mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-09-02 12:54:23 +02:00
full regeneration
This commit is contained in:
@@ -57,9 +57,9 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= (1-t) + t \\
|
||||
square &= (1-t)^2 + 2 \cdot (1-t) \cdot t + t^2 \\
|
||||
cubic &= (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
\textit{linear} &= (1-t) + t \\
|
||||
\textit{square} &= (1-t)^2 + 2 \cdot (1-t) \cdot t + t^2 \\
|
||||
\textit{cubic} &= (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
@@ -67,10 +67,10 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= \hspace{2.5em} 1 + 1 \\
|
||||
square &= \hspace{1.7em} 1 + 2 + 1\\
|
||||
cubic &= \hspace{0.85em} 1 + 3 + 3 + 1\\
|
||||
quartic &= 1 + 4 + 6 + 4 + 1
|
||||
\textit{linear} &= \hspace{2.5em} 1 + 1 \\
|
||||
\textit{square} &= \hspace{1.7em} 1 + 2 + 1\\
|
||||
\textit{cubic} &= \hspace{0.85em} 1 + 3 + 3 + 1\\
|
||||
\textit{quartic} &= 1 + 4 + 6 + 4 + 1
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
@@ -80,19 +80,19 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= BLUE[a] + RED[b] \\
|
||||
square &= BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot RED[b] + RED[b] \cdot RED[b] \\
|
||||
cubic &= BLUE[a] \cdot BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot BLUE[a] \cdot RED[b] + BLUE[a] \cdot RED[b] \cdot RED[b] + RED[b] \cdot RED[b] \cdot RED[b]\\
|
||||
\textit{linear} &= BLUE[a] + RED[b] \\
|
||||
\textit{square} &= BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot RED[b] + RED[b] \cdot RED[b] \\
|
||||
\textit{cubic} &= BLUE[a] \cdot BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot BLUE[a] \cdot RED[b] + BLUE[a] \cdot RED[b] \cdot RED[b] + RED[b] \cdot RED[b] \cdot RED[b]\\
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
基本上它就是“每个<i>a</i>和<i>b</i>结合项”的和,在每个加号后面逐步的将<i>a</i>换成<i>b</i>。因此这也很简单。现在你已经知道了二次多项式,为了叙述的完整性,我将给出一般方程:
|
||||
|
||||
\[
|
||||
Bézier(n,t) = \sum_{i=0}^{n}
|
||||
\underset{binomial~term}{\underbrace{\binom{n}{i}}}
|
||||
\textit{Bézier}(n,t) = \sum_{i=0}^{n}
|
||||
\underset{\textit{binomial term}}{\underbrace{\binom{n}{i}}}
|
||||
\cdot\
|
||||
\underset{polynomial~term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\underset{\textit{polynomial term}}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\]
|
||||
|
||||
这就是贝塞尔曲线完整的描述。在这个函数中的Σ表示了这是一系列的加法(用Σ下面的变量,从...=<值>开始,直到Σ上面的数字结束)。
|
||||
|
Reference in New Issue
Block a user