prettymaps
A Python package to draw maps with customizable styles from OpenStreetMap data. Created using the osmnx, matplotlib, shapely and vsketch packages.
This work is licensed under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must disclose the source code with the license and copyright notice)
Installation
Install using with pip:
pip install prettymaps
Google Colab Demo
Note about crediting and NFTs:
- Please keep the printed message on the figures crediting my repository and OpenStreetMap (mandatory by their license).
- I am personally against NFTs for their environmental impact, the fact that they're a giant money-laundering pyramid scheme and the structural incentives they create for theft in the open source and generative art communities.
- I do not authorize in any way this project to be used for selling NFTs, although I cannot legally enforce it. Respect the creator.
- The AeternaCivitas and geoartnft projects have used this work to sell NFTs and refused to credit it. See how they reacted after being exposed: AeternaCivitas, geoartnft.
- I have closed my other generative art projects on Github and won't be sharing new ones as open source to protect me from the NFT community.
As seen on Hacker News:
prettymaps subreddit
Tutorial
Plotting with prettymaps is very simple. Run:
prettymaps.plot(your_query)
your_query can be:
- An address (Example: "Porto Alegre"),
- Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
- A custom boundary in GeoDataFrame format
import prettymaps
plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')
You can also choose from different "presets" (parameter combinations saved in JSON files)
See below an example using the "minimal" preset
plot = prettymaps.plot(
'Stad van de Zon, Heerhugowaard, Netherlands',
preset = 'minimal'
)
Run
prettymaps.presets()
to list all available presets:
preset | params | |
---|---|---|
0 | barcelona | {'layers': {'perimeter': {'circle': False}, 's... |
1 | barcelona-plotter | {'layers': {'streets': {'width': {'primary': 5... |
2 | cb-bf-f | {'layers': {'streets': {'width': {'trunk': 6, ... |
3 | default | {'layers': {'perimeter': {}, 'streets': {'widt... |
4 | heerhugowaard | {'layers': {'perimeter': {}, 'streets': {'widt... |
5 | macao | {'layers': {'perimeter': {}, 'streets': {'cust... |
6 | minimal | {'layers': {'perimeter': {}, 'streets': {'widt... |
7 | tijuca | {'layers': {'perimeter': {}, 'streets': {'widt... |
To examine a specific preset, run:
prettymaps.preset('default')
layers | style | circle | radius | |
---|---|---|---|---|
perimeter | {} |
fill: false lw: 0 zorder: 0 |
null ... |
500 ... |
streets | width: cycleway: 3.5 footway: 1 motorway: 5 pedestrian: 2 primary: 4.5 residential: 3 secondary: 4 service: 2 tertiary: 3.5 trunk: 5 unclassified: 2 |
alpha: 1 ec: '#475657' fc: '#2F3737' lw: 0 zorder: 4 |
||
building | tags: building: true landuse: construction |
ec: '#2F3737' lw: 0.5 palette: - '#433633' - '#FF5E5B' zorder: 5 |
||
water | tags: natural: - water - bay |
ec: '#2F3737' fc: '#a8e1e6' hatch: ooo... hatch_c: '#9bc3d4' lw: 1 zorder: 3 |
||
forest | tags: landuse: forest |
ec: '#2F3737' fc: '#64B96A' lw: 1 zorder: 2 |
||
green | tags: landuse: - grass - orchard leisure: park natural: - island - wood |
ec: '#2F3737' fc: '#8BB174' hatch: ooo... hatch_c: '#A7C497' lw: 1 zorder: 1 |
||
beach | tags: natural: beach |
ec: '#2F3737' fc: '#FCE19C' hatch: ooo... hatch_c: '#d4d196' lw: 1 zorder: 3 |
||
parking | tags: amenity: parking highway: pedestrian man_made: pier |
ec: '#2F3737' fc: '#F2F4CB' lw: 1 zorder: 3 |
||
background | .nan ... |
fc: '#F2F4CB' zorder: -1 |
Insted of using the default configuration you can customize several parameters. The most important are:
- layers: A dictionary of OpenStreetMap layers to fetch.
