mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-27 10:15:05 +02:00
ascii
This commit is contained in:
@@ -92,9 +92,9 @@ It's basically just a sum of "every combination of <i>a</i> and <i>b</i>", progr
|
||||
|
||||
\[
|
||||
Bézier(n,t) = \sum_{i=0}^{n}
|
||||
\underset{binomial\ term}{\underbrace{\binom{n}{i}}}
|
||||
\underset{binomial~term}{\underbrace{\binom{n}{i}}}
|
||||
\cdot\
|
||||
\underset{polynomial\ term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\underset{polynomial~term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\]
|
||||
|
||||
And that's the full description for Bézier curves. Σ in this function indicates that this is a series of additions (using the variable listed below the Σ, starting at ...=<value> and ending at the value listed on top of the Σ).
|
||||
|
@@ -90,9 +90,9 @@
|
||||
|
||||
\[
|
||||
Bézier(n,t) = \sum_{i=0}^{n}
|
||||
\underset{binomial\ term}{\underbrace{\binom{n}{i}}}
|
||||
\underset{binomial~term}{\underbrace{\binom{n}{i}}}
|
||||
\cdot\
|
||||
\underset{polynomial\ term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\underset{polynomial~term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\]
|
||||
|
||||
这就是贝塞尔曲线完整的描述。在这个函数中的Σ表示了这是一系列的加法(用Σ下面的变量,从...=<值>开始,直到Σ上面的数字结束)。
|
||||
|
Reference in New Issue
Block a user