From 4c0e71cd4ab519c6d151fe2969198f19e8ea15ea Mon Sep 17 00:00:00 2001 From: Pomax Date: Sat, 19 Sep 2020 18:34:03 -0700 Subject: [PATCH] full regeneration --- docs/chapters/aligning/aligning.js | 18 +- docs/chapters/aligning/content.en-GB.md | 5 +- docs/chapters/arclength/arclength.js | 64 +- docs/chapters/arclength/ct-values.js | 55 ++ docs/chapters/arclengthapprox/approximate.js | 3 + docs/chapters/boundingbox/bbox.js | 5 + docs/chapters/components/components.js | 23 +- docs/chapters/components/content.en-GB.md | 2 + docs/chapters/curvature/curvature.js | 8 +- docs/chapters/extremities/extremities.js | 60 +- docs/chapters/inflections/inflection.js | 19 +- docs/chapters/pointvectors/content.en-GB.md | 29 +- docs/chapters/pointvectors/pointvectors.js | 33 +- docs/chapters/pointvectors3d/frenet.js | 47 +- docs/chapters/pointvectors3d/projection.js | 22 +- .../pointvectors3d/rotation-minimizing.js | 146 ++--- docs/chapters/pointvectors3d/vector-lib.js | 99 ++- docs/chapters/reordering/reorder.js | 176 +++--- docs/chapters/tightbounds/tightbounds.js | 4 + docs/chapters/yforx/basics.js | 12 +- docs/chapters/yforx/yforx.js | 1 + .../abc/059000c5c8a37dcc8d7fa04154a05df3.svg | 2 +- .../abc/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg | 2 +- .../abc/385d1fd4aecbd2066e6e284a84408be6.svg | 2 +- .../abc/3c696e0364d61b1391695342707d6ccc.svg | 2 +- .../abc/5484dc53e408a4259891a65212ef8636.svg | 2 +- .../abc/63fbe4e666a7dad985ec4110e17c249f.svg | 2 +- .../abc/b4987e9b77b0df604238b88596c5f7c3.svg | 2 +- .../abc/bc245327e0b011712168bad1c48dfec4.svg | 2 +- .../abc/cd2e47cdc2e23ec86cd1ca1cb4286645.svg | 2 +- ...g => 28cc0f129fa0c028a1addd702e99f162.png} | Bin .../50679d61424222d7b6b97eb3aa663582.svg | 2 +- ...g => 9a6755a1e31a990e8f072a6da98f811a.png} | Bin .../a9af1c06a00bb3c4af816a138fb0a66d.svg | 2 +- .../c78b203ff33e5c1606728b552505d61c.svg | 2 +- .../d480a9aa41917e5230d432cdbd6899b1.svg | 2 +- .../5509919419288129322cfbd4c60d0a4f.svg | 2 +- .../56533f47e73ad9fea08fa9bb3f597d49.png | Bin 11020 -> 11042 bytes .../5ce02cbdbc47585c588f2656d5161a32.png | Bin 11489 -> 11534 bytes .../cb24cda7f7f4bbf3be7104c460e0ec9f.svg | 2 +- .../d0d93f1cc26b560309dade1f1aa012f2.svg | 2 +- .../d3003177813309f88f58a1f515f5df9f.svg | 2 +- .../e168758d35b8f6781617eda5a32b20bf.svg | 2 +- .../e96dd431f6ef9433ccf25909dddd5bca.svg | 2 +- ...g => fa4c587126e8097206b88d9ea51974ca.png} | Bin .../fe2663b205d14c157a5a02bfbbd55987.png | Bin 12348 -> 12350 bytes ...g => 3fc083ea7bdcc6b021560f2f2491f8aa.png} | Bin ...g => 537260c4aa9e98ffdea7c8120afbd427.png} | Bin ...g => 12ec4a5039de2e2cc06611db5e826282.png} | Bin ...g => daad01218ba430e2355d151811aa971b.png} | Bin .../0f3451c711c0fe5d0b018aa4aa77d855.svg | 2 +- .../4c8f9814c50c708757eeb5a68afabb7f.svg | 2 +- .../763838ea6f9e6c6aa63ea5f9c6d9542f.svg | 2 +- .../892209dad8fd1f839470dd061e870913.svg | 2 +- .../adac18ea69cc58e01c8d5e15498e4aa6.svg | 2 +- .../bd187c361b285ef878d0bc17af8a3900.svg | 2 +- .../cf45d1ea00d4866abc8a058b130299b4.svg | 2 +- .../0430e8c7f7d4ec80e6527f96f3d56e5c.svg | 2 +- .../10025fdab2b3fd20f5d389cbe7e3e3ce.svg | 2 +- .../13c09950363c33627fd3a20343f2f6ce.svg | 2 +- .../20684d22b3ddc52fd6abde8ce56608a9.svg | 2 +- .../2a411f175dcc987cdcc12e7df49ca272.svg | 2 +- .../4230e959138d8400e04abf316360009a.svg | 2 +- .../63ccae0ebe0ca70dc2afb507ab32e4bd.svg | 2 +- .../8cbef24b8c3b26f9daf2f89d27d36e95.svg | 2 +- .../add5f7fb210a306fe9ff933113f6fb91.svg | 2 +- .../ba5f418452c3657f3c4dd4b319e59070.svg | 2 +- .../ddee51855ef3a9ee7660c395b0a041c7.svg | 2 +- .../f039b4e7cf0203df9fac48dad820b2b7.svg | 2 +- .../06ae1e3fdc660e59d618e0760e8e9ab5.svg | 2 +- .../169fd85a95e4d16fe289a75583017a11.svg | 2 +- .../1811b59c5ab9233f08590396e5d03303.svg | 2 +- .../1b8a782f7540503d38067317e4cd00b0.svg | 2 +- .../26363fc09f8cf2d41ea5b4256656bb6d.svg | 2 +- .../2844a4f4d222374a25b5f673c94679d9.svg | 2 +- .../3ea54fe939d076f8db605c5b480e7db0.svg | 2 +- .../4d524810417b4caffedd13af23135f5b.svg | 2 +- .../5f2750de827497375d9a915f96686885.svg | 2 +- .../78ac9df086ec19147414359369b563fc.svg | 2 +- .../79e333cd0c569657eea033b04fb5e61b.svg | 2 +- .../841fb6a2a035c9bcf5a2d46f2a67709b.svg | 2 +- .../8f56909fcb62b8eef18b9b9559575c13.svg | 2 +- .../9215d05705c8e8a7ebd718ae6f690371.svg | 2 +- .../a47b072a325812ac4f0ff52c22792588.svg | 2 +- .../b21386f86bef8894f108c5441dad10de.svg | 2 +- .../ba31c32eba62f1e3b15066cd5ddda597.svg | 2 +- .../cbdd46d5e2e1a6202ef46fb03711ebe4.svg | 2 +- .../cc1e2ff43350c32f0ae9ba9a7652b8fb.svg | 2 +- .../e3d30ab368dcead1411532ce3814d3f3.svg | 2 +- .../eae7f01976e511ee38b08b6edc8765d2.svg | 2 +- .../f08e34395ce2812276fd70548f805041.svg | 2 +- .../f2b2a16a41d134ce0dfd544ab77ff25e.svg | 2 +- .../f41487aff3e34fafd5d4ee5979f133f1.svg | 2 +- .../f814bb8d627f9c8f33b347c1cf13d4c7.svg | 2 +- .../7754bc3c96ae3c90162fec3bd46bedff.svg | 2 +- .../8374c4190d6213b0ac0621481afaa754.svg | 2 +- .../9e4d886c372f916f6511c41245ceee39.svg | 2 +- .../a127f926eced2751a09c54bf7c361b4a.svg | 2 +- .../adbd056f4b8fcd05b1d4f2fce27d7657.svg | 2 +- .../b5d864e9ed0c44c56d454fbaa4218d5e.svg | 2 +- .../c22f6d343ee0cce7bff6a617c946ca17.svg | 2 +- .../df87674db0f31fc3944aaeb6b890e196.svg | 2 +- .../e1059e611aa1e51db41f9ce0b4ebb95a.svg | 2 +- .../ef3ab62bb896019c6157c85aae5d1ed3.svg | 2 +- .../fe32474b4616ee9478e1308308f1b6bf.svg | 2 +- .../0364731626a530c8a9b30f424ada53c5.svg | 2 +- .../05d36e051a38905dcb81e65db8261f24.svg | 2 +- .../14c238eb17045cda3205c6ce9944004c.svg | 2 +- .../178a838274748439778e2a29f5a27d0b.svg | 2 +- .../195790bae7de813aec342ea82b5d8781.svg | 2 +- .../1ab9827727b8f7fe466a124b0e1867ce.svg | 2 +- .../3189cac1ddac07c1487e1e51740ecc88.svg | 2 +- .../877f9c217c51c0087be751a7580ed459.svg | 2 +- .../a4f0dafbfe80c88723c3cc22277a9682.svg | 2 +- .../acbc5efb06bc34571ccc0322376e0b9b.svg | 2 +- .../dfb83eec053c30e0a41b0a52aba24cd4.svg | 2 +- .../e2258660a796dcd6189a6f5e14326dad.svg | 2 +- .../ee08d86b7497c7ab042ee899bf15d453.svg | 2 +- .../008604bc4c53bd7e0d97c99a67812ad1.png | Bin 20250 -> 0 bytes .../1e6e38f6403dbe4c8b80295a94fc6748.png | Bin 0 -> 19022 bytes .../348694339257428a260144da4bbf80fc.png | Bin 0 -> 20780 bytes .../5214256129e6396e7ac1f1713fa9c88d.png | Bin 21915 -> 0 bytes ...g => 2398b098e6ac9da9dc109239b49715ed.png} | Bin ...g => 595e2f3790ef8034631e1cbb0df9c6f6.png} | Bin .../6ed4fd2ead35c57984caddf9fe375a5f.svg | 2 +- .../828333034b4fed8e248683760d6bc6f4.svg | 2 +- .../d9c893051586eb8d9de51c0ae1ef8fae.svg | 2 +- .../03ec73258d5c95eed39a2ea8665e0b07.svg | 2 +- .../08f4beaebf83dca594ad125bdca7e436.svg | 2 +- .../283bc9e8fe59a78d3c74860f62a66ecb.svg | 2 +- .../2b8334727d3b004c6e87263fec6b32b7.svg | 2 +- .../2bef3da3828d63d690460ce9947dbde2.svg | 2 +- .../2d42758fba3370f52191306752c2705c.svg | 2 +- .../4ffad56e281ee79d0688e93033429f0a.svg | 2 +- .../5f7fcb86ae1c19612b9fe02e23229e31.svg | 2 +- .../6202d7bd150c852b432d807c40fb1647.svg | 2 +- .../78b8ba1aba2e4c9ad3f7890299c90152.svg | 2 +- .../7e5d59272621baf942bc722208ce70c2.svg | 2 +- .../7eada6f12045423de24d9a2ab8e293b1.svg | 2 +- .../875ca8eea72e727ccb881b4c0b6a3224.svg | 2 +- .../8d09f2be2c6db79ee966f170ffc25815.svg | 2 +- .../9151c0fdf9689ee598a2d029ab2ffe34.svg | 2 +- .../94acb5850778dcb16c2ba3cfa676f537.svg | 2 +- .../ab334858d3fa309cc1a5ba535a2ca168.svg | 2 +- .../bd8e8e294eec10d2bf6ef857c7c0c2c2.svg | 2 +- .../d84d1c71a3ce1918f53eaf8f9fe98ac4.svg | 2 +- .../066a910ae6aba69c40a338320759cdd1.svg | 2 +- .../0f5cffd58e864fec6739a57664eb8cbd.svg | 2 +- .../1caef9931f954e32eae5067b732c1018.svg | 2 +- .../2adc12d0cff01d40d9e1702014a7dc19.svg | 2 +- .../4cf6fb369841e2c5d36e5567a8db4306.svg | 2 +- .../9a6d17c362980775f1425d0d2ad9a36a.svg | 2 +- .../9c18f76e76cf684ecd217ad8facc2e93.svg | 2 +- .../bb06cb82d372f822a7b35e661502bd72.svg | 2 +- .../e107caca1577e44293cd207388ac939c.svg | 2 +- .../b80a1cac1f9ec476d6f6646ce0e154e7.svg | 2 +- .../d930dea961b40f4810708bd6746221a2.svg | 2 +- .../0ec5cc72a428d75defb480530b50d720.svg | 2 +- .../1b70524bfb7d159a48f0b370d81ee2f6.png | Bin 0 -> 20784 bytes .../1c0367fad2a0d6946db1f55a8520793a.svg | 2 +- .../6db78123d4b676ffdf85d53670c77468.svg | 2 +- .../890406c7bc96904224f8f14940bf3e56.png | Bin 25175 -> 0 bytes .../9850eec01924deae7fda4400ce44270d.png | Bin 22295 -> 0 bytes .../997a8cc704c0ab0e364cb8b532df90b0.svg | 2 +- .../a77025630019ef3d90ffa279879a205a.png | Bin 0 -> 23872 bytes .../c621cc41f6f22ee1beedbcb510fa5b6b.svg | 2 +- .../d9e66caeb45b6643112ce3d971b17e5b.svg | 2 +- .../ddc6f99a543afad25c55cf16b9deeed9.svg | 2 +- .../e06ec558d99b53e559d24524f4201951.svg | 2 +- .../1679090a942a43d27f886f236fc8d62b.svg | 2 +- .../2029bca9f4fa15739553636af99b70a8.svg | 2 +- .../4b5c7d0bf0fcd769db007dd98d4a024d.svg | 2 +- .../4d78ebcf8626f777725d67d3672fa480.svg | 2 +- ...g => 726ece45630c43be14589c51f1606bd7.png} | Bin .../7c9762c0e04693eb743905cdc0487f8b.svg | 2 +- .../97b34ad5920612574d1b2a1a9d22d571.svg | 2 +- .../b2433959e1f451fa3bf238fc37e04527.svg | 2 +- .../bafdb6583323bda71d9a15c02d1fdec2.svg | 2 +- .../079d318ad693b6b17413a91f5de06be8.svg | 2 +- .../82a99caec5f84fb26dce28277377c041.svg | 2 +- .../1d4be24e5896dce3c16c8e71f9cc8881.svg | 2 +- .../1d586b939b44ff9bdb42562a12ac2779.svg | 2 +- .../5bfee4f2ae27304475673d0596e42f9a.svg | 2 +- .../b262e50c085815421d94e120fc17f1c8.svg | 2 +- .../fa6c243de2aa78b7451e0086848dfdfc.svg | 2 +- .../3c7516c16a5dea95df741f4263cecd1c.svg | 2 +- .../55d4f7ed095dfea8f9772208abc83b51.svg | 2 +- .../6f0e2b6494d7dae2ea79a46a499d7ed4.svg | 2 +- .../9203537b7dca98ebb2d7017c76100fde.svg | 2 +- .../009715fce01e46e7c07f87a8192a8c62.svg | 1 - .../2a55cb2d23c25408aa10cfd8db13278b.svg | 2 +- .../2dd2f89d1c762991a86526490a3deef6.svg | 1 - .../3f439e8106eb359d9323c5c2899b326b.svg | 1 + ...g => 5863bd013ad6594f63f8dfa51ff4adc0.png} | Bin .../5ffdfe2c3619aade280fbc4f43b30faf.svg | 1 + .../6101b2f8b69ebabba4a2c88456a32aa0.svg | 1 - .../83c36a23bfe24946e88630d77ea2cb9a.svg | 1 + .../d236b7b2ad46c8ced1b43bb2a496379a.svg | 1 - .../deec095950fcd1f9c980be76a7093fe6.svg | 2 +- ...g => f1b4e81d22f4c44d4618b0f55a1a88c5.png} | Bin ...g => 11c1da2357004bb51cf0c591fc492115.png} | Bin .../9983328e50c2156c124bb1ea4ad5c05b.png | Bin 13157 -> 0 bytes .../f4a2fa1e0204c890b2bff07228ba678d.png | Bin 0 -> 12730 bytes .../408dd95905a5f001179c4da6051e49c5.svg | 2 +- .../8c1b570b3efdfbbc39ddedb4adcaaff6.svg | 2 +- .../1244a85c1f9044b6f77cb709c682159c.svg | 2 +- .../41e184228d85023abdadd6ce2acb54c7.svg | 2 +- .../483c89c8726f7fd0dca0b7de339b04bd.svg | 2 +- .../4debbed5922d2bd84fd322c616872d20.svg | 2 +- .../773fdc86b686647c823b4f499aca3a35.svg | 2 +- .../7a9120997e4a4855ecda435553a7bbdf.svg | 2 +- .../b2fda1dcce5bb13317aa42ebf5e7ea6c.svg | 2 +- .../c37918c649befad06de255a6415faf29.png | Bin 11104 -> 0 bytes .../c4874e1205aabe624e5504abe154eae9.png | Bin 0 -> 11234 bytes .../d52f60b331c1b8d6733eb5217adfbc4d.svg | 2 +- .../dd8d8d98f66ce9f51b95cbf48225e97b.svg | 2 +- .../faf29599c9307f930ec28065c96fde2a.svg | 2 +- ...g => 9ee5abc64b3fba71e284c70539279d74.png} | Bin ...g => ed91133976018ec032d9115344debb36.png} | Bin .../02457b19087540dfb144978419524a85.svg | 2 +- .../3fd61ab3fe88f694e70f61e4f8ea056b.svg | 2 +- .../b5aa26284ba3df74970a95cb047a841d.svg | 2 +- ...g => 2fc5c57e5d1ed0eaa1655edc31026252.png} | Bin .../61e43d68f6eb677d0fccd473c121e782.svg | 2 +- .../9ab2b830fe7fb73350c19bde04e9441b.svg | 2 +- .../9df91c28af38c1ba2e2d38d2714c9446.svg | 2 +- .../dd28d64458d22f4fe89c98568258efcb.png | Bin 20071 -> 0 bytes .../e469af5bf27a2c27d1dd6fc62a78ac27.png | Bin 0 -> 19663 bytes docs/index.html | 562 +++++++++--------- docs/ja-JP/index.html | 544 +++++++++-------- .../lib/perform-code-surgery.js | 2 +- docs/news/2020-09-18.html | 2 +- docs/news/{2020-09-19-draft.md => draft.md} | 0 docs/zh-CN/index.html | 562 +++++++++--------- 234 files changed, 1468 insertions(+), 1376 deletions(-) create mode 100644 docs/chapters/arclength/ct-values.js rename docs/images/chapters/aligning/{b3ccd45a72c815388aee6515fe37a486.png => 28cc0f129fa0c028a1addd702e99f162.png} (100%) rename docs/images/chapters/aligning/{31655f24b7dd8b8871687b6610d9ac0e.png => 9a6755a1e31a990e8f072a6da98f811a.png} (100%) rename docs/images/chapters/arclength/{195f9a3c60f8dfe977c6450d21968f69.png => fa4c587126e8097206b88d9ea51974ca.png} (100%) rename docs/images/chapters/arclengthapprox/{a040f6b7c7c33ada25ecfd1060726545.png => 3fc083ea7bdcc6b021560f2f2491f8aa.png} (100%) rename docs/images/chapters/arclengthapprox/{c270144cc41e4ebc4b0b2331473530fa.png => 537260c4aa9e98ffdea7c8120afbd427.png} (100%) rename docs/images/chapters/boundingbox/{e2c621442e98e2cd20af7efe1cfb041f.png => 12ec4a5039de2e2cc06611db5e826282.png} (100%) rename docs/images/chapters/boundingbox/{f8989a62ebec9d6f123291c146caab5b.png => daad01218ba430e2355d151811aa971b.png} (100%) delete mode 100644 docs/images/chapters/components/008604bc4c53bd7e0d97c99a67812ad1.png create mode 100644 docs/images/chapters/components/1e6e38f6403dbe4c8b80295a94fc6748.png create mode 100644 docs/images/chapters/components/348694339257428a260144da4bbf80fc.png delete mode 100644 docs/images/chapters/components/5214256129e6396e7ac1f1713fa9c88d.png rename docs/images/chapters/curvature/{7898e3a51a86afffd1a91ce0fcc99b26.png => 2398b098e6ac9da9dc109239b49715ed.png} (100%) rename docs/images/chapters/curvature/{78581fc4b36f2e45c704a4fce7c8368a.png => 595e2f3790ef8034631e1cbb0df9c6f6.png} (100%) create mode 100644 docs/images/chapters/extremities/1b70524bfb7d159a48f0b370d81ee2f6.png delete mode 100644 docs/images/chapters/extremities/890406c7bc96904224f8f14940bf3e56.png delete mode 100644 docs/images/chapters/extremities/9850eec01924deae7fda4400ce44270d.png create mode 100644 docs/images/chapters/extremities/a77025630019ef3d90ffa279879a205a.png rename docs/images/chapters/inflections/{9e1ce3975100600d4979370851929b73.png => 726ece45630c43be14589c51f1606bd7.png} (100%) delete mode 100644 docs/images/chapters/pointvectors/009715fce01e46e7c07f87a8192a8c62.svg delete mode 100644 docs/images/chapters/pointvectors/2dd2f89d1c762991a86526490a3deef6.svg create mode 100644 docs/images/chapters/pointvectors/3f439e8106eb359d9323c5c2899b326b.svg rename docs/images/chapters/pointvectors/{2724b6c42f36b4dbea6962cac844d2c3.png => 5863bd013ad6594f63f8dfa51ff4adc0.png} (100%) create mode 100644 docs/images/chapters/pointvectors/5ffdfe2c3619aade280fbc4f43b30faf.svg delete mode 100644 docs/images/chapters/pointvectors/6101b2f8b69ebabba4a2c88456a32aa0.svg create mode 100644 docs/images/chapters/pointvectors/83c36a23bfe24946e88630d77ea2cb9a.svg delete mode 100644 docs/images/chapters/pointvectors/d236b7b2ad46c8ced1b43bb2a496379a.svg rename docs/images/chapters/pointvectors/{f4d72cc162d4cbcc6d6a459fced01cfb.png => f1b4e81d22f4c44d4618b0f55a1a88c5.png} (100%) rename docs/images/chapters/pointvectors3d/{59b6ce3fcbf79da171d86e962597097e.png => 11c1da2357004bb51cf0c591fc492115.png} (100%) delete mode 100644 docs/images/chapters/pointvectors3d/9983328e50c2156c124bb1ea4ad5c05b.png create mode 100644 docs/images/chapters/pointvectors3d/f4a2fa1e0204c890b2bff07228ba678d.png delete mode 100644 docs/images/chapters/reordering/c37918c649befad06de255a6415faf29.png create mode 100644 docs/images/chapters/reordering/c4874e1205aabe624e5504abe154eae9.png rename docs/images/chapters/tightbounds/{419415bee6ffd7598c035c42de09a94f.png => 9ee5abc64b3fba71e284c70539279d74.png} (100%) rename docs/images/chapters/tightbounds/{ccc77ae1f57d7dd7ce4d5397fe1b140b.png => ed91133976018ec032d9115344debb36.png} (100%) rename docs/images/chapters/yforx/{efcfe9b48ca4e65eef3d4bf3e4c97bc3.png => 2fc5c57e5d1ed0eaa1655edc31026252.png} (100%) delete mode 100644 docs/images/chapters/yforx/dd28d64458d22f4fe89c98568258efcb.png create mode 100644 docs/images/chapters/yforx/e469af5bf27a2c27d1dd6fc62a78ac27.png rename docs/news/{2020-09-19-draft.md => draft.md} (100%) diff --git a/docs/chapters/aligning/aligning.js b/docs/chapters/aligning/aligning.js index 6beca728..a11fe567 100644 --- a/docs/chapters/aligning/aligning.js +++ b/docs/chapters/aligning/aligning.js @@ -15,6 +15,7 @@ draw() { translate(this.width/2, 0); line(0,0,0,this.height); + // draw the realigned curve: this.drawRTCurve( this.rotatePoints( this.translatePoints( @@ -25,7 +26,7 @@ draw() { } translatePoints(points) { - // translate to (0,0) + // translate so that the curve starts at (0,0) let m = points[0]; return points.map(v => { return { @@ -36,7 +37,7 @@ translatePoints(points) { } rotatePoints(points) { - // rotate so that last point is (...,0) + // rotate the curve so that the point is (...,0) let degree = curve.points.length - 1; let dx = points[degree].x; let dy = points[degree].y; @@ -50,13 +51,18 @@ rotatePoints(points) { } drawRTCurve(points) { - let degree = curve.points.length - 1; - let ncurve = new Bezier(this, points); + // draw axes translate(60, this.height/2); setStroke(`grey`); - line(0,-this.height,0,this.height); - line(-60,0,this.width,0); + line(0, -this.height, 0, this.height); + line(-60, 0, this.width, 0); + + // draw transformed curve + let degree = curve.points.length - 1; + let ncurve = new Bezier(this, points); ncurve.drawCurve(); + + // and label the last point in the transformed curve setFill(`black`); text(`(0,0)`, 5,15); text(`(${points[degree].x|0},0)`, points[degree].x, -5, CENTER); diff --git a/docs/chapters/aligning/content.en-GB.md b/docs/chapters/aligning/content.en-GB.md index 8c1ac60c..58abcc37 100644 --- a/docs/chapters/aligning/content.en-GB.md +++ b/docs/chapters/aligning/content.en-GB.md @@ -40,7 +40,8 @@ If we drop all the zero-terms, this gives us: We can see that our original curve definition has been simplified considerably. The following graphics illustrate the result of aligning our example curves to the x-axis, with the cubic case using the coordinates that were just used in the example formulae: -
+ +  + -
diff --git a/docs/chapters/arclength/arclength.js b/docs/chapters/arclength/arclength.js index 2d6fd664..d12e40e4 100644 --- a/docs/chapters/arclength/arclength.js +++ b/docs/chapters/arclength/arclength.js @@ -1,57 +1,4 @@ -const Tvalues24 = [ - -0.0640568928626056260850430826247450385909, - 0.0640568928626056260850430826247450385909, - -0.1911188674736163091586398207570696318404, - 0.1911188674736163091586398207570696318404, - -0.3150426796961633743867932913198102407864, - 0.3150426796961633743867932913198102407864, - -0.4337935076260451384870842319133497124524, - 0.4337935076260451384870842319133497124524, - -0.5454214713888395356583756172183723700107, - 0.5454214713888395356583756172183723700107, - -0.6480936519369755692524957869107476266696, - 0.6480936519369755692524957869107476266696, - -0.7401241915785543642438281030999784255232, - 0.7401241915785543642438281030999784255232, - -0.8200019859739029219539498726697452080761, - 0.8200019859739029219539498726697452080761, - -0.8864155270044010342131543419821967550873, - 0.8864155270044010342131543419821967550873, - -0.9382745520027327585236490017087214496548, - 0.9382745520027327585236490017087214496548, - -0.9747285559713094981983919930081690617411, - 0.9747285559713094981983919930081690617411, - -0.9951872199970213601799974097007368118745, - 0.9951872199970213601799974097007368118745, -]; - -const Cvalues24 = [ - 0.1279381953467521569740561652246953718517, - 0.1279381953467521569740561652246953718517, - 0.1258374563468282961213753825111836887264, - 0.1258374563468282961213753825111836887264, - 0.121670472927803391204463153476262425607, - 0.121670472927803391204463153476262425607, - 0.1155056680537256013533444839067835598622, - 0.1155056680537256013533444839067835598622, - 0.1074442701159656347825773424466062227946, - 0.1074442701159656347825773424466062227946, - 0.0976186521041138882698806644642471544279, - 0.0976186521041138882698806644642471544279, - 