- Keys: layer names (arbitrary)
- Values: dicts representing OpenStreetMap queries
- style: Matplotlib style parameters
- Keys: layer names (the same as before)
- Values: dicts representing Matplotlib style parameters
plot = prettymaps.plot(
# Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords)
your_query,
# Dict of OpenStreetMap Layers to plot. Example:
# {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}}
# Check the /presets folder for more examples
layers,
# Dict of style parameters for matplotlib. Example:
# {'building': {'palette': ['#f00','#0f0','#00f'], 'edge_color': '#333'}}
style,
# Preset to load. Options include:
# ['default', 'minimal', 'macao', 'tijuca']
preset,
# Save current parameters to a preset file.
# Example: "my-preset" will save to "presets/my-preset.json"
save_preset,
# Whether to update loaded preset with additional provided parameters. Boolean
update_preset,
# Plot with circular boundary. Boolean
circle,
# Plot area radius. Float
radius,
# Dilate the boundary by this amount. Float
dilate
)
plot is a python dataclass containing:
@dataclass
class Plot:
# A dictionary of GeoDataFrames (one for each plot layer)
geodataframes: Dict[str, gp.GeoDataFrame]
# A matplotlib figure
fig: matplotlib.figure.Figure
# A matplotlib axis object
ax: matplotlib.axes.Axes
Here's an example of running prettymaps.plot() with customized parameters:
plot = prettymaps.plot(
'Praça Ferreira do Amaral, Macau',
circle = True,
radius = 1100,
layers = {
"green": {
"tags": {
"landuse": "grass",
"natural": ["island", "wood"],
"leisure": "park"
}
},
"forest": {
"tags": {
"landuse": "forest"
}
},
"water": {
"tags": {
"natural": ["water", "bay"]
}
},
"parking": {
"tags": {
"amenity": "parking",
"highway": "pedestrian",
"man_made": "pier"
}
},
"streets": {
"width": {
"motorway": 5,
"trunk": 5,
"primary": 4.5,
"secondary": 4,
"tertiary": 3.5,
"residential": 3,
}
},
"building": {
"tags": {"building": True},
},
},
style = {
"background": {
"fc": "#F2F4CB",
"ec": "#dadbc1",
"hatch": "ooo...",
},
"perimeter": {
"fc": "#F2F4CB",
"ec": "#dadbc1",
"lw": 0,
"hatch": "ooo...",
},
"green": {
"fc": "#D0F1BF",
"ec": "#2F3737",
"lw": 1,
},
"forest": {
"fc": "#64B96A",
"ec": "#2F3737",
"lw": 1,
},
"water": {
"fc": "#a1e3ff",
"ec": "#2F3737",
"hatch": "ooo...",
"hatch_c": "#85c9e6",
"lw": 1,
},
"parking": {
"fc": "#F2F4CB",
"ec": "#2F3737",
"lw": 1,
},
"streets": {
"fc": "#2F3737",
"ec": "#475657",
"alpha": 1,
"lw": 0,
},
"building": {
"palette": [
"#FFC857",
"#E9724C",
"#C5283D"
],
"ec": "#2F3737",
"lw": 0.5,
}
}
)
In order to plot an entire region and not just a rectangular or circular area, set
radius = False
plot = prettymaps.plot(
'Bom Fim, Porto Alegre, Brasil', radius = False,
)
You can access layers's GeoDataFrames directly like this:
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False)
plot.geodataframes['building']
addr:housenumber | addr:street | amenity | operator | website | geometry | addr:postcode | name | office | opening_hours | ... | contact:phone | bus | public_transport | source:name | government | ways | name:fr | type | building:part | architect | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
element_type | osmid | |||||||||||||||||||||
node | 2407915698 | 820 | Rua Washington Luiz | NaN | NaN | NaN | POINT (-51.23212 -30.03670) | 90010-460 | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
way | 126665330 | 387 | Rua dos Andradas | place_of_worship | NaN | NaN | POLYGON ((-51.23518 -30.03275, -51.23512 -30.0... | 90020-002 | Igreja Nossa Senhora das Dores | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
