1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-02 04:42:43 +02:00

full regeneration

This commit is contained in:
Pomax
2021-02-28 12:28:41 -08:00
parent d8fab98ec7
commit 45394f6d0f
329 changed files with 3135 additions and 2361 deletions

View File

@@ -22,11 +22,11 @@ If we want to change the curve, we need to change the weights of each point, eff
\[
Bézier(n,t) = \sum_{i=0}^{n}
\underset{binomial~term}{\underbrace{\binom{n}{i}}}
\underset{\textit{binomial term}}{\underbrace{\binom{n}{i}}}
\cdot\
\underset{polynomial~term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
\underset{\textit{polynomial term}}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
\cdot\
\underset{weight}{\underbrace{w_i}}
\underset{\textit{weight}}{\underbrace{w_i}}
\]
That looks complicated, but as it so happens, the "weights" are actually just the coordinate values we want our curve to have: for an <i>n<sup>th</sup></i> order curve, w<sub>0</sub> is our start coordinate, w<sub>n</sub> is our last coordinate, and everything in between is a controlling coordinate. Say we want a cubic curve that starts at (110,150), is controlled by (25,190) and (210,250) and ends at (210,30), we use this Bézier curve: