load. Options include:
# ['default', 'minimal', 'macao', 'tijuca']
preset,
# Save current parameters to a preset file.
# Example: "my-preset" will save to "presets/my-preset.json"
save_preset,
# Whether to update loaded preset with additional provided parameters. Boolean
update_preset,
# Plot with circular boundary. Boolean
circle,
# Plot area radius. Float
radius,
# Dilate the boundary by this amount. Float
dilate
)
```
**plot** is a python dataclass containing:
```python
@dataclass
class Plot:
# A dictionary of GeoDataFrames (one for each plot layer)
geodataframes: Dict[str, gp.GeoDataFrame]
# A matplotlib figure
fig: matplotlib.figure.Figure
# A matplotlib axis object
ax: matplotlib.axes.Axes
```
Here's an example of running prettymaps.plot() with customized parameters:
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
2021-08-23 22:13:16 -03:00
'Praça Ferreira do Amaral, Macau',
2022-11-07 13:32:38 -03:00
circle = True,
2021-08-23 22:13:16 -03:00
radius = 1100,
layers = {
2022-11-07 13:32:38 -03:00
"green": {
"tags": {
"landuse": "grass",
"natural": ["island", "wood"],
"leisure": "park"
}
},
"forest": {
"tags": {
"landuse": "forest"
}
},
"water": {
"tags": {
"natural": ["water", "bay"]
}
},
"parking": {
"tags": {
"amenity": "parking",
"highway": "pedestrian",
"man_made": "pier"
}
},
"streets": {
"width": {
"motorway": 5,
"trunk": 5,
"primary": 4.5,
"secondary": 4,
"tertiary": 3.5,
"residential": 3,
}
},
"building": {
"tags": {"building": True},
},
},
style = {
"background": {
"fc": "#F2F4CB ",
"ec": "#dadbc1 ",
"hatch": "ooo...",
},
"perimeter": {
"fc": "#F2F4CB ",
"ec": "#dadbc1 ",
"lw": 0,
"hatch": "ooo...",
},
"green": {
"fc": "#D0F1BF ",
"ec": "#2F3737 ",
"lw": 1,
},
"forest": {
"fc": "#64B96A ",
"ec": "#2F3737 ",
"lw": 1,
},
"water": {
"fc": "#a1e3ff ",
"ec": "#2F3737 ",
"hatch": "ooo...",
"hatch_c": "#85c9e6 ",
"lw": 1,
},
"parking": {
"fc": "#F2F4CB ",
"ec": "#2F3737 ",
"lw": 1,
},
"streets": {
"fc": "#2F3737 ",
"ec": "#475657 ",
"alpha": 1,
"lw": 0,
},
"building": {
"palette": [
"#FFC857 ",
"#E9724C ",
"#C5283D "
],
"ec": "#2F3737 ",
"lw": 0.5,
2021-08-23 22:13:16 -03:00
}
2022-11-07 13:32:38 -03:00
}
2021-08-23 22:13:16 -03:00
)
2021-03-05 11:06:57 -03:00
```
2022-11-07 13:32:38 -03:00
2024-07-02 18:32:07 -03:00
![png ](README_files/README_16_0.png )
2022-11-07 13:32:38 -03:00
In order to plot an entire region and not just a rectangular or circular area, set
```python
radius = False
```
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
'Bom Fim, Porto Alegre, Brasil', radius = False,
)
```
2024-07-02 17:59:10 -03:00
2024-07-02 18:32:07 -03:00
![png ](README_files/README_18_0.png )
2024-07-02 17:59:10 -03:00
2022-11-07 13:32:38 -03:00
You can access layers's GeoDataFrames directly like this:
2024-07-02 17:59:10 -03:00
2022-11-07 13:32:38 -03:00
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False)
plot.geodataframes['building']
```
2024-07-02 17:59:10 -03:00
2022-11-07 13:32:38 -03:00
< div >
2024-07-02 17:59:10 -03:00
< style scoped >
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
< / style >
2022-11-07 13:32:38 -03:00
< table border = "1" class = "dataframe" >
< thead >
< tr style = "text-align: right;" >
< th > < / th >
< th > < / th >
< th > addr:housenumber< / th >
< th > addr:street< / th >
< th > amenity< / th >
< th > operator< / th >
< th > website< / th >
< th > geometry< / th >
< th > addr:postcode< / th >
< th > name< / th >
< th > office< / th >
< th > opening_hours< / th >
< th > ...< / th >
< th > contact:phone< / th >
< th > bus< / th >
< th > public_transport< / th >
< th > source:name< / th >
< th > government< / th >
< th > ways< / th >
< th > name:fr< / th >
< th > type< / th >
< th > building:part< / th >
< th > architect< / th >
< / tr >
< tr >
< th > element_type< / th >
< th > osmid< / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< th > < / th >
< / tr >
< / thead >
< tbody >
< tr >
< th > node< / th >
< th > 2407915698< / th >
< td > 820< / td >
< td > Rua Washington Luiz< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
2024-07-02 17:59:10 -03:00
< td > POINT (-51.23212 -30.0367)< / td >
2022-11-07 13:32:38 -03:00
< td > 90010-460< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th rowspan = "4" valign = "top" > way< / th >
< th > 126665330< / th >