0.086190161531953275917185202983742667185, - 0.086190161531953275917185202983742667185, - 0.0733464814110803057340336152531165181193, - 0.0733464814110803057340336152531165181193, - 0.0592985849154367807463677585001085845412, - 0.0592985849154367807463677585001085845412, - 0.0442774388174198061686027482113382288593, - 0.0442774388174198061686027482113382288593, - 0.0285313886289336631813078159518782864491, - 0.0285313886289336631813078159518782864491, - 0.0123412297999871995468056670700372915759, - 0.0123412297999871995468056670700372915759, -]; - +import { C, T } from "./ct-values.js"; setup() { this.curve = Bezier.defaultCubic(this); @@ -71,14 +18,11 @@ draw() { } computeLength(curve) { - const z = 0.5, - len = Tvalues24.length; - + const z = 0.5, len = T.length; let sum = 0; - for (let i = 0, t; i < len; i++) { - t = z * Tvalues24[i] + z; - sum += Cvalues24[i] * this.arcfn(t, curve.derivative(t)); + t = z * T[i] + z; + sum += C[i] * this.arcfn(t, curve.derivative(t)); } return z * sum; } diff --git a/docs/chapters/arclength/ct-values.js b/docs/chapters/arclength/ct-values.js new file mode 100644 index 00000000..04ce1927 --- /dev/null +++ b/docs/chapters/arclength/ct-values.js @@ -0,0 +1,55 @@ +const T = [ + -0.0640568928626056260850430826247450385909, + 0.0640568928626056260850430826247450385909, + -0.1911188674736163091586398207570696318404, + 0.1911188674736163091586398207570696318404, + -0.3150426796961633743867932913198102407864, + 0.3150426796961633743867932913198102407864, + -0.4337935076260451384870842319133497124524, + 0.4337935076260451384870842319133497124524, + -0.5454214713888395356583756172183723700107, + 0.5454214713888395356583756172183723700107, + -0.6480936519369755692524957869107476266696, + 0.6480936519369755692524957869107476266696, + -0.7401241915785543642438281030999784255232, + 0.7401241915785543642438281030999784255232, + -0.8200019859739029219539498726697452080761, + 0.8200019859739029219539498726697452080761, + -0.8864155270044010342131543419821967550873, + 0.8864155270044010342131543419821967550873, + -0.9382745520027327585236490017087214496548, + 0.9382745520027327585236490017087214496548, + -0.9747285559713094981983919930081690617411, + 0.9747285559713094981983919930081690617411, + -0.9951872199970213601799974097007368118745, + 0.9951872199970213601799974097007368118745, +]; + +const C = [ + 0.1279381953467521569740561652246953718517, + 0.1279381953467521569740561652246953718517, + 0.1258374563468282961213753825111836887264, + 0.1258374563468282961213753825111836887264, + 0.121670472927803391204463153476262425607, + 0.121670472927803391204463153476262425607, + 0.1155056680537256013533444839067835598622, + 0.1155056680537256013533444839067835598622, + 0.1074442701159656347825773424466062227946, + 0.1074442701159656347825773424466062227946, + 0.0976186521041138882698806644642471544279, + 0.0976186521041138882698806644642471544279, + 0.086190161531953275917185202983742667185, + 0.086190161531953275917185202983742667185, + 0.0733464814110803057340336152531165181193, + 0.0733464814110803057340336152531165181193, + 0.0592985849154367807463677585001085845412, + 0.0592985849154367807463677585001085845412, + 0.0442774388174198061686027482113382288593, + 0.0442774388174198061686027482113382288593, + 0.0285313886289336631813078159518782864491, + 0.0285313886289336631813078159518782864491, + 0.0123412297999871995468056670700372915759, + 0.0123412297999871995468056670700372915759, +]; + +export { C, T } diff --git a/docs/chapters/arclengthapprox/approximate.js b/docs/chapters/arclengthapprox/approximate.js index 0516f958..1f977216 100644 --- a/docs/chapters/arclengthapprox/approximate.js +++ b/docs/chapters/arclengthapprox/approximate.js @@ -16,6 +16,9 @@ draw() { setStroke("red"); curve.drawSkeleton(`lightblue`); + + // instead of running an arclength summation, we + // just... sum the lengths of our line segments. LUT.forEach((p1,i) => { if (i===0) return; let p0 = LUT[i-1]; diff --git a/docs/chapters/boundingbox/bbox.js b/docs/chapters/boundingbox/bbox.js index e47d084b..64002dea 100644 --- a/docs/chapters/boundingbox/bbox.js +++ b/docs/chapters/boundingbox/bbox.js @@ -18,6 +18,9 @@ draw() { curve.drawCurve(); curve.drawPoints(); + // Start with complete nonsense min/max values, where + // min is huge and max is tiny, so we can bring them + // down and up, respectively. let minx = Number.MAX_SAFE_INTEGER, miny = minx, @@ -28,6 +31,7 @@ draw() { noFill(); setStroke(`red`); + // For each extremum, see if that changes the bbox values. [0, ...extrema.x, ...extrema.y, 1].forEach(t => { let p = curve.get(t); if (p.x < minx) minx = p.x; @@ -37,6 +41,7 @@ draw() { if (t > 0 && t< 1) circle(p.x, p.y, 3); }); + // And we're done. setStroke(`#0F0`); rect(minx, miny, maxx - minx, maxy - miny); } diff --git a/docs/chapters/components/components.js b/docs/chapters/components/components.js index fefeeb5c..d2df38bf 100644 --- a/docs/chapters/components/components.js +++ b/docs/chapters/components/components.js @@ -1,6 +1,8 @@ let curve; setup() { + setPanelCount(3); + let type = this.parameters.type ?? `quadratic`; if (type === `quadratic`) { curve = Bezier.defaultQuadratic(this); @@ -14,11 +16,21 @@ setup() { draw() { clear(); const dim = this.height; + let pcount = curve.points.length; curve.drawSkeleton(); curve.drawCurve(); curve.drawPoints(); - translate(dim, 0); + nextPanel(); + this.drawComponentX(dim, pcount); + + resetTransform(); + nextPanel(); + nextPanel(); + this.drawComponentY(dim, pcount); +} + +drawComponentX(dim, pcount) { setStroke(`black`); line(0,0,0,dim); @@ -26,14 +38,15 @@ draw() { translate(40,20); drawAxes(`t`, 0, 1, `X`, 0, dim, dim, dim); - let pcount = curve.points.length; + // remap our curve so that y becomes our x + // coordinates, and x becomes the t intervals. new Bezier(this, curve.points.map((p,i) => ({ x: (i/(pcount-1)) * dim, y: p.x }))).drawCurve(); +} - resetTransform(); - translate(2*dim, 0); +drawComponentY(dim, pcount) { setStroke(`black`); line(0,0,0,dim); @@ -41,6 +54,8 @@ draw() { translate(40,20); drawAxes(`t`, 0,1, `Y`, 0, dim, dim, dim); + // remap our curve, leaving y as is, but + // making x be the t intervals. new Bezier(this, curve.points.map((p,i) => ({ x: (i/(pcount-1)) * dim, y: p.y diff --git a/docs/chapters/components/content.en-GB.md b/docs/chapters/components/content.en-GB.md index 1cc4773b..a3be7f07 100644 --- a/docs/chapters/components/content.en-GB.md +++ b/docs/chapters/components/content.en-GB.md @@ -10,4 +10,6 @@ If you move points in a curve sideways, you should only see the middle graph cha +  + diff --git a/docs/chapters/curvature/curvature.js b/docs/chapters/curvature/curvature.js index 1b165c43..6b892d66 100644 --- a/docs/chapters/curvature/curvature.js +++ b/docs/chapters/curvature/curvature.js @@ -19,6 +19,8 @@ draw() { curve.drawPoints(); }); + // For the "both directions" version, we also want + // to show the circle that fits our curve. if (this.parameters.omni) { let t = this.position; let curve = q; @@ -30,14 +32,16 @@ draw() { drawCurvature(curve) { let s, t, p, n, k, ox, oy; for(s=0; s<256; s++) { - setStroke(`rgba(255,127,${s},0.6)`); + // compute the curvature at `t`: t = s/255; p = curve.get(t); n = curve.normal(t); k = this.computeCurvature(curve, t) * 10000; + // and then draw it. ox = k * n.x; oy = k * n.y; + setStroke(`rgba(255,127,${s},0.6)`); line(p.x, p.y, p.x + ox, p.y + oy); // And if requested, also draw it along the anti-normal. @@ -55,6 +59,7 @@ computeCurvature(curve, t) { qdsum = d.x * d.x + d.y * d.y, dnm = qdsum ** 3/2; + // shortcut if (num === 0 || dnm === 0) return 0; return num / dnm; @@ -70,7 +75,6 @@ drawIncidentCircle(curve, t) { setFill(`rgba(200,200,255,0.4)`); setStroke(`red`); - line(p.x, p.y, rx, ry); circle(p.x, p.y, 3); circle(rx, ry, 3); diff --git a/docs/chapters/extremities/extremities.js b/docs/chapters/extremities/extremities.js index 697945e3..3dfcf51f 100644 --- a/docs/chapters/extremities/extremities.js +++ b/docs/chapters/extremities/extremities.js @@ -1,6 +1,7 @@ let curve; setup() { + setPanelCount(3); const type = this.parameters.type ?? `quadratic`; if (type === `quadratic`) { curve = Bezier.defaultQuadratic(this); @@ -19,7 +20,19 @@ draw() { curve.drawCurve(); curve.drawPoints(); - translate(dim, 0); + nextPanel(); + + this.drawComponentX(dim, degree); + + resetTransform(); + nextPanel(); + nextPanel(); + + this.drawComponentY(dim, degree); +} + + +drawComponentX(dim, degree) { setStroke(`black`); line(0,0,0,dim); @@ -27,13 +40,16 @@ draw() { translate(40,20); drawAxes(`t`, 0, 1, `X`, 0, dim, dim, dim); - this.plotDimension(dim, new Bezier(this, curve.points.map((p,i) => ({ + const B = new Bezier(this, curve.points.map((p,i) => ({ x: (i/degree) * dim, y: p.x - })))); + }))); - resetTransform(); - translate(2*dim, 0); + // this is where things differ from the previous section + this.plotDimension(dim, B); +} + +drawComponentY(dim, degree) { setStroke(`black`); line(0,0,0,dim); @@ -41,10 +57,13 @@ draw() { translate(40,20); drawAxes(`t`, 0,1, `Y`, 0, dim, dim, dim); - this.plotDimension(dim, new Bezier(this, curve.points.map((p,i) => ({ - x: (i/degree) * dim, - y: p.y - })))) + const B = new Bezier(this, curve.points.map((p,i) => ({ + x: (i/degree) * dim, + y: p.y + }))); + + // this is where things differ from the previous section + this.plotDimension(dim, B) } plotDimension(dim, dimension) { @@ -144,18 +163,27 @@ plotCubicDimension(t1, y1, t2, y2, dim, dimension, reverse) { } getRoots(v1, v2, v3) { - if (v3 === undefined) { - return [-v1 / (v2 - v1)]; - } + // is this actually a line? + if (v3 === undefined) return [-v1 / (v2 - v1)]; - const a = v1 - 2*v2 + v3, - b = 2 * (v2 - v1), - c = v1, - d = b*b - 4*a*c; + // quadratic root finding is not super complex. + const a = v1 - 2*v2 + v3; + + // no root: if (a === 