126665331 | 1001 | Rua dos Andradas | NaN | NaN | http://www.ruadapraiashopping.com.br | POLYGON ((-51.23167 -30.03066, -51.23160 -30.0... | 90020-015 | Rua da Praia Shopping | NaN | Mo-Fr 09:00-21:00; Sa 08:00-20:00 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
129176990 | 1020 | Rua 7 de Setembro | NaN | NaN | http://www.memorial.rs.gov.br | POLYGON ((-51.23117 -30.02891, -51.23120 -30.0... | 90010-191 | Memorial do Rio Grande do Sul | NaN | Tu-Sa 10:00-18:00 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
129176991 | NaN | Praça da Alfândega | NaN | NaN | http://www.margs.rs.gov.br | POLYGON ((-51.23153 -30.02914, -51.23156 -30.0... | 90010-150 | Museu de Arte do Rio Grande do Sul | NaN | Tu-Su 10:00-19:00 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
relation | 6760281 | NaN | NaN | NaN | NaN | NaN | POLYGON ((-51.23238 -30.03337, -51.23223 -30.0... | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | [457506887, 457506886] | NaN | multipolygon | NaN | NaN |
6760282 | NaN | NaN | NaN | NaN | NaN | POLYGON ((-51.23203 -30.03340, -51.23203 -30.0... | NaN | Atheneu Espírita Cruzeiro do Sul | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | [457506875, 457506889, 457506888] | NaN | multipolygon | NaN | NaN | |
6760283 | NaN | NaN | NaN | NaN | NaN | POLYGON ((-51.23284 -30.03367, -51.23288 -30.0... | NaN | Palacete Chaves | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | [457506897, 457506896] | NaN | multipolygon | NaN | Theodor Wiederspahn | |
6760284 | NaN | NaN | NaN | NaN | NaN | POLYGON ((-51.23499 -30.03412, -51.23498 -30.0... | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | [457506910, 457506913] | NaN | multipolygon | NaN | NaN | |
14393526 | 1044 | Rua Siqueira Campos | NaN | NaN | https://www.sefaz.rs.gov.br | POLYGON ((-51.23125 -30.02813, -51.23128 -30.0... | NaN | Secretaria Estadual da Fazenda | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | [236213286, 1081974882] | NaN | multipolygon | NaN | NaN |
2423 rows × 105 columns
Search a building by name and display it:
plot.geodataframes['building'][
plot.geodataframes['building'].name == 'Catedral Metropolitana Nossa Senhora Mãe de Deus'
].geometry[0]
Plot mosaic of building footprints
import numpy as np
import osmnx as ox
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Porto Alegre', show = False)
# Get list of buildings from plot's geodataframes dict
buildings = plot.geodataframes['building']
# Project from lat / long
buildings = ox.project_gdf(buildings)
buildings = [b for b in buildings.geometry if b.area > 0]
# Draw Matplotlib mosaic of n x n building footprints
n = 6
fig,axes = plt.subplots(n,n, figsize = (7,6))
# Set background color
fig.patch.set_facecolor('#5cc0eb')
# Figure title
fig.suptitle(
'Buildings of Porto Alegre',
size = 25,
color = '#fff',
fontproperties = FontProperties(fname = '../assets/PermanentMarker-Regular.ttf')
)
# Draw each building footprint on a separate axis
for ax,building in zip(np.concatenate(axes),buildings):
ax.plot(*building.exterior.xy, c = '#ffffff')
ax.autoscale(); ax.axis('off'); ax.axis('equal')
Access plot.ax or plot.fig to add new elements to the matplotlib plot:
from matplotlib.font_manager import FontProperties
plot = prettymaps.plot(
(41.39491,2.17557),
preset = 'barcelona',
)
# Change background color
plot.fig.patch.set_facecolor('#F2F4CB')
# Add title
plot.ax.set_title(
'Barcelona',
fontproperties = FontProperties(
fname = '../assets/PermanentMarker-Regular.ttf',
size = 50
)
)
plt.show()
Use plotter mode to export a pen plotter-compatible SVG (thanks to abey79's amazing vsketch library)