< td > 387< / td >
< td > Rua dos Andradas< / td >
< td > place_of_worship< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > POLYGON ((-51.23518 -30.03275, -51.23512 -30.0...< / td >
< td > 90020-002< / td >
< td > Igreja Nossa Senhora das Dores< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 126665331< / th >
< td > 1001< / td >
< td > Rua dos Andradas< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > http://www.ruadapraiashopping.com.br< / td >
2024-07-02 17:59:10 -03:00
< td > POLYGON ((-51.23167 -30.03066, -51.2316 -30.03...< / td >
2022-11-07 13:32:38 -03:00
< td > 90020-015< / td >
< td > Rua da Praia Shopping< / td >
< td > NaN< / td >
< td > Mo-Fr 09:00-21:00; Sa 08:00-20:00< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 129176990< / th >
< td > 1020< / td >
< td > Rua 7 de Setembro< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > http://www.memorial.rs.gov.br< / td >
2024-07-02 17:59:10 -03:00
< td > POLYGON ((-51.23117 -30.02891, -51.2312 -30.02...< / td >
2022-11-07 13:32:38 -03:00
< td > 90010-191< / td >
< td > Memorial do Rio Grande do Sul< / td >
< td > NaN< / td >
< td > Tu-Sa 10:00-18:00< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 129176991< / th >
< td > NaN< / td >
< td > Praça da Alfândega< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > http://www.margs.rs.gov.br< / td >
< td > POLYGON ((-51.23153 -30.02914, -51.23156 -30.0...< / td >
< td > 90010-150< / td >
< td > Museu de Arte do Rio Grande do Sul< / td >
< td > NaN< / td >
< td > Tu-Su 10:00-19:00< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > ...< / th >
< th > ...< / th >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< td > ...< / td >
< / tr >
< tr >
< th rowspan = "5" valign = "top" > relation< / th >
< th > 6760281< / th >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > POLYGON ((-51.23238 -30.03337, -51.23223 -30.0...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > [457506887, 457506886]< / td >
< td > NaN< / td >
< td > multipolygon< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 6760282< / th >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
2024-07-02 17:59:10 -03:00
< td > POLYGON ((-51.23203 -30.0334, -51.23203 -30.03...< / td >
2022-11-07 13:32:38 -03:00
< td > NaN< / td >
< td > Atheneu Espírita Cruzeiro do Sul< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > [457506875, 457506889, 457506888]< / td >
< td > NaN< / td >
< td > multipolygon< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 6760283< / th >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > POLYGON ((-51.23284 -30.03367, -51.23288 -30.0...< / td >
< td > NaN< / td >
< td > Palacete Chaves< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > [457506897, 457506896]< / td >
< td > NaN< / td >
< td > multipolygon< / td >
< td > NaN< / td >
< td > Theodor Wiederspahn< / td >
< / tr >
< tr >
< th > 6760284< / th >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > POLYGON ((-51.23499 -30.03412, -51.23498 -30.0...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > [457506910, 457506913]< / td >
< td > NaN< / td >
< td > multipolygon< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< tr >
< th > 14393526< / th >
< td > 1044< / td >
< td > Rua Siqueira Campos< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > https://www.sefaz.rs.gov.br< / td >
< td > POLYGON ((-51.23125 -30.02813, -51.23128 -30.0...< / td >
< td > NaN< / td >
< td > Secretaria Estadual da Fazenda< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > ...< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > NaN< / td >
< td > [236213286, 1081974882]< / td >
< td > NaN< / td >
< td > multipolygon< / td >
< td > NaN< / td >
< td > NaN< / td >
< / tr >
< / tbody >
< / table >
< p > 2423 rows × 105 columns< / p >
< / div >
Search a building by name and display it:
```python
plot.geodataframes['building'][
plot.geodataframes['building'].name == 'Catedral Metropolitana Nossa Senhora Mãe de Deus'
].geometry[0]
```
2024-07-02 17:59:10 -03:00
/home/marcelo/anaconda3/envs/prettymaps/lib/python3.11/site-packages/geopandas/geoseries.py:720: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
val = getattr(super(), mtd)(*args, **kwargs)
2022-11-07 13:32:38 -03:00
2024-07-02 18:32:07 -03:00
![svg ](README_files/README_22_1.svg )