0) return []; + + const b = 2 * (v2 - v1), + c = v1, + d = b*b - 4*a*c; + + // no root: if (d < 0) return []; + + // one root: const f = -b / (2*a); if (d === 0) return [f] + + // two roots: const l = sqrt(d) / (2*a); return [f-l, f+l]; } diff --git a/docs/chapters/inflections/inflection.js b/docs/chapters/inflections/inflection.js index c663b651..09b97d66 100644 --- a/docs/chapters/inflections/inflection.js +++ b/docs/chapters/inflections/inflection.js @@ -12,6 +12,7 @@ draw() { curve.drawCurve(); curve.drawPoints(); + // align our curve and let's do some root finding const p = curve.align().points, a = p[2].x * p[1].y, @@ -25,8 +26,11 @@ draw() { roots = []; - if (this.almost(x, 0) ) { - if (!this.almost(y, 0) ) { + // because of floating point maths, we can't check whether + // x or y "are" zero, because they could be some value that is + // just off from zero due to floating point compound errors. + if (approx(x, 0)) { + if (!approx(y, 0)) { roots.push(-z / y); } } @@ -36,15 +40,14 @@ draw() { sq = sqrt(det), d2 = 2 * x; - if (!this.almost(d2, 0) ) { + if (!approx(d2, 0) ) { roots.push(-(y+sq) / d2); roots.push((sq-y) / d2); } } - setStroke(`red`); - setFill(`red`); - + // Aaaan let's draw them + setColor(`red`); roots.forEach(t => { if (0 <= t && t <= 1) { let p = curve.get(t); @@ -53,7 +56,3 @@ draw() { } }); } - -almost(v1, v2, epsilon=0.00001) { - return abs(v1 - v2) < epsilon; -} diff --git a/docs/chapters/pointvectors/content.en-GB.md b/docs/chapters/pointvectors/content.en-GB.md index 2de13911..a3383299 100644 --- a/docs/chapters/pointvectors/content.en-GB.md +++ b/docs/chapters/pointvectors/content.en-GB.md @@ -3,36 +3,37 @@ If you want to move objects along a curve, or "away from" a curve, the two vectors you're most interested in are the tangent vector and normal vector for curve points. These are actually really easy to find. For moving and orienting along a curve, we use the tangent, which indicates the direction of travel at specific points, and is literally just the first derivative of our curve: \[ -\left \{ \begin{matrix} +\begin{matrix} tangent_x(t) = B'_x(t) \\ + \\ tangent_y(t) = B'_y(t) -\end{matrix} \right. +\end{matrix} \] This gives us the directional vector we want. We can normalize it to give us uniform directional vectors (having a length of 1.0) at each point, and then do whatever it is we want to do based on those directions: \[ - d = || tangent(t) || = \sqrt{B'_x(t)^2 + B'_y(t)^2} -\] - -\[ -\left \{ \begin{matrix} - \hat{x}(t) = || tangent_x(t) || - =\frac{tangent_x(t)}{ || tangent(t) || } +\begin{matrix} + d = \left \| tangent(t) \right \| = \sqrt{B'_x(t)^2 + B'_y(t)^2} \\ + \\ + \hat{x}(t) = \left \| tangent_x(t) \right \| + =\frac{tangent_x(t)}{ \left \| tangent(t) \right \| } = \frac{B'_x(t)}{d} \\ - \hat{y}(t) = || tangent_y(t) || - = \frac{tangent_y(t)}{ || tangent(t) || } + \\ + \hat{y}(t) = \left \| tangent_y(t) \right \| + = \frac{tangent_y(t)}{ \left \| tangent(t) \right \| } = \frac{B'_y(t)}{d} -\end{matrix} \right. +\end{matrix} \] The tangent is very useful for moving along a line, but what if we want to move away from the curve instead, perpendicular to the curve at some point t? In that case we want the *normal* vector. This vector runs at a right angle to the direction of the curve, and is typically of length 1.0, so all we have to do is rotate the normalized directional vector and we're done: \[ -\left \{ \begin{array}{l} +\begin{array}{l} normal_x(t) = \hat{x}(t) \cdot \cos{\frac{\pi}{2}} - \hat{y}(t) \cdot \sin{\frac{\pi}{2}} = - \hat{y}(t) \\ + \\ normal_y(t) = \underset{quarter\ circle\ rotation} {\underbrace{ \hat{x}(t) \cdot \sin{\frac{\pi}{2}} + \hat{y}(t) \cdot \cos{\frac{\pi}{2}} }} = \hat{x}(t) -\end{array} \right. +\end{array} \]
diff --git a/docs/chapters/pointvectors/pointvectors.js b/docs/chapters/pointvectors/pointvectors.js index f80499e8..b79e694f 100644 --- a/docs/chapters/pointvectors/pointvectors.js +++ b/docs/chapters/pointvectors/pointvectors.js @@ -6,6 +6,7 @@ setup() { curve = Bezier.defaultQuadratic(this); } else { curve = Bezier.defaultCubic(this); + // to show this off for Cubic curves we need to change some of the points curve.points[0].x = 30; curve.points[0].y = 230; curve.points[1].x = 75; @@ -25,24 +26,30 @@ draw() { let t = i/10.0; let p = curve.get(t); let d = this.type === `quadratic` ? this.getQuadraticDerivative(t, pts) : this.getCubicDerivative(t, pts); - - let m = sqrt(d.x*d.x + d.y*d.y); - d = { x: d.x/m, y: d.y/m }; - let n = this.getNormal(t, d); - - setStroke(`blue`); - line(p.x, p.y, p.x + d.x*f, p.y + d.y*f); - - setStroke(`red`); - line(p.x, p.y, p.x + n.x*f, p.y + n.y*f); - - setStroke(`black`); - circle(p.x, p.y, 3); + this.drawVectors(f, t, p, d); } curve.drawPoints(); } +drawVectors(f, t, p, d) { + let m = sqrt(d.x*d.x + d.y*d.y); + d = { x: d.x/m, y: d.y/m }; + let n = this.getNormal(t, d); + + // draw the tangent vector + setStroke(`blue`); + line(p.x, p.y, p.x + d.x*f, p.y + d.y*f); + + // draw the normal vector + setStroke(`red`); + line(p.x, p.y, p.x + n.x*f, p.y + n.y*f); + + // and the point these are for + setStroke(`black`); + circle(p.x, p.y, 3); +} + getQuadraticDerivative(t, points) { let mt = (1 - t), d = [ { diff --git a/docs/chapters/pointvectors3d/frenet.js b/docs/chapters/pointvectors3d/frenet.js index 61cb4805..9d5be112 100644 --- a/docs/chapters/pointvectors3d/frenet.js +++ b/docs/chapters/pointvectors3d/frenet.js @@ -4,6 +4,7 @@ import { project, projectXY, projectXZ, projectYZ } from "./projection.js"; let d, cube; setup() { + // step 1: let's define a cube to show our curve "in" d = this.width/2 + 25; cube = [ {x:0, y:0, z:0}, @@ -15,16 +16,25 @@ setup() { {x:d, y:d, z:d}, {x:0, y:d, z:d} ].map(p => project(p)); + + // step 2: let's also define our 3D curve const points = this.points = [ {x:120, y: 0, z: 0}, {x:120, y:220, z: 0}, {x: 30, y: 0, z: 30}, {x: 0, y: 0, z:200} ]; + + // step 3: to draw this curve to the screen, we need to project the + // coordinates from 3D to 2D, for which we use what is called + // a "cabinet projection". this.curve = new Bezier(this, points.map(p => project(p))); + + // We also construct handy projections on just the X/Y, X/Z, and Y/Z planes. this.cxy = new Bezier(this, points.map(p => projectXY(p))); this.cxz = new Bezier(this, points.map(p => projectXZ(p))); this.cyz = new Bezier(this, points.map(p => projectYZ(p))); + setSlider(`.slide-control`, `position`, 0); } @@ -33,21 +43,32 @@ draw() { translate(this.width/2 - 60, this.height/2 + 75); const curve = this.curve; + // Draw all our planar curve projections first this.drawCurveProjections(); + // And the "back" side of our cube this.drawCubeBack(); + // Then, we draw the real curve curve.drawCurve(`grey`); setStroke(`grey`) line(curve.points[0].x, curve.points[0].y, curve.points[1].x, curve.points[1].y); line(curve.points[2].x, curve.points[2].y, curve.points[3].x, curve.points[3].y); curve.points.forEach(p => circle(p.x, p.y, 2)); + // And the current point on that curve this.drawPoint(this.position); + // and then we can add the "front" of the cube. this.drawCubeFront(); } +drawCurveProjections() { + this.cxy.drawCurve(`#EEF`); + this.cxz.drawCurve(`#EEF`); + this.cyz.drawCurve(`#EEF`); +} + drawCubeBack() { const c = cube; @@ -64,12 +85,6 @@ drawCubeBack() { line(c[0].x, c[0].y, c[4].x, c[4].y); } -drawCurveProjections() { - this.cxy.drawCurve(`#EEF`); - this.cxz.drawCurve(`#EEF`); - this.cyz.drawCurve(`#EEF`); -} - drawPoint(t) { const {o, r, n, dt} = this.getFrenetVectors(t, this.points); @@ -78,8 +93,13 @@ drawPoint(t) { const p = project(o); circle(p.x, p.y, 3); + // Draw our axis of rotation, this.drawVector(p, vec.normalize(r), 40, `blue`, `r`); + + // our normal, this.drawVector(p, vec.normalize(n), 40, `red`, `n`); + + // and our derivative. this.drawVector(p, vec.normalize(dt), 40, `green`, `t′`); setFill(`black`) @@ -88,8 +108,6 @@ drawPoint(t) { drawCubeFront() { const c = cube; - - // rest of the cube setStroke("lightgrey"); line(c[1].x, c[1].y, c[2].x, c[2].y); line(c[2].x, c[2].y, c[3].x, c[3].y); @@ -103,13 +121,20 @@ drawCubeFront() { } getFrenetVectors(t, originalPoints) { + // The frenet vectors are based on the (unprojected) curve, + // and its derivative curve. const curve = new Bezier(this, originalPoints); const d1curve = new Bezier(this, curve.dpoints[0]); + const o = curve.get(t); const dt = d1curve.get(t); const ddt = d1curve.derivative(t); - const o = curve.get(t); - const b = vec.plus(dt, ddt); - const r = vec.cross(b, dt); + // project the derivative into the future + const f = vec.plus(dt, ddt); + // and then find the axis of rotation wrt the plane + // spanned by the currented and projected derivative + const r = vec.cross(f, dt); + // after which the normal is found by rotating the + // tangent in that plane. const n = vec.normalize(vec.cross(r, dt)); return { o, dt, r, n }; } diff --git a/docs/chapters/pointvectors3d/projection.js b/docs/chapters/pointvectors3d/projection.js index 3afd2305..7dbe7fd5 100644 --- a/docs/chapters/pointvectors3d/projection.js +++ b/docs/chapters/pointvectors3d/projection.js @@ -1,23 +1,25 @@ /** - * A cabinet projection utility + * A cabinet projection utility library */ -// Universal projector function +// Universal projector function: + function project(point3d, offset = { x: 0, y: 0 }, phi = -Math.PI / 6) { // what they rarely tell you: if you want Z to "go up", // X to "come out of the screen", and Y to be the "left/right", // we need to switch some coordinates around: - const x = point3d.y, - y = -point3d.z, - z = -point3d.x; + const a = point3d.y, + b = -point3d.z, + c = -point3d.x / 2; return { - x: offset.x + x + (z / 2) * Math.cos(phi), - y: offset.y + y + (z / 2) * Math.sin(phi), + x: offset.x + a + c * Math.cos(phi), + y: offset.y + b + c * Math.sin(phi), }; } -// and some rebuilt