mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-09-03 05:12:43 +02:00
full regeneration
This commit is contained in:
@@ -5,13 +5,13 @@ We can further control Bézier curves by "rationalising" them: that is, adding a
|
||||
Adding these ratio values to the regular Bézier curve function is fairly easy. Where the regular function is the following:
|
||||
|
||||
\[
|
||||
Bézier(n,t) = \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i
|
||||
\textit{Bézier}(n,t) = \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i
|
||||
\]
|
||||
|
||||
The function for rational Bézier curves has two more terms:
|
||||
|
||||
\[
|
||||
Rational~Bézier(n,t) = \frac{ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i \cdot BLUE[ratio_i] }{ BLUE[ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot ratio_i ] }
|
||||
\textit{Rational Bézier}(n,t) = \frac{ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot w_i \cdot BLUE[ratio_i] }{ BLUE[ \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^{i} \cdot ratio_i ] }
|
||||
\]
|
||||
|
||||
In this, the first new term represents an additional weight for each coordinate. For example, if our ratio values are [1, 0.5, 0.5, 1] then <code>ratio<sub>0</sub> = 1</code>, <code>ratio<sub>1</sub> = 0.5</code>, and so on, and is effectively identical as if we were just using different weight. So far, nothing too special.
|
||||
|
Reference in New Issue
Block a user