2022-11-07 13:32:38 -03:00
Plot mosaic of building footprints
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
import numpy as np
import osmnx as ox
from matplotlib import pyplot as plt
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Porto Alegre', show = False)
# Get list of buildings from plot's geodataframes dict
buildings = plot.geodataframes['building']
# Project from lat / long
buildings = ox.project_gdf(buildings)
buildings = [b for b in buildings.geometry if b.area > 0]
# Draw Matplotlib mosaic of n x n building footprints
n = 6
fig,axes = plt.subplots(n,n, figsize = (7,6))
# Set background color
fig.patch.set_facecolor('#5cc0eb ')
# Figure title
fig.suptitle(
'Buildings of Porto Alegre',
size = 25,
2024-07-02 17:59:10 -03:00
color = '#fff '
2022-11-07 13:32:38 -03:00
)
# Draw each building footprint on a separate axis
for ax,building in zip(np.concatenate(axes),buildings):
ax.plot(*building.exterior.xy, c = '#ffffff ')
ax.autoscale(); ax.axis('off'); ax.axis('equal')
```
2024-07-02 18:32:07 -03:00
![png ](README_files/README_24_0.png )
2022-11-07 13:32:38 -03:00
Access plot.ax or plot.fig to add new elements to the matplotlib plot:
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
(41.39491,2.17557),
preset = 'barcelona',
)
# Change background color
plot.fig.patch.set_facecolor('#F2F4CB ')
# Add title
2024-07-02 17:59:10 -03:00
_ = plot.ax.set_title(
2022-11-07 13:32:38 -03:00
'Barcelona',
2024-07-02 17:59:10 -03:00
font = 'serif',
size = 50
2022-11-07 13:32:38 -03:00
)
```
2024-07-02 18:32:07 -03:00
![png ](README_files/README_26_0.png )
2022-11-07 13:32:38 -03:00
Use **plotter** mode to export a pen plotter-compatible SVG (thanks to abey79's amazing [vsketch ](https://github.com/abey79/vsketch ) library)
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
(41.39491,2.17557),
mode = 'plotter',
layers = dict(perimeter = {}),
preset = 'barcelona-plotter',
scale_x = .6,
scale_y = -.6,
)
```
2024-07-02 18:32:07 -03:00
![png ](README_files/README_28_0.png )
2022-11-07 13:32:38 -03:00
Some other examples
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
# City name
'Barra da Tijuca',
dilate = 0,
figsize = (22,10),
preset = 'tijuca',
)
```
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
plot = prettymaps.plot(
'Stad van de Zon, Heerhugowaard, Netherlands',
preset = 'heerhugowaard',
)
```
2024-07-02 18:32:07 -03:00
![png ](README_files/README_31_0.png )
2022-11-07 13:32:38 -03:00
Use prettymaps.create_preset() to create a preset:
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
prettymaps.create_preset(
"my-preset",
layers = {
"building": {
"tags": {
"building": True,
"leisure": [
"track",
"pitch"
]
}
},
"streets": {
"width": {
"trunk": 6,
"primary": 6,
"secondary": 5,
"tertiary": 4,
"residential": 3.5,
"pedestrian": 3,
"footway": 3,
"path": 3
}
},
},
style = {
"perimeter": {
"fill": False,
"lw": 0,
"zorder": 0
},
"streets": {
"fc": "#F1E6D0 ",
"ec": "#2F3737 ",
"lw": 1.5,
"zorder": 3
},
"building": {
"palette": [
"#fff "
],
"ec": "#2F3737 ",
"lw": 1,
"zorder": 4
}
}
)
prettymaps.preset('my-preset')
```
2024-07-02 17:59:10 -03:00
Preset(params={'layers': {'building': {'tags': {'building': True, 'leisure': ['track', 'pitch']}}, 'streets': {'width': {'trunk': 6, 'primary': 6, 'secondary': 5, 'tertiary': 4, 'residential': 3.5, 'pedestrian': 3, 'footway': 3, 'path': 3}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'streets': {'fc': '#F1E6D0 ', 'ec': '#2F3737 ', 'lw': 1.5, 'zorder': 3}, 'building': {'palette': ['#fff '], 'ec': '#2F3737 ', 'lw': 1, 'zorder': 4}}, 'circle': None, 'radius': None, 'dilate': None})
2022-11-07 13:32:38 -03:00
Use prettymaps.delete_preset() to delete presets:
```python
# Show presets before deletion
print('Before deletion:')
display(prettymaps.presets())
# Delete 'my-preset'
prettymaps.delete_preset('my-preset')
# Show presets after deletion
print('After deletion:')
display(prettymaps.presets())
```
Before deletion:
< div >
2024-07-02 17:59:10 -03:00
< style scoped >
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
< / style >
2022-11-07 13:32:38 -03:00
< table border = "1" class = "dataframe" >
< thead >
< tr style = "text-align: right;" >
< th > < / th >
< th > preset< / th >
< th > params< / th >
< / tr >
< / thead >
< tbody >
< tr >
< th > 0< / th >
2024-07-02 17:59:10 -03:00