planar projectors +// and some planar projectors: + function projectXY(p, offset, phi) { return project({ x: p.x, y: p.y, z: 0 }, offset, phi); } @@ -30,6 +32,4 @@ function projectYZ(p, offset, phi) { return project({ x: 0, y: p.y, z: p.z }, offset, phi); } - -export { project, projectXY, projectXZ, projectYZ } - +export { project, projectXY, projectXZ, projectYZ }; diff --git a/docs/chapters/pointvectors3d/rotation-minimizing.js b/docs/chapters/pointvectors3d/rotation-minimizing.js index 5d59b7d9..86a646de 100644 --- a/docs/chapters/pointvectors3d/rotation-minimizing.js +++ b/docs/chapters/pointvectors3d/rotation-minimizing.js @@ -4,6 +4,7 @@ import { project, projectXY, projectXZ, projectYZ } from "./projection.js"; let d, cube; setup() { + // We have the same setup as for the previous graphic d = this.width/2 + 25; cube = [ {x:0, y:0, z:0}, @@ -71,6 +72,7 @@ drawCurveProjections() { } drawPoint(t) { + // The only thing different compared to the previous graphic is this call: const {o, r, n, dt } = this.getRMF(t, this.points); setStroke(`red`); @@ -102,75 +104,6 @@ drawCubeFront() { line(c[7].x, c[7].y, c[4].x, c[4].y); } -getRMF(t, originalPoints) { - const curve = new Bezier(this, originalPoints); - const d1curve = new Bezier(this, curve.dpoints[0]); - - if (!this.rmf_LUT) { - this.rmf_LUT = this.generateRMF(originalPoints, curve, d1curve); - } - - // find the frame for "t". - const last = this.rmf_LUT.length - 1; - const f = t * last; - const i = Math.floor(f); - - // intenger index, or last index: we're done. - if (f === i) return this.rmf_LUT[i]; - - // no integer index: interpolate based on the adjacent frames. - const j = i + 1, ti = i/last, tj = j/last, ratio = (t - ti) / (tj - ti); - return this.lerpFrames(ratio, this.rmf_LUT[i], this.rmf_LUT[j]); -} - -generateRMF(originalPoints, curve, d1curve) { - const frames = [] - frames.push(this.getFrenetVectors(0, originalPoints)); - - for(let i=0, steps=24; i frame[type] = vec.lerp(t, f1[type], f2[type])); - return frame; -} - drawVector(from, vec, length, color, label) { setStroke(color); setFill(`black`); @@ -189,3 +122,78 @@ drawVector(from, vec, length, color, label) { }); text(label, from.x + txt.x, from.y + txt.y); } + +// This is where things are... rather different + +getRMF(t, originalPoints) { + // If we don't have a rotation-minimizing lookup table, build it. + if (!this.rmf_LUT) { + const curve = new Bezier(this, originalPoints); + const d1curve = new Bezier(this, curve.dpoints[0]); + this.rmf_LUT = this.generateRMF(originalPoints, curve, d1curve); + } + + // find the frame for "t": + const last = this.rmf_LUT.length - 1; + const f = t * last; + const i = Math.floor(f); + + // If we're looking at an integer index, we're done. + if (f === i) return this.rmf_LUT[i]; + + // If we're not, we need to interpolate the adjacent frames + const j = i + 1, ti = i/last, tj = j/last, ratio = (t - ti) / (tj - ti); + return this.lerpFrames(ratio, this.rmf_LUT[i], this.rmf_LUT[j]); +} + +generateRMF(originalPoints, curve, d1curve) { + // Start with the frenet frame just before t=0 and shift it to t=0 + const first = this.getFrenetVectors(-0.001, originalPoints); + first.o = curve.get(0); + + // Then we construct each next rotation-minimizing fame by reflecting + // the previous frame and correcting the resulting vectors. + const frames = [first]; + for(let i=0, steps=24; i frame[type] = vec.lerp(t, f1[type], f2[type])); + return frame; +} diff --git a/docs/chapters/pointvectors3d/vector-lib.js b/docs/chapters/pointvectors3d/vector-lib.js index c7438630..bcf37800 100644 --- a/docs/chapters/pointvectors3d/vector-lib.js +++ b/docs/chapters/pointvectors3d/vector-lib.js @@ -1,71 +1,70 @@ function normalize(v) { - let z = v.z || 0; - var d = Math.sqrt(v.x*v.x + v.y*v.y + z*z); - let r = { x:v.x/d, y:v.y/d }; - if (v.z !== undefined) r.z = z/d; - return r; + let z = v.z || 0; + var d = Math.sqrt(v.x * v.x + v.y * v.y + z * z); + let r = { x: v.x / d, y: v.y / d }; + if (v.z !== undefined) r.z = z / d; + return r; } function dot(v1, v2) { - let z1 = v1.z || 0; - let z2 = v2.z || 0; - return v1.x * v2.x + v1.y * v2.y + z1 * z2; + let z1 = v1.z || 0; + let z2 = v2.z || 0; + return v1.x * v2.x + v1.y * v2.y + z1 * z2; } function scale(v, s) { - let r = { - x: s * v.x, - y: s * v.y - } - if (v.z !== undefined) { - r.z = s * v.z - } - return r; + let r = { + x: s * v.x, + y: s * v.y, + }; + if (v.z !== undefined) { + r.z = s * v.z; + } + return r; } function plus(v1, v2) { - let r = { - x: v1.x + v2.x, - y: v1.y + v2.y - }; - if (v1.z !== undefined || v2.z !== undefined) { - r.z = (v1.z||0) + (v2.z||0); - }; - return r; + let r = { + x: v1.x + v2.x, + y: v1.y + v2.y, + }; + if (v1.z !== undefined || v2.z !== undefined) { + r.z = (v1.z || 0) + (v2.z || 0); + } + return r; } function minus(v1, v2) { - let r = { - x: v1.x - v2.x, - y: v1.y - v2.y - }; - if (v1.z !== undefined || v2.z !== undefined) { - r.z = (v1.z||0) - (v2.z||0); - }; - return r; + let r = { + x: v1.x - v2.x, + y: v1.y - v2.y, + }; + if (v1.z !== undefined || v2.z !== undefined) { + r.z = (v1.z || 0) - (v2.z || 0); + } + return r; } function cross(v1, v2) { - if (v1.z === undefined || v2.z === undefined) { - throw new Error(`Cross product is not defined for 2D vectors.`); - } - return { - x: v1.y * v2.z - v1.z * v2.y, - y: v1.z * v2.x - v1.x * v2.z, - z: v1.x * v2.y - v1.y * v2.x - }; + if (v1.z === undefined || v2.z === undefined) { + throw new Error(`Cross product is not defined for 2D vectors.`); + } + return { + x: v1.y * v2.z - v1.z * v2.y, + y: v1.z * v2.x - v1.x * v2.z, + z: v1.x * v2.y - v1.y * v2.x, + }; } function lerp(t, v1, v2) { - let r = { - x: (1-t)*v1.x + t*v2.x, - y: (1-t)*v1.y + t*v2.y - }; - if (v1.z !== undefined || v2.z !== undefined) { - r.z = (1-t)*(v1.z||0) + t*(v2.z||0); - }; - return r; + let r = { + x: (1 - t) * v1.x + t * v2.x, + y: (1 - t) * v1.y + t * v2.y, + }; + if (v1.z !== undefined || v2.z !== undefined) { + r.z = (1 - t) * (v1.z || 0) + t * (v2.z || 0); + } + return r; } - -export default { normalize, dot, scale, plus, minus, cross, lerp } +export default { normalize, dot, scale, plus, minus, cross, lerp }; diff --git a/docs/chapters/reordering/reorder.js b/docs/chapters/reordering/reorder.js index 82e3102a..fc37dadf 100644 --- a/docs/chapters/reordering/reorder.js +++ b/docs/chapters/reordering/reorder.js @@ -1,17 +1,19 @@ let points = []; setup() { - const w = this.width, - h = this.height; - for (let i=0; i<10; i++) { - points.push({ - x: w/2 + random(20) + cos(PI*2 * i/10) * (w/2 - 40), - y: h/2 + random(20) + sin(PI*2 * i/10) * (h/2 - 40) - }); - } - setMovable(points); - this.bindButtons(); + const w = this.width, + h = this.height; + + // let's create a wiggle-circle by randomizing points on a circle + for (let i=0; i<10; i++) { + points.push({ + x: w/2 + random(20) + cos(PI*2 * i/10) * (w/2 - 40), + y: h/2 + random(20) + sin(PI*2 * i/10) * (h/2 - 40) + }); } + setMovable(points); + this.bindButtons(); +} bindButtons() { let rbutton = find(`.raise`); @@ -27,103 +29,105 @@ draw() { } drawCurve() { - // we can't "just draw" this curve, since it'll be an arbitrary order, - // And the canvas only does 2nd and 3rd - we use de Casteljau's algorithm: - start(); - noFill(); - setStroke(`black`); - for(let t=0; t<=1; t+=0.01) { - let q = JSON.parse(JSON.stringify(points)); - while(q.length > 1) { - for (let i=0; i 1) { + for (let i=0; i vertex(p.x, p.y)); - end(); + start(); + setStroke(`lightgrey`); + points.forEach(p => vertex(p.x, p.y)); + end(); - setStroke(`black`); - points.forEach(p => circle(p.x, p.y, 3)); + setStroke(`black`); + points.forEach(p => circle(p.x, p.y, 3)); } raise() { - const p = points, + const p = points, np = [p[0]], k = p.length; - for (let i = 1, pi, pim; i < k; i++) { - pi = p[i]; - pim = p[i - 1]; - np[i] = { - x: ((k - i) / k) * pi.x + (i / k) * pim.x, - y: ((k - i) / k) * pi.y + (i / k) * pim.y, - }; - } - np[k] = p[k - 1]; - points = np; - resetMovable(points); - redraw(); + // raising the order of a curve is lossless: + for (let i = 1, pi, pim; i < k; i++) { + pi = p[i]; + pim = p[i - 1]; + np[i] = { + x: ((k - i) / k) * pi.x + (i / k) * pim.x, + y: ((k - i) / k) * pi.y + (i / k) * pim.y, + }; + } + np[k] = p[k - 1]; + points = np; + + resetMovable(points); + redraw(); } lower() { - // Based on https://www.sirver.net/blog/2011/08/23/degree-reduction-of-bezier-curves/ + // Based on https://www.sirver.net/blog/2011/08/23/degree-reduction-of-bezier-curves/ - // TODO: FIXME: this is the same code as in the old codebase, - // and it does something odd to the either the - // first or last point... it starts to travel - // A LOT more than it looks like it should... O_o + // TODO: FIXME: this is the same code as in the old codebase, + // and it does something odd to the either the + // first or last point... it starts to travel + // A LOT more than it looks like it should... O_o - const p = points, - k = p.length, - data = [], - n = k-1; + const p = points, + k = p.length, + data = [], + n = k-1; - if (k <= 3) return; + if (k <= 3) return; - // build M, which will be (k) rows by (k-1) columns - for(let i=0; i [p.x])); - const nx = V.multiply(x); - const y = new Matrix(points.map(p => [p.y])); - const ny = V.multiply(y); + // And then we map our k-order list of coordinates + // to an n-order list of coordinates, instead: + const V = Mi.multiply(Mt); + const x = new Matrix(points.map(p => [p.x])); + const nx = V.multiply(x); + const y = new Matrix(points.map(p => [p.y])); + const ny = V.multiply(y); - points = nx.data.map((x,i) => ({ - x: x[0], - y: ny.data[i][0] - })); + points = nx.data.map((x,i) => ({ + x: x[0], + y: ny.data[i][0] + })); - resetMovable(points); - redraw(); + resetMovable(points); + redraw(); } diff --git a/docs/chapters/tightbounds/tightbounds.js b/docs/chapters/tightbounds/tightbounds.js