1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-30 19:50:01 +02:00
This commit is contained in:
Pomax
2020-10-18 14:27:57 -07:00
parent 133105d44e
commit 0f6683ca6d
314 changed files with 11182 additions and 266 deletions

View File

@@ -11,7 +11,7 @@ Adding these ratio values to the regular Bézier curve function is fairly easy.
The function for rational Bézier curves has two more terms:
\[
Rational\ Bézier(n,t) = \frac{ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i \cdot BLUE[ratio_i] }{ BLUE[ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot ratio_i ] }
Rational~Bézier(n,t) = \frac{ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i \cdot BLUE[ratio_i] }{ BLUE[ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot ratio_i ] }
\]
In this, the first new term represents an additional weight for each coordinate. For example, if our ratio values are [1, 0.5, 0.5, 1] then <code>ratio<sub>0</sub> = 1</code>, <code>ratio<sub>1</sub> = 0.5</code>, and so on, and is effectively identical as if we were just using different weight. So far, nothing too special.