mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-30 19:50:01 +02:00
ascii
This commit is contained in:
@@ -76,7 +76,7 @@ That looks complicated, but it's not. Computing alpha is just a fraction involvi
|
||||
Of course, the recursion does need a stop condition:
|
||||
|
||||
\[
|
||||
d^k_0(t) = 0, \ d^0_i(t) = N_{i,1}(t) =
|
||||
d^k_0(t) = 0, ~d^0_i(t) = N_{i,1}(t) =
|
||||
\left\{\begin{matrix}
|
||||
1& \text{if } t \in [knot_i,knot_{i+1}) \\
|
||||
0& \text{otherwise}
|
||||
@@ -90,39 +90,39 @@ Thanks to Cox and de Boor, we can compute points on a B-Spline pretty easily usi
|
||||
\[
|
||||
d^3_3 = \left \{
|
||||
\begin{aligned}
|
||||
\alpha^3_3 \times d^2_3, & \ \textit{ with } d^2_3 = \left \{
|
||||
\alpha^3_3 \times d^2_3, & ~\textit{ with } d^2_3 = \left \{
|
||||
\begin{aligned}
|
||||
\alpha^2_3 \times d^1_3, & \ \textit{ with } d^1_3 =
|
||||
\alpha^2_3 \times d^1_3, & ~\textit{ with } d^1_3 =
|
||||
\left \{
|
||||
\begin{aligned}
|
||||
\alpha^1_3 \times d^0_3, & \ \textit{ with } d^0_3 \textit{ either 0 or 1} \\
|
||||
\alpha^1_3 \times d^0_3, & ~\textit{ with } d^0_3 \textit{ either 0 or 1} \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^1_3 \right ) \times d^0_2, & \ \textit{ with } d^0_2 \textit{ either 0 or 1} \\
|
||||
\left ( 1 - \alpha^1_3 \right ) \times d^0_2, & ~\textit{ with } d^0_2 \textit{ either 0 or 1} \\
|
||||
\end{aligned}
|
||||
\right . \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^2_3 \right ) \times d^1_2, & \ \textit{ with } d^1_2 =
|
||||
\left ( 1 - \alpha^2_3 \right ) \times d^1_2, & ~\textit{ with } d^1_2 =
|
||||
\left \{
|
||||
\begin{aligned}
|
||||
\alpha^1_2 \times d^0_2 & \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^1_2 \right ) \times d^0_1, & \ \textit{ with } d^0_1 \textit{ either 0 or 1} \\
|
||||
\left ( 1 - \alpha^1_2 \right ) \times d^0_1, & ~\textit{ with } d^0_1 \textit{ either 0 or 1} \\
|
||||
\end{aligned}
|
||||
\right . \\
|
||||
\end{aligned}
|
||||
\right . \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^3_3 \right ) \times d^2_2, & \ \textit{ with } d^2_2 = \left \{
|
||||
\left ( 1 - \alpha^3_3 \right ) \times d^2_2, & ~\textit{ with } d^2_2 = \left \{
|
||||
\begin{aligned}
|
||||
\alpha^2_2 \times d^1_2 & \\
|
||||
& \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^2_2 \right ) \times d^1_1, & \ \textit{ with } d^1_1 =
|
||||
\left ( 1 - \alpha^2_2 \right ) \times d^1_1, & ~\textit{ with } d^1_1 =
|
||||
\left \{
|
||||
\begin{aligned}
|
||||
\alpha^1_1 \times d^0_1 \\
|
||||
+ & \\
|
||||
\left ( 1 - \alpha^1_1 \right ) \times d^0_0, & \ \textit{ with } d^0_0 \textit{ either 0 or 1} \\
|
||||
\left ( 1 - \alpha^1_1 \right ) \times d^0_0, & ~\textit{ with } d^0_0 \textit{ either 0 or 1} \\
|
||||
\end{aligned}
|
||||
\right . \\
|
||||
\end{aligned}
|
||||
|
Reference in New Issue
Block a user