index 46496607..235adb6e 100644 --- a/docs/chapters/tightbounds/tightbounds.js +++ b/docs/chapters/tightbounds/tightbounds.js @@ -12,11 +12,13 @@ draw() { curve.drawCurve(); curve.drawPoints(); + // Similar to aligning, we transform the curve first let translated = this.translatePoints(curve.points); let rotated = this.rotatePoints(translated); let rtcurve = new Bezier(this, rotated); let extrema = rtcurve.extrema(); + // and the we run the regular bounding box code let minx = Number.MAX_SAFE_INTEGER, miny = minx, maxx = Number.MIN_SAFE_INTEGER, @@ -37,6 +39,8 @@ draw() { noFill(); setStroke(`#0F0`); + // But, crucially, we now need to reverse-transform the bbox corners: + let tx = curve.points[0].x; let ty = curve.points[0].y; let a = rotated[0].a; diff --git a/docs/chapters/yforx/basics.js b/docs/chapters/yforx/basics.js index b6fee0ad..a3f1ee3f 100644 --- a/docs/chapters/yforx/basics.js +++ b/docs/chapters/yforx/basics.js @@ -1,6 +1,7 @@ let curve; setup() { + setPanelCount(2); curve = new Bezier(this, 20, 250, 30, 20, 200, 250, 220, 20); setMovable(curve.points); setSlider(`.slide-control`, `position`, 0.5); @@ -15,29 +16,27 @@ draw() { let w = this.height; let h = this.height; - let bbox = curve.bbox(); - let x = bbox.x.min + (bbox.x.max - bbox.x.min) * this.position; + // construct an `x` value based on our slider position + let x = bbox.x.min + (bbox.x.max - bbox.x.min) * this.position; if (bbox.x.min < x && x < bbox.x.max) { setStroke("red"); line(x,0,x,h); text(`x=${x | 0}`, x + 5, h - 30); } - translate(w, 0); - + // In the next panel, let's draw x = t(x) + nextPanel() setStroke("black"); line(0,0,0,h); - // draw x = t(x) line(0, h-20, w, h-20); text('0', 10, h-10); text('⅓', 10 + (w-10)/3, h-10); text('⅔', 10 + 2*(w-10)/3, h-10); text('1', w-10, h-10); let p, s = { x: 0, y: h - curve.get(0).x }; - for (let step = 0.02, t = step; t < 1 + step; t += step) { p = {x: t * w, y: h - curve.get(t).x }; line(s.x, s.y, p.x, p.y); @@ -48,6 +47,7 @@ draw() { text("↑\nx", 10, h/2); text("t →", w/2, h-10); + // and its "intercept" line if (bbox.x.min < x && x < bbox.x.max) { setStroke("red"); line(0, h-x, w, h-x); diff --git a/docs/chapters/yforx/yforx.js b/docs/chapters/yforx/yforx.js index 2451046a..89dbc081 100644 --- a/docs/chapters/yforx/yforx.js +++ b/docs/chapters/yforx/yforx.js @@ -28,6 +28,7 @@ draw() { // find our answer: let y = round(curve.get(t).y); + // and draw everything setStroke("red"); line(x, y, x, h); line(x, y, 0, y); diff --git a/docs/images/chapters/abc/059000c5c8a37dcc8d7fa04154a05df3.svg b/docs/images/chapters/abc/059000c5c8a37dcc8d7fa04154a05df3.svg index 0b65462e..2b29c549 100644 --- a/docs/images/chapters/abc/059000c5c8a37dcc8d7fa04154a05df3.svg +++ b/docs/images/chapters/abc/059000c5c8a37dcc8d7fa04154a05df3.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg b/docs/images/chapters/abc/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg index f2e31787..9986e8a4 100644 --- a/docs/images/chapters/abc/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg +++ b/docs/images/chapters/abc/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/385d1fd4aecbd2066e6e284a84408be6.svg b/docs/images/chapters/abc/385d1fd4aecbd2066e6e284a84408be6.svg index b1b10de4..ae19e8b3 100644 --- a/docs/images/chapters/abc/385d1fd4aecbd2066e6e284a84408be6.svg +++ b/docs/images/chapters/abc/385d1fd4aecbd2066e6e284a84408be6.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/3c696e0364d61b1391695342707d6ccc.svg b/docs/images/chapters/abc/3c696e0364d61b1391695342707d6ccc.svg index c92d0726..f62ce798 100644 --- a/docs/images/chapters/abc/3c696e0364d61b1391695342707d6ccc.svg +++ b/docs/images/chapters/abc/3c696e0364d61b1391695342707d6ccc.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/5484dc53e408a4259891a65212ef8636.svg b/docs/images/chapters/abc/5484dc53e408a4259891a65212ef8636.svg index ef28accf..b18b4e71 100644 --- a/docs/images/chapters/abc/5484dc53e408a4259891a65212ef8636.svg +++ b/docs/images/chapters/abc/5484dc53e408a4259891a65212ef8636.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/63fbe4e666a7dad985ec4110e17c249f.svg b/docs/images/chapters/abc/63fbe4e666a7dad985ec4110e17c249f.svg index 987ba4f5..baeafda5 100644 --- a/docs/images/chapters/abc/63fbe4e666a7dad985ec4110e17c249f.svg +++ b/docs/images/chapters/abc/63fbe4e666a7dad985ec4110e17c249f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/b4987e9b77b0df604238b88596c5f7c3.svg b/docs/images/chapters/abc/b4987e9b77b0df604238b88596c5f7c3.svg index a07bd242..4b509763 100644 --- a/docs/images/chapters/abc/b4987e9b77b0df604238b88596c5f7c3.svg +++ b/docs/images/chapters/abc/b4987e9b77b0df604238b88596c5f7c3.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/bc245327e0b011712168bad1c48dfec4.svg b/docs/images/chapters/abc/bc245327e0b011712168bad1c48dfec4.svg index f2d98e6c..6fdc4f8d 100644 --- a/docs/images/chapters/abc/bc245327e0b011712168bad1c48dfec4.svg +++ b/docs/images/chapters/abc/bc245327e0b011712168bad1c48dfec4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/abc/cd2e47cdc2e23ec86cd1ca1cb4286645.svg b/docs/images/chapters/abc/cd2e47cdc2e23ec86cd1ca1cb4286645.svg index 74393c28..35babc51 100644 --- a/docs/images/chapters/abc/cd2e47cdc2e23ec86cd1ca1cb4286645.svg +++ b/docs/images/chapters/abc/cd2e47cdc2e23ec86cd1ca1cb4286645.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/aligning/b3ccd45a72c815388aee6515fe37a486.png b/docs/images/chapters/aligning/28cc0f129fa0c028a1addd702e99f162.png similarity index 100% rename from docs/images/chapters/aligning/b3ccd45a72c815388aee6515fe37a486.png rename to docs/images/chapters/aligning/28cc0f129fa0c028a1addd702e99f162.png diff --git a/docs/images/chapters/aligning/50679d61424222d7b6b97eb3aa663582.svg b/docs/images/chapters/aligning/50679d61424222d7b6b97eb3aa663582.svg index 7470d0d6..95f3afa3 100644 --- a/docs/images/chapters/aligning/50679d61424222d7b6b97eb3aa663582.svg +++ b/docs/images/chapters/aligning/50679d61424222d7b6b97eb3aa663582.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/aligning/31655f24b7dd8b8871687b6610d9ac0e.png b/docs/images/chapters/aligning/9a6755a1e31a990e8f072a6da98f811a.png similarity index 100% rename from docs/images/chapters/aligning/31655f24b7dd8b8871687b6610d9ac0e.png rename to docs/images/chapters/aligning/9a6755a1e31a990e8f072a6da98f811a.png diff --git a/docs/images/chapters/aligning/a9af1c06a00bb3c4af816a138fb0a66d.svg b/docs/images/chapters/aligning/a9af1c06a00bb3c4af816a138fb0a66d.svg index 8cdd1f86..bf215b97 100644 --- a/docs/images/chapters/aligning/a9af1c06a00bb3c4af816a138fb0a66d.svg +++ b/docs/images/chapters/aligning/a9af1c06a00bb3c4af816a138fb0a66d.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/aligning/c78b203ff33e5c1606728b552505d61c.svg b/docs/images/chapters/aligning/c78b203ff33e5c1606728b552505d61c.svg index b69dd310..3bd94cfc 100644 --- a/docs/images/chapters/aligning/c78b203ff33e5c1606728b552505d61c.svg +++ b/docs/images/chapters/aligning/c78b203ff33e5c1606728b552505d61c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/aligning/d480a9aa41917e5230d432cdbd6899b1.svg b/docs/images/chapters/aligning/d480a9aa41917e5230d432cdbd6899b1.svg index 58ddd04c..848ef7d6 100644 --- a/docs/images/chapters/aligning/d480a9aa41917e5230d432cdbd6899b1.svg +++ b/docs/images/chapters/aligning/d480a9aa41917e5230d432cdbd6899b1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/5509919419288129322cfbd4c60d0a4f.svg b/docs/images/chapters/arclength/5509919419288129322cfbd4c60d0a4f.svg index 38ef5597..5b9d950c 100644 --- a/docs/images/chapters/arclength/5509919419288129322cfbd4c60d0a4f.svg +++ b/docs/images/chapters/arclength/5509919419288129322cfbd4c60d0a4f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/56533f47e73ad9fea08fa9bb3f597d49.png b/docs/images/chapters/arclength/56533f47e73ad9fea08fa9bb3f597d49.png index a1586887771c05853eef46ad044c442a7450195c..49ff93c27cfdf0150fc2ec05a467fd709328c0fc 100644 GIT binary patch literal 11042 zcmb_?WmJ_>yX~gCB&9=1L6Gilq)S3lI;BfMxM}1Ra-7<-C)l$aBa;xdc@_J@?Y4Y&ZS2k)q*!>u1MAU_wQNx3aR5<1E!=r0mV}jA6-)ti>QEBKnz(3ceClp7bU* zrQ%A+y)6R&>WcRU<94Al(+A^ft8&l;SAC8|qX{O|R6?aG%QlrjH9kRyOv&>9 zX~NEJ0XT`q9`*oL-7_H^Dv_QfmWY9&p`IGc(c{|-TS!1)Al&)Ig^ArFoZnqquD?I0 zm5t2|iK13g`ENoTLi~yR6VHxBhNQxznF!se^^?)62sabn_`xl*PXVN1-!2)15`vQ5KzM2v2)oOGF7yRbeIxDLL_^G zxx5^gzdqbSyM4%oNkfEvx{Qs-(9QakB&B-Z)jF>HnjwJ?ga}av_4L$SA2j66wY3t5 zV%}g@R78yzjv7M(LXp9-lGd%Q(f0J(OKMJ$Vv_M7uY9`WY;xl)cS*PS!)0R450{*b zPmN2kI*^cYe3=FV!Ck(Zah-YtzG z5pa!G>K`8U52E^X+?nN{DedXWXJ=<;ElH zJ*-$JT-5BG9JO^J`+3N0XJ~nwp3@Iyyo=mzaZtgY4|= z9p6vaJISFZp2rs#(uK+y#@5ym4|i8)8v_aHTT`mFAHdmP9j$baj9_DSQ`6AEAtNIj z6lz99MPXbXETG8B%BJ%Ft$Y{5#0a!omU?z#kqS z@_oAJo86fr1IEVacYO?p&!8-IcX?3lvaMXid@aqfwY3FnA|xdAwLTkoZ;Z0MJX(5s zdUj=H9EG5}n6xy%$W{;vPT#2L6DBV&Z@Q>|=AP@W693E_8n@M*oro`Ap6&mwk%czM zmHe!#60@^=wYaq8d@#>lFrSA&_5nCuhTHGsS4P-17YL@^WBg zWJ`decs$2s!fJoM4ugY(qw(V=x~r>eqjI4*y>fbZ%4?%8a0cK*=4|WFFXduwa5P^f z?C*phuh(&2>DOcS$5Dml4-bQ~3wd$rWR<^om*q(AWm)=-C8Md?=r^!Q zHM?i9yX~r1Xe2yG2%15~77529+ky@z`WO__;Su8J){bN>gze3~Hr|<_YE+iqQd0U2 zJ){gzVxdsee6cD(Q4K<6!TGf_QN6uBrfB=a*p%iW9q&XMmo=M!JD0fU^|J~Myr@Vt zHG$sV5LEQESbi7nJeTb@FuabDKSdymj`I4bsQ;Egk_~Jme8M_(`+3)Z)(0W5BtZ%a z;p>}&&f5!@lQn7V*&R&@VdDsi@v$)wyL=a$86I0A&(EWDo85`(9aTar9EOqOENx3; zH_UJLgZ};1pz!h%T5MlAUaxOgmKl8iz;*stmo7nRzB_n_~ zP(p$hY0qolSNcR)tgOB5t8X)b-{FLsIPL4cm@Ni|7U|fJO@&FyMf7l|?*c|qQ&a0a z-4w*5pa|a{rE>m`QJ9CX9u*xeWzgnJ?%>dAP?%da-*6PVGnrz%)byJFPY`%Vx-Vb$ z&b4?^ZjG*B+S^~oN^!|d7QXHrPEm2*Qo^+4hZ*$VYUdxT=^@nQWQ||S($JF|8{IY` zbUZwffl>cI^4OY6;S%1r=Wy7Ri_tF?+qMM=3&!*M#W1Nv;PCK<`JZQjY2=_#44Bc? z+I;A7V^;XE+@fmG;zPGu{-|iQz{FN zBgYrS6LInPy0unh*S^5t)fDn%`18D65TvA}2HXr_P09?Li9qVhQ^~>ud#&{pqD*Fc zz!n!5_q;hRSnMk>l^~FDcjuv{rL8hW%6PM)N+EdpxwMq!{{DW0haOlydrNC;wfW#P z-*Yve3Jq%l@WAQ(pW0%Jmj>Iq8aN4Poakf6bg2$>Q(DmQZ*E~>SVxE0uW}6lM_dXD z3c%v~o}kWQi8PA%bzdYQi}^F~nxQ?Xo5Lr6cvr-9 zbW-*-)4oba5k-vbn1F;p>yg4{*cC&@ySl@4^Xat|Pit{#R~!CG;k3TG$;qQPhf{(~NM_d5IcPp= z=;?tKXj5}>5im2KkFS48OvEP%?aYx3(~XipVodlxH>XQNLeeoZ5(^e3L>U)0Hl})g zcULo$5EF@(5Vf{uiim_n!