mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-31 20:11:59 +02:00
full regeneration
This commit is contained in:
@@ -4,9 +4,9 @@ If you want to move objects along a curve, or "away from" a curve, the two vecto
|
||||
|
||||
\[
|
||||
\begin{matrix}
|
||||
tangent_x(t) = B'_x(t) \\
|
||||
\textit{tangent}_x(t) = B'_x(t) \\
|
||||
\\
|
||||
tangent_y(t) = B'_y(t)
|
||||
\textit{tangent}_y(t) = B'_y(t)
|
||||
\end{matrix}
|
||||
\]
|
||||
|
||||
@@ -14,14 +14,14 @@ This gives us the directional vector we want. We can normalize it to give us uni
|
||||
|
||||
\[
|
||||
\begin{matrix}
|
||||
d = \left \| tangent(t) \right \| = \sqrt{B'_x(t)^2 + B'_y(t)^2} \\
|
||||
d = \left \| \textit{tangent}(t) \right \| = \sqrt{B'_x(t)^2 + B'_y(t)^2} \\
|
||||
\\
|
||||
\hat{x}(t) = \left \| tangent_x(t) \right \|
|
||||
=\frac{tangent_x(t)}{ \left \| tangent(t) \right \| }
|
||||
\hat{x}(t) = \left \| \textit{tangent}_x(t) \right \|
|
||||
=\frac{\textit{tangent}_x(t)}{ \left \| \textit{tangent}(t) \right \| }
|
||||
= \frac{B'_x(t)}{d} \\
|
||||
\\
|
||||
\hat{y}(t) = \left \| tangent_y(t) \right \|
|
||||
= \frac{tangent_y(t)}{ \left \| tangent(t) \right \| }
|
||||
\hat{y}(t) = \left \| \textit{tangent}_y(t) \right \|
|
||||
= \frac{\textit{tangent}_y(t)}{ \left \| \textit{tangent}(t) \right \| }
|
||||
= \frac{B'_y(t)}{d}
|
||||
\end{matrix}
|
||||
\]
|
||||
@@ -30,9 +30,9 @@ The tangent is very useful for moving along a line, but what if we want to move
|
||||
|
||||
\[
|
||||
\begin{array}{l}
|
||||
normal_x(t) = \hat{x}(t) \cdot \cos{\frac{\pi}{2}} - \hat{y}(t) \cdot \sin{\frac{\pi}{2}} = - \hat{y}(t) \\
|
||||
\textit{normal}_x(t) = \hat{x}(t) \cdot \cos{\frac{\pi}{2}} - \hat{y}(t) \cdot \sin{\frac{\pi}{2}} = - \hat{y}(t) \\
|
||||
\\
|
||||
normal_y(t) = \underset{quarter~circle~rotation} {\underbrace{ \hat{x}(t) \cdot \sin{\frac{\pi}{2}} + \hat{y}(t) \cdot \cos{\frac{\pi}{2}} }} = \hat{x}(t)
|
||||
\textit{normal}_y(t) = \underset{\textit{quarter circle rotation}} {\underbrace{ \hat{x}(t) \cdot \sin{\frac{\pi}{2}} + \hat{y}(t) \cdot \cos{\frac{\pi}{2}} }} = \hat{x}(t)
|
||||
\end{array}
|
||||
\]
|
||||
|
||||
|
Reference in New Issue
Block a user