< td > abraca-redencao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 1< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona< / td >
< td > {'layers': {'perimeter': {'circle': False}, 's...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 2< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona-plotter< / td >
< td > {'layers': {'streets': {'width': {'primary': 5...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 3< / th >
2022-11-07 13:32:38 -03:00
< td > cb-bf-f< / td >
< td > {'layers': {'streets': {'width': {'trunk': 6, ...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 4< / th >
2022-11-07 13:32:38 -03:00
< td > default< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 5< / th >
2022-11-07 13:32:38 -03:00
< td > heerhugowaard< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 6< / th >
2022-11-07 13:32:38 -03:00
< td > macao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'cust...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 7< / th >
2022-11-07 13:32:38 -03:00
< td > minimal< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 8< / th >
2022-11-07 13:32:38 -03:00
< td > my-preset< / td >
< td > {'layers': {'building': {'tags': {'building': ...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 9< / th >
< td > plotter< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 10< / th >
2022-11-07 13:32:38 -03:00
< td > tijuca< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< / tbody >
< / table >
< / div >
After deletion:
< div >
2024-07-02 17:59:10 -03:00
< style scoped >
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
< / style >
2022-11-07 13:32:38 -03:00
< table border = "1" class = "dataframe" >
< thead >
< tr style = "text-align: right;" >
< th > < / th >
< th > preset< / th >
< th > params< / th >
< / tr >
< / thead >
< tbody >
< tr >
< th > 0< / th >
2024-07-02 17:59:10 -03:00
< td > abraca-redencao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 1< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona< / td >
< td > {'layers': {'perimeter': {'circle': False}, 's...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 2< / th >
2022-11-07 13:32:38 -03:00
< td > barcelona-plotter< / td >
< td > {'layers': {'streets': {'width': {'primary': 5...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 3< / th >
2022-11-07 13:32:38 -03:00
< td > cb-bf-f< / td >
< td > {'layers': {'streets': {'width': {'trunk': 6, ...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 4< / th >
2022-11-07 13:32:38 -03:00
< td > default< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 5< / th >
2022-11-07 13:32:38 -03:00
< td > heerhugowaard< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 6< / th >
2022-11-07 13:32:38 -03:00
< td > macao< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'cust...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 7< / th >
2022-11-07 13:32:38 -03:00
< td > minimal< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
2024-07-02 17:59:10 -03:00
< th > 8< / th >
< td > plotter< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< tr >
< th > 9< / th >
2022-11-07 13:32:38 -03:00
< td > tijuca< / td >
< td > {'layers': {'perimeter': {}, 'streets': {'widt...< / td >
< / tr >
< / tbody >
< / table >
< / div >
Use **prettymaps.multiplot** and **prettymaps.Subplot** to draw multiple regions on the same canvas
```python
2024-07-02 17:59:10 -03:00
import prettymaps
2022-11-07 13:32:38 -03:00
# Draw several regions on the same canvas
2024-07-02 17:59:10 -03:00
plot = prettymaps.multiplot(
2022-11-07 13:32:38 -03:00
prettymaps.Subplot(
'Cidade Baixa, Porto Alegre',
style={'building': {'palette': ['#49392C ', '#E1F2FE ', '#98D2EB ']}}
),
prettymaps.Subplot(
'Bom Fim, Porto Alegre',
style={'building': {'palette': ['#BA2D0B ', '#D5F2E3 ', '#73BA9B ', '#F79D5C ']}}
),
prettymaps.Subplot(
'Farroupilha, Porto Alegre',
style={'building': {'palette': ['#EEE4E1 ', '#E7D8C9 ', '#E6BEAE ']}}
),
# Load a global preset
preset='cb-bf-f',
# Figure size
figsize=(12, 12)
)
```
2024-07-02 18:32:07 -03:00
![png ](README_files/README_37_0.png )
2022-11-07 13:32:38 -03:00
2021-03-05 11:06:57 -03:00
2024-07-02 17:59:10 -03:00
< Figure size 3600x3600 with 0 Axes >
< Figure size 3600x3600 with 0 Axes >
< Figure size 3600x3600 with 0 Axes >
```python
```