^QP=PjldjjN67lufZWEmBig44xr5eX-!Q60guCIXm^-P z26{0yBO_{HU?3y2%{9{_u>Ie#OxM}jsoUz!JzE^lEE7!<=&;m8BOuV!2@93qqQb*F zvc-egomRyvG-&=a)r%L1@Z#NUp82K{<|WzL5Hel|DPv>m*HdhkX>M05g63n?yUl8Ggc z7#JAv?gwbtoL)$Xd}e0m-((>U7@G;~8P~2^Tk9n;3OKt+4U%o&3*`H6~dhVPWC?9}52J8seS$ zb_?}{CMMgvwd9c0Z^hz_h>?*c9_p6sJtey*Q)Iq!wFdUi!4hulm^dLJ6RokKR~8PT z8yk^(YH5>Of_W-bw%0fIo##6ub-(Y7TG$LVivcc6WP5LTTY0$hB>elg-PkXerK_Z( zqOZawv9iL(dxiIVa?Z}xnnrFA<1HmoPcJ`olrZVBiDxSto+bt$PLkU5^~D?D z;I@dL;mP@`o^x7OYzPoeh=Km&?d{xa>jk1m06LlcIayEmx8%bpa?=yMr-_PT@mn_{ z2!%JNO0}uRv^W)4n}86l%KwS}ciQH#8*}i>EZ+$XdU_&t#|#jJ%lN$BpbPt8%cQXR z{ZbC88t5&s+siL1y6oQ8RFVrKBqlapX>&^z{$8&@`n|#sC0jA&6Q5txKlFUX3-m z`2gG|wk8B7Zhg31_*82(jto+iGw2)ioKqXDQ#HZ^4w(L~G$R2mJ^j~ug|zs`hw_~A z@+ifW*a*MONVMXVDB?JALqmihlsI7dw6dHQWgTsPG^Sa3pkD~+LGN3_vLOKV<}x@jmthqqzWUU_^Cu!{X!fq~USL z`p;vZ%ixZ2XFM)$w?^&lkfB|d;-Kqx_#rK}01A+SSnV1A>F+y9QxZ?e_8BrQ<}iaiiztCfjS)Ej$(z%t_UA#h1EEA z#=FU>{1=hX&^QdXB>CtGl4%9JS%rj(UeXnRS72cNomvg=?7Y{(E>UqxLoVoIAv#~n z@wu33Ni%BdZGq_oh!mjqKIx|l`!y8iBnLc$nVG=B!Sy{_akEXKYExsGl#)_a57|L{ z-`>?qT+Tbrx4OE~TVV0QC4~4cXVt1&n{-S&#B5-66B1-KH5w-mqfW4N`IG0N#WRjB z^R{i)6}$1<95tYob+k-D3#! zTNUA`IZiOqF)%=NA){mv<9+d6YbLXSpz_nnwGd_HJd$s6a%_0SyO`)`#ecJv`yxN> zE>^#4sSK5z40%VK?k=s=R1n|7abI1UpGk-k5<-l1cMSC$W-HvT*P@cfrltt)d<|be z)9AyPW_;hh7SX!@wO^wXI6{?2<@EyOOW#XS%(r}cfX|biJYbP~kZ%cH8nPkH6dje3 zk;xT0qahEEMDHwnXCx^todn+VvqW7bO-)Vc{=TF>L(F0fS%l~PwMbv|H`qxGPR|)y zP8GfLyk@7kIxHAup`x`Ey~mB_cWKL6(1}Mbtxi3@u}S6mL*{dd2zx5q;Aqs_>ch+7 zoJ$5$yG-^>o4;9q)B5GX3n5P@Ny-~s{#$4m_3v-%2ySlfv2PN7l+T#vR#XIn_(03U zQ(ONo;@RL(Q|S4*xl)>x{>xwrb+;Gw4Ow9Tl$%>x4hT@uGJpjHf8$J%FwAIm(UO~_ z*W$3AQNqyp@#+ViU`)@$U4zquH*I?Q76@9_Qu%ESt zty^x7`#$RDnllN&69EsiHs94$s;zYeeQA4o5QmwmXeDu|mSxn{;eV(+Meb?J(e*ek z5XEnqO60`j5E5p)Y$K8IRbjZg{v0b%^!RHj*Yk#JBggBki4~ueG#UwmsC!DYVIJUO z8`T0u7deDuuxd1&3>|e<>VV{ABE8zNkd#@|;4l;#`p`5Lmz-?K*chYu+15lBeAc&b z5g5eJa0v;S>QM;^2qYAv+y}ngCf?dA_x4F*5VOJHVSG~3%fx)SKMD#%w{oh6n35`BEHuhQw_X3_4W%+H>V%=mzs4-ZZ6Kxoz{YV zc?wxyT{AM99$!04-pwfVFB%~D-*+m<&Ca|2>yTZjf2n>E@K!}7EH964Vq)S&z4?n^ zEMF`vtYYto$i16?o0}mA3k~asOU)#FPT86WAQ6PFpTT8Im1Jg;@z{0z{4hKQrX}6h z=*!F_P^n&{c?|9%4o zg5RaU0S5tu5j$p(WEgfe;g=~%YilO$GTlIcxQmLaE-#;{v&@Lt3sK_O&Q|o6XqBp} zt9NPZs>=d822fQ285tDd#n6XNiyHFq@cbLgLCDR`ox@bj*VNTT_4oG&B_61%LP4>6*pOG+NRZvVE>bAL_ z5?~Es>-F^Vn*L?URJ;VHQd3oh@bWg@@IfRWrfOdxh0|B>8%8yF_E#!!xQLaKW3oQKuG5h>e-Un4AK4k z{B-py5^i+G)(_!ID;^2l-4UFjT}UL)pAUXelCYV~rmS*d1fD=-|O{eNGOIcDWuf?ww^;tc2uClnNu2&WQp=05{?lHk!6a zCMWTamRq}S&Z&Ia*t}o_EQmlih$sS3K?;|U{uLzZqUmb<${W14)yFcq_4q3?D z+#jojdIXuc%npE#HR-O*BI)TRIm`zT_m>YCj&hRb&$iy19VNm0Bge*!n%h{nQl8x62LYf^}_#f)D8F-!ZR2TMd`MN(fsWzQA0m~gu{ z805$=FURMaJ-9PPT1VXk(9QO=9RVEZji;#xrAfFZ-)nlvScM^RW7Dl!cj!At)&eq5 z!(SgsnV7Z#){_CDLdphRO$lOr@2O&CvrEmxlM2YHi(5A~2??Rq?FNjrv?<{jMw}2P zdf=;y$@k%j40H(z&foT2`S72u!RaqN|F_`52Z~B{26PQ2NXJ+e1rgglB^l3eDNx>3 zOeQqb$_JQA02hKi^&j5TYWwrRwL+TreKqG&ZttYzT>YdVZcdl9WfI z66;=xD}l*Kazd2d?9sItKgT71-akdD4v0yI=6BhqpId*&mKaw@aupgry*{5jyGyKQRVGi@`(&4!b#aAmUI0t_X+%jz=r){lRGX z>@HhMzK=KC28EKSwqJ8oA!1?J6tHA4o+m4*qeGl06SF2zAi%=R{5dEH!TVwtNmO(< zP?3~4M2PE^{L|wD9vK-1pv_;<(|^oR&H(JW>DKRWsu~*IKyvt{9ELl?qy>`EsK^~A zpfywZoN2!#CasebSJP;!Qu&~|{h>*%*hKx-qG~gzXw6VF_+1G~*oB~WVHZid#@KVBD zp*RW+;(NPOc>Qp-0!t&=+0-F?PqZKj2O(p1#nVXQ5)-4ixiz7ua(z-TQi5d5#!-R{ z+i`QY&Ea)w-r{``Sz~Z{xD*9qeD~}uG06S_=){F<&$1N2sbzT z@0plJfRq&s7@}YanhJwopWFQIhJ2MI2;Sx~({I|@+dJ>gumWsh(iMCd9PZxzI|tAaJuo}F zv-)W9S6~v0WoLIc>DJZ^-^UFiJNunSo_uSK`7@>b=>kPZyT2bXcXkHnY8WsR5=u{Y z3f-%!zkQ~W6p^g4NK^0i0Y{Kb zR6ia89u^iY(oaYa#>pkZeF4|bAOlNPR^CH5HV}!4iT9UV$t)}^@2j?fEN^ZWxVbzkU0bG;;x7YOz09gFFe!U&uTX6A# z9@wmb^(|0)oiBE^fDDP%*4C!m7#hh?YBn}(Jv}|$Mkg9yTPKVW(V zNfdZ^fxwpNK+sA~PKE>kC~bDQ_zMu<(hd%6@CXRfXFBA93=AlAvaw}cKe(ulgM$(0 z78bezg#a&UB*ul-mRCwR9v&W8 z%A-!RNh`x8f*wwXi~L|(8W9mn5TWIilzMujh@DS2JscspG5T)%wY9Z2W(st?yu|kNwRjK9Ki-nv-yO9lZSi}bGXllO2~;EFM%d2$ zn!ZNN&#oS|W8S$@%+!v)1jYL8?XA^x3E_ObeH55n$6JJ*y-E)cZs;+56F9@*p#0ix zd~I3&4mdQ>E{U=7^x_owqu#8d^!7+bcePo+(|RA)V!J<;$Km3Qqmg*h>w zW9GjrQ2szcnf#&Ge73?6Y!@kO6eVl4AN+K(9w!=ULCI->866!xmLrKWH$P7+ENsZN zG&k2ce+~xE1C%Hv;P-DO*fkIe0aw5=X22{wIvNwwaScR-jEtDYMFXW&_MG|1GtV->(Dpjj?9d#GqC zy?8F@Zdb=qU}9wj^yaLnPyUbhUUlu~;69QJY{j;=82I@3zzri~v`+kruj)aWHg8$IM)Ji}%V2qGO0#72 zqt{7sV+9~x)O2;jIW0$4ms@?fl~-ykRSG=o{%EvSG`k-#rzL;?9!12eCl+Et0*HiF zP_^f_+W^HQlSjHt;^r%l+rD!vuqbKdz^X_>lrvDCaTM($eBmjiVHnIurIf zMPyJ;4~U3BgHSUwql0YlZ}Ar=2zILW(pnFyS`Qf}B;eXi&bylbqzNEKgLI{4V1W7d z?OPDKvw_>pG-7sl^z`IU?8(c?71gKz_(AXL=H`64|Bg>Uplfgt&2l7N9FQuQSXeB7 zblmKm%@n%l=SjiU6k@;EBF<}wWo2c|eFuL{yiu=`XlKNI<%$ z6!v~`+gg8dIxb5E1?@f0wy-FLJOeg?+=KTCzVK@q8r0Xxaa|ADZn zsi~@}3RjpP7z3B%GP&hwCKBZQaET1mA^#={Fo1b-xbN$ZpL3Y?X?}m7(Ap{tu4oyX zntm4XyEVSQK7n}xNFXpC3Zzx6>&pd4*scXV4&@A-zeH1sQpQn}k}A26LGRzQNTy8&?n1zf+fvbGjiRK!qLR-SIloOZKY zZT~Y3k|1CiKliWGfS6?1?B2UOU25{-1Cp(+Eg}jExc@R@nlcSas>wnX=)Zruh2%Z0 z?Q5pm6dDEw`uh65S4$o+OsS-#1UtvZrY3j@@XTOPyma;T$#6XZ3wH(=V#xVFB7zjU z3NCY9URDr24JENmCnpiq&~kEews@YvQ;GOOj#qppe|}J`zG()SK|=!{gw#NA%i;Fw z2nRv}#BH!)4&Q61V^5*+I}NoP%khDMq6y1tX8CGnHc{J|SL3I3<+k?r2MT*l8imSE zPEKN1hf5~r=7?ryW_*HzQ5hmWm-`AQFJZWfn1F!#^=ljiWXz(666mRTOG^v$0ZC#l zg0fzuuhs_ajRIT~9**jJ`PZ_nM{{bHW#_@3QQEr|5HDl1v;AM0G;|{vlr>^Ju8&Px ze6Fy8E#3Ibx(xXHthu?mvV)8l;eQbR(b>giT_8lJbWKfq*HQuos?AxaL8SlJ0H+2?^=ukRsA4NGjc-ba#r<-67o}4F`~r4(V>ByYA-RnKeIV z*19um%>hyT_P6tm=Y5_Xs-z%;j!J?Gfk4pT%1Ww0AaJ-(e~=Nu|KJy`Hh{knjo!&f zLLQ&KGFu9MKp<3*x02#&E~y6#Uv+UWACZnUp)(<9nyhj!vI+2!{;5C5ugz4?w16qM zGg*^Q7)b@vQ8ma^qN-%p8Fl!6z^e@_tz!Zo47(}iiq%esh-07BjxSUK!fxxphJ7VpkF~G^9Q|JHty-r^bt3Rc`LVk1pTtl#-Gvc?mscq<~p^ z9OJ#F55Q6(Wdc7nlsKpZD*VDwr~~lTmy{@bSKJ}r#@|DOhgn?}Lvd>M-H?d!tb{q3dwg%v92n>R=6zj2%0&QT!-78avSH?BoWEnw|xkM-%T&quNs;W438|-joqUo2*+c0u+a}hrNx{&UT zS}-s)#MIGIJ#rCR-)t4L`S&hW*d2GS4z_l2U|CUn5J)W{ZG3mN!~Vun{gq8Pf!IJi zlZQQ%G%SG2m7m}Ck(I^6KR4HGf3_Bmo}P7OnH|M)icDgzZpy(JkC4#cu-|T_ljH7u zT0~O%i}>Lp?eb^=m2mX8xm}2wy??(G`^~8c-O2n30bFfKnm`h3zcFANk zH7WfOBfB!i*OaspqjPf^LnJfWd-55YTN1j)s)}){G%0J~LIh(?3yS%@T7G(G>H5E-&Rkcj@ z=cnC?qN|Mr{pHQgAb%uGhcpF$;CPW5z*p(z6Cp2Nyy))j9as?Wk6Y;qUR&<)KRP*q z8X3_{?@W;5220;^SU~p)?eA#3B_eluuD@&Gw=C8pNrw);i2^5L)gJweepfP zTXlFuG%;OWvgYPyyX%wBW#dJ-O!T?R*x@kQckjB=h21By7R`-5Orm-;a1>`X^Jn+C;a2j?g*@ zE0W5#tvAE_Ayg`yfSQ8?dvkLWJ*oiBnfUwgR@d}2A#lUq*jK7b8XEb{-CAHxg=tls znGFpm5;}8*vo$BZ_qWj;=3}2EWgZbM_b@F|6*Yv^IeENpXXWJ9MV*|`lvSQt%{LI2 z>puqjK(e3%>K=t8z(y<>m|wVDRh-mhXB%zr?rNme=jI~od+ng|)(5h`A@!e7gY_^* z^O|A3K$-3sFA)1ucXy5YB0Q_007(qV*Y_8P^#{rtvr*EnAkUH`troXQ(czm+R^04S z9;?LQI_pw)*Ar-&sxrx&Y7Ov|7Yf~69?cQdEl{OpqL(x#7rc1!T3;m8w(Z_`Pc63W zT|#T(8<_~H@OdR&-9BdlPGt^ilAV<xbyi}$RwwEr3{G?h0h zNYR6y)?#Dv#2Hi3Y!9iNwnx(ToYeZ4M9E&glCfLuF4rwkLC43_F6q@Xd0A*<9c<+7Ms zB9zOguBi8|_yhz~0vXZKM2m|OF|jr1HZ~&Me>5K`lrXiROji%Lwj%|@vS)i+-Ofy@ z<6}5fjN7JG3rwAByQt7`T`id5TrPBtg3+Nt1uZN8%+B}5frpf9%>dLB-GkdZTgqbi7~#K4CK?=TE{K78jH_xNWqE?3Q`9s z2(!p&5k2|u!;hD|%lUr$hM_3G)7HMkqHLq^^3nkZZ#*-5(KC{@c65LFkQ$)~mXn80 zx@mN>9%we%@3*JM)vu`^xVrvZQnw{J`=qi6jNy2;UG8#ohE4zeWJ3Tya=au7g@8rN zAD`JnZE-gSjKKW-`E#sr&*Ssy6lyFp$FwME2Zv-olOcI*3W~BZ`=>st95&?6wnqsU zeqpYFK45FdM+fyww0wL-!x^HQe;d@~LuOr$mf!1UT&TXjzBBcYNl{w+J5YP8D^VoKRX@YsTYP0j3Dn zV$t|3kY@zt)6~!ix<1`9KHr_>v^5pq9UdRY1>?%7sC*ym1!0_z5EmDomX=mNl`m#b zjf9+)mDOsd0uBtpsC<&v2sT>b{&LA1D^zl(#vB)n{sF{kiQXvk%FhD?c~KI=1}Ftk zDD+!gTp$=1{@W6Kymj&{yaqPDd%KB=Nhb{Ud}}xZMAA@|o*a;&qN`n^DMh87oVZ@= zx9XZNCcCv)HHu1&ySFp_^l16AJAqPGRtBu~u+rpx7iNnprdGDbGkEyp>#dBOkAebt zC8#tp$fEaWxc`>g%44qp&|vdEN=qX*1`@iK zmMGD>DhLvQVI%=C!=hb9Se7cj<`||78uk2|4!tNIp1V0v)vpMbU?LiU@tge0o zHq}*#0u!{vLJcf&{si!bS~dVb9UUFW=;*-iPDDY%kSx|H#UdT}bHD-4BrYT>DyX)W z8xfOY(3vUMZ+Y1O%oLB1_YTh+Om7Dj6}7_S+5zGDbNe*ZBBQ=<)Y~(av_?ioBxK=W za!p4^c4s@|NGBb5?l2HnzaUPp_%JtV>onGw~hB+fup9=(7-;txtsJH%m zi6hMDP+_vz4B->>eu^l5G0N2>Tg4=b`jl9B1O(7gii(YUy1&q4E?T|Q&7qj&pI2|+ zUtgD3x;hd~l?m$=Y(O$?^{r*;#FUlKH)j5+-|?isW@fO0`$j55Ga4k>nOUJ!c}(I~ zNHEeB_`=!KT4Q@^2oAa;EuVB!+WAgf$5I(nE381Px#{ffLaimU+qpwPt@FZV+>wi| zd!B~1qL{G3UV#vU)Cn`Mu{0F{%N5qYf2W29RPL&k7DBA7v!+lj4XrCg_sgJ_amBcC zl5dO|c^gO-^_0Gzx2@&l4#3`vad5i~ZAG6Q%sQ_M;EzGZ^Pf{uQ=3ykHY^Cxw$_hCBHz~^5j)4m;`h{$UkC}s8%>uv zGcu{{muP`110MzpoT;@W&wu{{MD)(@my3JPbmrhtZPUQ%mVod}Lg_JrIW@J=s1R6T zHd~W7)96SZ7QR85pKk;uDFJZc__)}tI2XIBawiaj+->>D@cLe%F!39rAb3|p<4Z;5 z&TnTXNtAp=OflVgi`e-12?0ug%&7A6UWSD0NXgidaOliERMgx-dZVn%okakE5|5&| zCng}^si-9fSw%7wyxYyzRuUko;>h3*o-fjU=j?`+=9Ye^&wQ5vXZE*>{Nc)2Gx8M7 z`TU}nQqa(1mPFVMZA$<@``LItD=dmUi+l0;w=k3s|$;`l~u^#7Fdm2R_XWrBK@{XMpjmFi(T8vbl|qT zEZpb309qK1WJZJSDI|*S?W!>!z#^=#nsro@mrc7r89(`viO)8L6-V^Je$d9s)$BwmRC7bzy>9cjE?&M`o;ETUklC$gc&6( zD`a|wR8a2GmZ?%(tgl74wZp=HH+*IL5rz_T_;7#A=l#Im6MYHtVz!BsGkS$VhY3KH zqX*)l9?Tjg?G5%KW>bR^plcEmfeHM>))z;RzE*^9SkPTD1Cyy|?w2OnuBWq)yA}3@ zKV>kN=Ns!EH8-|$i^H9rpBKN^|22h)hw{KX_ zy}iA`Vn}=*CpDLhF8?9lT`n<~IZ|8D^YEb2$~1L$b^<67g1B67J%<60Bw+aXVD|Kw zPE-{0*B2>+&A~w6m0Spv5RqFe4kKe;MyDL|F)mP>;`@nHRw8%!A7*N2%>z6++rzx8 zmEaBTMYCWoy|%|z%BH3pB0f93=^`w2wbDd15-!ANzK{Y1@>LqjPV689P2?E=&alTRJ$Q7(|GSuU?gY1!Z>=+265v zLGOjtNqHJq_sXx}z?hFA%Y#Wdj7&`3K5z=0tGm<1OC|Xi&3P{8;S9^C*ORZ8NxA#U zm6bbW6&1xZL~IXf2Q(D>Pr{F5J+mk?9_up9JlV>MhXY+}hlV!;y*xx9?3`?a#pQ{K z>WRYc#As+}pG5Sh!@IeTq1<896)v1?f*YsTM<*Zr3K{>_!_h?!G&;7eZ48(a2`Ag= zi|>~ASk9!S(o+lG!jiDl5v=9jh?31h0 zzE7Ap%Ff9NHXkQg?WNQ#q@m2FAtp|UN%u;xlS8(|+m+q_CxW!IV`_i6i2iv?LXD1w zhUkq6OF)@T*DyH^f>K4|_71VZ$@;a^r-B&31PGMrzU|0;>j(^yiw1Rx*>JU6oA2vu zV(-VatU-?uR7vR|gPw@Mk?|j%b*w|>8(XJ!Yyz3yf^-UBd5|NOsjVo@g1yjZ|GgD?uUjAE< zl#}Dkm%k3%QGCF6Xhp?OeAxq`6f3~x;W3?#}D@KR&^n$eW!f&W7`4PZ%i8mKU3(c-?{-pBz zlM8-fN@T(pQuYx%fG=8Hm!6oJ9 zR;FEz7*4=Z9pLmq+KlOQ4~m$`lX9-jIF&9tI01Tv=P| z0;Y*#ro;gUVPj(hM9}I)k*d|YgccqVQOM_k_(}&&IOw`LFpbesaRUP?>$Jio)dGc; z#TIu!*gOFnNv?)ONPCU>_!E&x$G}jH9aYf|5H=`Hutv;FC8e}p(SP{x0T~sw^ZUzp z+Y~U1<#u2AzM&x)AU>WC7h>n=2;ap%Q*DZ=L;Y4bHZIQa_xG0oRzJ@eo}GIa zqFdrQ>mo#swpZl&wmzC86A~5%RZ_y5F8W3H$;rt}KGdSNwzfL|)0SI*Co3!F=IVvKk+yu6zDUEC;uwggtj z8-zg))*k>dGr*i_(rU1ymY0`jx6ut5>wQM@6?4X9sA_rFBKik|B1o&ym&Q0WivDix zQ!ub|29}mD+;4{sK2HX^wez&^PKGb9t@*$H*i?aoIWm}@gQwWCTC_h<*VxD(&#DvT zytlo`iXM~xzyJa?tTXThaJX-BYE4^zdV7(;VYH9t*#9J}8wF^tV{=HKhRT3;q0X<6 zJnkv@`bdS>QL*fku5YxcY>Y&9F1GBA{)~G`M&1ib9O}u!yF{aU8+brm^4%TzD@{sR z)}*G&$jWL3v$f8E?G5Pb{*8hvBEoF9I|29UlkU2aOC%lv52=mKQs(=VOE43xB)(Vl zL&-@77yDQ&`u{@5R3^z3CO}VnFm%i2#P?!