plot = prettymaps.plot(
(41.39491,2.17557),
mode = 'plotter',
layers = dict(perimeter = {}),
preset = 'barcelona-plotter',
scale_x = .6,
scale_y = -.6,
)
Some other examples
plot = prettymaps.plot(
# City name
'Barra da Tijuca',
dilate = 0,
figsize = (22,10),
preset = 'tijuca',
)
plot = prettymaps.plot(
'Stad van de Zon, Heerhugowaard, Netherlands',
preset = 'heerhugowaard',
)
Use prettymaps.create_preset() to create a preset:
prettymaps.create_preset(
"my-preset",
layers = {
"building": {
"tags": {
"building": True,
"leisure": [
"track",
"pitch"
]
}
},
"streets": {
"width": {
"trunk": 6,
"primary": 6,
"secondary": 5,
"tertiary": 4,
"residential": 3.5,
"pedestrian": 3,
"footway": 3,
"path": 3
}
},
},
style = {
"perimeter": {
"fill": False,
"lw": 0,
"zorder": 0
},
"streets": {
"fc": "#F1E6D0",
"ec": "#2F3737",
"lw": 1.5,
"zorder": 3
},
"building": {
"palette": [
"#fff"
],
"ec": "#2F3737",
"lw": 1,
"zorder": 4
}
}
)
prettymaps.preset('my-preset')
layers | style | circle | radius | dilate | |
---|---|---|---|---|---|
building | tags: building: true leisure: - track - pitch |
ec: '<span style="background-color:#2F3737; color:#fff">#2F3737' lw: 1 palette: - '#fff' zorder: 4 |
null ... |
null ... |
null ... |
streets | width: footway: 3 path: 3 pedestrian: 3 primary: 6 residential: 3.5 secondary: 5 tertiary: 4 trunk: 6 |
ec: '#2F3737' fc: '#F1E6D0' lw: 1.5 zorder: 3 |
|||
perimeter | .nan ... |
fill: false lw: 0 zorder: 0 |
Use prettymaps.delete_preset() to delete presets:
# Show presets before deletion
print('Before deletion:')
display(prettymaps.presets())
# Delete 'my-preset'
prettymaps.delete_preset('my-preset')
# Show presets after deletion
print('After deletion:')
display(prettymaps.presets())
Before deletion:
preset | params | |
---|---|---|
0 | barcelona | {'layers': {'perimeter': {'circle': False}, 's... |
1 | barcelona-plotter | {'layers': {'streets': {'width': {'primary': 5... |
2 | cb-bf-f | {'layers': {'streets': {'width': {'trunk': 6, ... |
3 | default | {'layers': {'perimeter': {}, 'streets': {'widt... |
4 | heerhugowaard | {'layers': {'perimeter': {}, 'streets': {'widt... |
5 | macao | {'layers': {'perimeter': {}, 'streets': {'cust... |
6 | minimal | {'layers': {'perimeter': {}, 'streets': {'widt... |
7 | my-preset | {'layers': {'building': {'tags': {'building': ... |
8 | tijuca | {'layers': {'perimeter': {}, 'streets': {'widt... |
After deletion:
preset | params | |
---|---|---|
0 | barcelona | {'layers': {'perimeter': {'circle': False}, 's... |
1 | barcelona-plotter | {'layers': {'streets': {'width': {'primary': 5... |
2 | cb-bf-f | {'layers': {'streets': {'width': {'trunk': 6, ... |
3 | default | {'layers': {'perimeter': {}, 'streets': {'widt... |
4 | heerhugowaard | {'layers': {'perimeter': {}, 'streets': {'widt... |
5 | macao | {'layers': {'perimeter': {}, 'streets': {'cust... |
6 | minimal | {'layers': {'perimeter': {}, 'streets': {'widt... |
7 | tijuca | {'layers': {'perimeter': {}, 'streets': {'widt... |
Use prettymaps.multiplot and prettymaps.Subplot to draw multiple regions on the same canvas
# Draw several regions on the same canvas
prettymaps.multiplot(
prettymaps.Subplot(
'Cidade Baixa, Porto Alegre',
style={'building': {'palette': ['#49392C', '#E1F2FE', '#98D2EB']}}
),
prettymaps.Subplot(
'Bom Fim, Porto Alegre',
style={'building': {'palette': ['#BA2D0B', '#D5F2E3', '#73BA9B', '#F79D5C']}}
),
prettymaps.Subplot(
'Farroupilha, Porto Alegre',
style={'building': {'palette': ['#EEE4E1', '#E7D8C9', '#E6BEAE']}}
),
# Load a global preset
preset='cb-bf-f',
# Figure size
figsize=(12, 12)
)