|!45 z$n!m64(|sI5GWnfFhCnU`6~~Rc-C-nCnv0j>#f(*JB5*jjG|}%gb^<;6u>|sP(C(# zh=JiK+~OiML~>kNLz?%f2@Eqf7G*qDQv1}Tb0RwtV%zo)^t#eZnc$d)THxU5SYhbT z+j?z6dUjsqPBKbnp(+oY^w~47?!^{tSw+zt5RM+=3DidqwV-Wd^rj zsN-2egT*pI*8vkrv-r4>L{V?ye+$2&?r&)UdGrz$^+7_mkKyR}8so5aE@saOxrnfq zg&v?DWb}o|zCN+}2K)3qr&yb{9_{T#Pre}Z6o7RCCQ>phDzL&Xe5}nRwgGn6Bq^@5 z*QvFL1`3CNTN^12t*U|17}Vx2?3fORoE=R`MdeXq=;cf2Mr383e|J^sOZB$G=|YXs z_{>qvLVDUs1U^A+l+Y?ojXkq{MP~3Y*qv)}l(X(`R@~J^9OeAN63;TI6`a@Y=#xd|R~A zyyvlTm2(oB|0Bj1oRsqm2-s4>V79rB4 zW6dB6w7A1pn+$cAeH1kO{8@RgN}ckV_<@ddfSqr(Cw-XSOhH~=U_%2R&@B*2d2Ouh zgv!(g4*@$xBZx5bU)JAfWio$Jp?>ME31gyTsnXykpUgyUtG*Q{c3U! zhyv_3^L+9tJm`QFUl$;UYUN;qV`X7wwO?+Biy+}f?djS9q+M(ee>*{7*+!(gyP z0cR$?Hm^va0x;3#Dvvjm^W!%*G#G%ieRVdjSm}Og10;oYz%>EU2LV)D}d6EdnvuCxVZ2De`I0*AZ21ge{;6u52`I%5fKUj0VjNR^E4dsngAeuM4DS#fK~XduYVd$O_fSWN+Jje3$Gj= zM)KOuw5X`WJ8pe9Ff~OAmGrAN9nN;Y{3l2G1Iu~5FzhWq0|NsnfXUt55U=*D6=vGJ zapm5HYg29=ww2RTwLjOXV`&E-gbfHwW8}_3=dm zKuX2KgM5F(Z`}7Sbo;L(f|K((e%OyVXF}6I`(Qh}X?ZV+=jU5{?ygrx#^0!&FjGms z;o3DaGDEJhxxaWU)wzTPQ}(RD!V6^O?}(8wy@I(dO)`yT1OX0}DAqXaoSDIEe&mL} zVrK3FEOvvZAo+B;zE52p2B7f#rNT9Gz8(Uiu$Ir`b3kE+^hf!@p(PO}%Rq7eR=6W{ zkWTG4`akF9ee488XH1%>z5rpD?9m@VYYvwqhV3P9;YIhu`wzX}Wg!Bn^2wZfph%MV z_zRgDJ@4d+bA8gTiKBT2QT}&P`oEQo|CfIK-!}b!P?u|&=>d;R6C-Q9%ETEYOV`;S z#~df{K2SL9?Uo50vqwXg;(wHfrC%_+8_5TFc^1EEu^lTwqFfl%sdz}_|vKnx&i1A;U(ey)%Amq~!g&IpZ&P-ARs zYW1pHj3#8$V^2>{2a&{@2$=Wg>9D9N&|8>VT2ExOw1`euVJ}R87Yqs>HmjOH{4AH6 zs^WfME=v=`4tU&8CnqPll>yMK9?$g8uk@#@ral5!TU%f61_GBK9M%1udfMx~H#C;% z$y3gHdK7OwuIxa(mTvm|Jw84Nkm8_#OlWX9&PKH$DUzkb@iinu4(ya0KU`|V%u)&g z3ZC&&tEX0-6)}a7OS^LX39P55b95BDsHmvH^^_hc?3LDYJUe^L-VMKg89%9_fFn1w zwT+&bP|MBFr(tD9pR2Pj##5!kSpkIXWPIr>6DhD_$$@xQKy(*&)@G7y>Z5 zCjy(FpC3@+W7o`4X+Y-4k_gryQH{ZLad6-S0sJYLLF~SK={a8OUD@4bO4|aUAyLSc z6MViUBxssnhw-a<=+ohZI#FmJ+D;}yvns}#7$3bSG1oxh2iGiIR0PO=4-rb%4>g5c z!yp}wW=p+DOiD6*xVw%^-vj$z%Al#Ps}ZvUoI>LE;vlavzD@LG>fPit15Rj#+qs3+ zYz@lGmoM#{oniU!Q`)yQ7gd$cs~doM1Ox=AkD1c*sRVp;79Rpr!otP%2O2~c09wb#$Fg#AojcB|8sWX!%eDlI->Q;x_WYSq{PJ}Q<7UAh~i`8Eo>)D!) z02Ev%VK##BVtnl71Io&h5*FZ`(+wgPAL{aV*z{YUoG;Hct~>##PQO30;ggGckv(0Q z01j$@`S0U=lk?u=CBB;L0a}-=XgCTA%4AO=tH$*Sm`eO>HrtPWJX6o?WgU7Lfq=H6q8ERX$NvYDMrnZpwPw{H=Pa*X(j!mk4M+bl~>^VpKk2RPEr* zj(|JMnSuh9i-m>7z}y_=De?aL@?N0D^Y&sgKN4Irtmxj9l&9;K)JA7dgGpmBA$Gj!J(n!!?s5`?+0Lq z#rJs`9L9(xB_+%2>jjqY?hn6hdwd874detxRaI2l*N#VuR2g<^ zfSnDd3zG_d*>49|HGbaLmRtXw&4>3XDthJM;9xOSzv{Mf>=KvGyrk0Tw1cCfqGDiT zf(X=8Ku@dzXcD){`pA-;l%#&kqCu9EuZ5pbUtO)bU9GFWiUuIax;m zn|VBE+xFJmK8lRr56Ey9A|uf;D1;c_1cx2Ild4+O*XF!z^Oqpm3A}+J1T9k6<@a<&zvyBW`1R(G-U_Xr~@QPPY0E{lKX=dRrwFEf} z8DUJAX!+R1fGEFb2mg19%v6)t)e-g0#ledQkh7j@4>)*4*$gs1J1W5A1sV57!9kwl zg{Gz^Am`!0l0m|WaJtzZ%_)9g-UpO!Fz<@mTB&-Qg`-g!N<$E98=UtDF82TWb6ZX= z|2k}yke5fZS!hyU3oHKpTHa0e6`WAq0N)>X&nVp?QC4Y9mofFLtu0lPH zlp_=UB=&+yXjr!bw`~V!fQX35&d%=h>z8|Nxv4Wb>DA+qdZiW`_@;tyvwlfd>A`)U<18s8oT!&&~TYtVAHcq(MPJ;Yo5It+UnvhLa6u zb#!zDfusU;{O{ktpwx){(+1@JQ~_sH0LB7+ec?bkes_2G6DI0@VO9ItGE6%L5M01# zg8clRK^`9$0R)1YJODy35LnNLdK+|1Ow6M2|*R^6}@&iMWTSC-VVOu{ly|_QdtizFH(xyyZ7ULFz~#G$5FDANB7mphzM{aX`SS87JF!Q z2k4flks7d^u!-S-RZxNV$_dp9rln(LC;jLBPH}J-0sw4J`X|6Gq_H|WP4+*pe*PzP c4ts=mldo=jn|;IsuD3$oN-0Q|K@I%=1Bi?eO#lD@ diff --git a/docs/images/chapters/arclength/5ce02cbdbc47585c588f2656d5161a32.png b/docs/images/chapters/arclength/5ce02cbdbc47585c588f2656d5161a32.png index 411514d224547142695bacbefe6a3259a58bfa54..585d02960708d4b39ec7333089208cb33ec05bec 100644 GIT binary patch literal 11534 zcmbt)WmJ?=7w*s@lG5dnf`katC85X>?F!hlC+@3)zG_eo<4cVwO+k#VlAZ z_*W28sfs(VPi%&QR$%b)k2bOSK2EneA=&{mVTpELSV2U<+Uc!7K0Z3#R^W%_dk?`A zv-VBzn9IzvwnwB=KMf2?IKc%Kh zVugK}7&^2&3;el)Oh_Px&RCFyE5`e_I{>!>gP9=!S6-0=8eroWh5-#A@EaPE?Kwwb z4TwIG&OBH@J6vj&?hYg5OX29wad}o|(Vf#t@qd1Usw_G*HS_;zvj09*$N&SpfT|q6 zd_nnthbw2W_)2?c&Aa_hYlLNGRESAQ(ybE0rV>m@2yof?U` znu`M6zxX~7>!p_NM(0DD%LAdVt}Ys;ZSL6`OEl@;hoo1AG(XjfP$9VJ5JNs*RQSQz zg}+z+%_t!$X|UAdSYA~eChRF?biTt`pjPDDQTL|^NnO3|eD}ID2xrt+f~JSsJGH&6 zl}gIS#=gpW35`~Iq&@dNr4p5sW3j%(pN9-lCA> z$SN!1=p5E)zO1~m#9eN{3+U9d3;bPo@#1&(8k%` zE-SZL5lan3h?*uO!Pu7$+5Puz%nv2il^OyDaeFLAIH_(uA)kPrHVXQXryIg z!uavyM_)g}**Su^_@9a0-OYyra|46t)4n<^G;u;#t!daM}}V^}1hP{e`SkYZV+5!$gNaypdIwkrJ+o z33i90QKr|KBki5-{fOXl&#!i&xA>u%=x{dJ%ZJ`LK^0TbJN@!eIUslymL3S^=XH;F%UVy;(=|A!`4SC>916Q@$rO9+cq78gHO`<9Xn4 zhDi2itDg*if3qq;DQ~&hL`p5};nUhGvQ$_g5zHrH`YORaw5e%t&jO2D7*S8}bgXO% z^4F8Q!HvE!M(JRai<{eD0bl!jqL+F|F6aJKr(SEzUpb3~ck$9aImY3(G@-@m(u zdQj;v9V(V+dty=Y<0z!B;qY)G{ZwbYr)Z5!*EPC%cy{7ad*g48K6W`X2ZA`l&&XndVLn;j z9fC*Yk*~ZnH2f0Q9rgklRlaj~n*B;%+Sf~6ooI3&;r8L)UEWmw_=Vp4kZu?qUDxVl zq32A+s`ID*+F*83I($ElPFSy!$0#~LUz(U5s&YO)Hv?Ime~230gm(fsMyR;ql6^y} zo+a<(qY$vL?5q*`R4sgHCaOLQV3BX2QfIus+OJjV>$^h!+&-ZzW9D|RjH4Nr&v{(= z>(|QuKDPc6x~9%Fvy+E-=lsMENy|AcEv>-CiHV8ncQ`Ziwom`KIYqU2J$&u$7NWG- z7!sBJK8Yl9S5C-j;_@@%0|-(vzYN+v9CoLO(*y)g(l8It&d%^Cn#eySqAnk=_Il(a z`GjGNfYQ&jYRW{_}^x{GaVAWWWhINa|IKNmH?p&?4G(bLOW#y~k!0CE| zY%wu0#3(AEFdrWX7@{3X&eJnrZ_nYlqpEibjJYa7lO-rP7;UQb;}h_!Wn$diesiRI zFp(XPl5$uF8_Y7L4P48@!s3ky~rq}3$_CTu5jE{ z2SZ5r=W2svV+n{@wYvuI3X^b4xV}uW45jekaC38e*oeo)uf(LHO79y<=nG0oQWcetGSMMY z6d~wnyuCbq6cG?0_+{b><#i#Z5*cX~{75(8o0ewflrmi<;Jij1hRyZ)H4!SRh(Z6i zR}o}y2q4diJ}4F?;8uV6Qu>6Fkf7sbj~(?+n(15(?#y3D(TN`mgh8gJzrX{yyxFZ67iP_yQ9)C1z)_mP7wt;!mAgzMC`K z_K`HNJZ=Tx8(%DD${|L*BZ1Y9mMtnw1PtPSp9R}hMkaT0xAK3Bnqs%?@ z;6tLQA_GE0`P|OQfMFO%DHa58PfSB;V0d0_60MqKoAw{vEPtueHkn&HVAY*IRWrpiiH@6LpEs`9W3x#-x~ zoY&SG)6ZG7CviX|@C^;!;V#*MGctuQ|Af3BC=3mC%I!Cwl8_QU>b$qg!V^_c!0G96 zW8T!Ca&H^xotoB2bKako8!ub3Db{NyE7I`3E_4R7SA}I{Q2&rkmdW?~&|j>DFw^W# z{4F;24Sq%##!B}>qqFV5E({jkzER53^_Y0IH$&+{Xu`t6WT6V(0Y|X$Y)Q>J8|WJ$ zX5%GK9`e@v3-VI^))7|=5Gy7>Ho4%{S}pkH=kIJb<60#rC$~>eYtRZQ0FI=*xxXLT z)+QP+(ttl~V{b2RXZLyp#Olww;7L_V0VgcLa)ZOepDY!|=>WUeZ1La&MvdHK=uZHD z_d7cLtE;Q$yu2i0P)j!tJ0~YpBP=v*ie(mt5+!Bxi~TvY4<9~&P!n>fIw0gL>a)CT zaCLhtPNU?>k;V^S0F)@a!s731WHhwXG|X#-r4~=6674r5R9^uJHw(xVwQdUuLFY0X zgDf;St}@YP7k^x>G#=nk-n;%FNxMg;67XgovM7v??n9pn!*V&tbh%*BaXS2l(ACXFnz` zPNXyjZ>$`u5SpM;SlAZJ7}nVnp@nLFxMDUAdyVz<^iX4GEbG&7{^!vEGgWnURHp;o zrwXH@Ehebh1F)iLBqB(zGE;yULglaU7SR&7bGP!^!${BDDL{5ba`W?vT{)kh`{cQhMfQ@E zf0;IS*jo1aA*VwuV5PUD?5K^Wh@-g`(C5!Ep|}Nliw6f@M@Ls=Me4(EyTb-j zG?Z{Ovu!hkJ;fxtQ0p3$1*ATz)mm}Fy)cE_l6l+#ICwt5oUvwi>YEaY-ui|c7@$H| zXWOx}6Ckdp_V@L*H8_6ZaKC_oL)0&@S}@sKXyobW{L^{>INge@iwkdq!?s^f zpiNt^DaTZ?mVX4+d1+W4OpG@sK0XleV}pKteegWR=fx&Ie&>VYi$x58jG@5%9QJ1L zN_2?5QG>Su3>-w{zZTKG_Z_)KR)iw{%o~4STQasX`vnPpS5sF z35iU#B6YL58dh+5Pmj*ey9eT5hBv)n#~~y*k?ewTh>43=xNxMkGZpbW?gW?&e}^(N z|C~7nj=^5(erd&JK8c!imNRUm`^GrV&huXKIg5&0rI`dU(94pH7ZMLK^Iwq!Hpk%k$;dl;Pi1xvv z+TGkJJITZkRyM9Cz2@J8p=OKJ-YMR)}i zR>5`BV?B-JFo_^`I@Ch|WJqZOgr@dxV{Tcw;cNLovzV36{MDU5ynyFTUV?CVP^^`ZY+qFI5MBjuV6>mC3;UZpsiPHSL_Bn*gV z|Dj)RN4U522q7Zs_TGJ$r?oZKPEu=KL|mst`D zMVmibTam`VYJZX169Bz+ZfealY5WL0)`*XHDrbc)f=|g2r=|iAb(9zc1js)&kU%-` z6gTUo|?{Eg%8Q0>s&puQ^5j^~KmkkaB(nm>7kN*p~Z# z5&mKcnm;(R(DhCQ5lhLr8vPsq6yU%d0&pQ@TxP!NCH$*LE0!Lc;#HzfP7D|OI!Ml! zdGG-td)aS@6H&k`Sncdomtx)z)Nqb{33VKyKJ7{otsFlXf{*wiCX~?6KNpqcZ;XB zYOz`1=_bxeJkCmtDs%V2LVMCH-_n;*dPd|E@>%pipOiV6gcMt_Xxpe6O=)J!+|K7U zsCuwCto3mH{1P%%7#~h(8a{{!G}_>3va_=zqp(U}9xQz7L`FnlRxMX7VyBN@dZNn0 z)^KR7H#(F`0fh*KOx9N**9*PLQ&xXbQ%RMI|GpoF6jZqs5w^3PEX_>l$6<)!W}c0F z&wt*Y1W8Vo)W4-|Wh3GA1vEP>4gpeFD5hEv?Z3BoHv=+NDH9V0x66aTGY2cT!5#Ba zov=&SB-_&;&iNPTK>-VHiDFt z+biyoQFoBN0#ugFlZjVFQ}kzBERZ^GVM+h(y$v!6Vd46(2z16v_4b<}4-Hew**Yd% zJ0-k6o!uJGIX>G~fwOlL;Q+L^Z{HrBocQS}S@vNliN|zH0M56#xLD<^+(Qo(HIVU; z2)S_q$EDQR3vCT0V59+pO=xInUOWzyF-SCeI|84mJqSyLFn1FXAR!^KXqH0;6IfrC zc)Vk3@Ve)>T55T!p`ig{ld;dhhi^a%IJ!M-1*%UW*9kPw>~E#<(ZvPZIKd)1Q`i6u zW?>QGdb$DS;;Mpwz19;+UT3$CxgU=^Qs7uo1yY?--Fm;q9S3;^e#7e%<0KyIbnVe( z1_?@YLIM>Pm7ydKr1o|PlYADJvn_0VeEj8=m3C+5Tr8zqZZ>CU=dSKeGgUNk)CUHcTG-G#4@sry0|=_ zzQ%p}PQE2jr`9VlmH-^w@b#Wk`^X4Yo!hyFpqoR=AXuM-Bud*~R|HwvA%NF$hBqKX zc5h>jolX;OJuHB%_Kx=SM26#$k?ELu>>w2Be!ldP1FyWjWH&mPr>q>MjX{q|E15we z8f#9^d8W|#j|l{*h)SyR)n4yl&s*+){jmaOi%rcPSCdHUc=|#Hm-{+FF|@>O^MbAV z`CwebjD6g{&l-aF-;i<9eTZ1sf|J^oyg8iqPrBJ#Qx!=x(t3IV1P~F%a)SSri#*hY znU0pO3?-BFdF!Ji*RzY&jmJ`1R}8J)4lDO&~3~JU$5Z zL{Sa`Gox79+j3p&i!q2;Y4b(W4W!F>OB2)9+l$uT-u{>tPm}9lQ&WwBj2I9Q0J2&7 zzW)9dW)`L_pmJ$yYr}xR3%3PQ`PK#s3JQZSU%~->W9!6!V{B^LxwJ$Lg+k%qLq{(C zHHtNTjRzB;w6y-aV-kVo<*%wfPoREma99Bw!M4?t-P_+EZ+3UKm^l(D6_14hs!Pko z^$aWn{syMVJ2B#C&jQYOr&pG|^}o;vDgiOa07QMB@?XFHa~7X-lP1gbsRAqC{l?H+P#H0pdF6J+yOPmUR(mk(NHR3c zYJ2i2_lK!kX^4cD=C2KR7TvmZwiHI~EY%t@g;B?u>OtxZVcR+GQo*@KXWH*P)?Y97 z-3zFaqm?tAa5OVN3DHGH$UcwRddrfK?X+*QHTn6K(;;?1qkDk`#SVgw?q0Tg+r#Oo z{odbS2uezcpF9mnIi=igg4r9s=uEpsDGTn0X(v2 ziHc<-zR)mSh*ms65q5ykXuFEfE8w1~*W6QSi1_wkRYxR|?SdlDWtLDOCzwx4N;D9& zzD&EiczL4+d1d97Viux-AvC(#)cj{Zi$h{Mm4QX^RfFd(572=Ksi;l~g9ti!BCA*M z(IMn1^BU<>B|_sBM#xk`v%yL^QiE0e}tUR)89?Zq=$+|yI;{fzUH2i)|???(dDHs(-TU3n)oRF*3R=T=~n-mVPSW= zEU=`6H3-XAOsWUXd|9qarZ7Wg?|0r4pc0o`kP2Nj(WMKy2f;Iv)gGW#h=nLO>1LM0 zx-lt4yeOtiKdu^G@PD4I`kW-B7Vi&#WdUDhkp4_)#t0i(b^ig5}}i z*4o9@72qFK^56dNez2J=H=vEzT2bmVZ3R?SalsWSpz*7@{``(Be5@`D;(m?g9DM5K z@f>N7ysY!4=4OsheYg%glc9&I=uAXq3TBnn)qy~)m|s}1y*YC|(wwXMU2kt{d$RU^ zzQHjZj8Y1{^lna1PdA7#+?{#_4WbGeE}54aHfs{(;&}X!N@+1U-$?)UNeG(+azFbKpV} zmfA|P5QAARg`}h;qsxPJkNl3Jswy7M>H*63c7Z~7vT-JD75J`*SZ94{r8{Ec96}Er zTz;9y3*4NMqPgE%ftlWgn#pk>_%N%P!`l5yfWm<&>?yM;kfwY&p>WMv6mHD&U%Tr;WFLHMW%PcGNIwTaU3Y;P&fF$wRvw}E< z9YwX!*>Sm_M3AN*zeo}v+2^O z+BJKbuS(gLtn@2jRueB=p-`2vLKSvifv@pTIXPdhccEX4k?kVrd~-qch4l3NFq?ew z*en&fV>p-~mn5=8ih+@+lqaM1*B#L}UH-zyIHG+@9rJms!Y)XWk1s4=UmS{{(b9HL z{G(CAmdMVYjx0S#&vP*rNbhlLv%|BVEQkRa5Z-F<*Y0Fa(@#7N>uXykIGR1kuU-!v zBA*Ykw;FT?ox>Rg3rpO7*j8tk#C5}XH&qs>fc8!dEXl61er$MVVq%iSVT8I=XtM(f zR7rxaui;54?b6&gT*|!j|Ac_si~Y{L4~gYo_iil{D_yOR58*)lH&`Et-&$-ISlR{^ z*ph368eSqIB3`dM-Ug@rFd(oR^+n@(G?DH1+pQCxxpeC>3QuQW=GE`(l%L$G+ul7YAAymGfNS@LX*Y4<~7tfMxKa3 zNGQ{3f1VgpW%2hJC4ZMuN5C;UR#OnQSBM0-7=$&wgVGC2K6*MLBve#Uf7I*Fi-QG! zK#;+;{Ym1r{bu1J9|aOtrU?hTQ}qi)2YY*hR6$q7r{vtCy-^pu-VYHy)M3|Jo?Z|L zRxP|2AU!7LR$oZyxqtxD#E*KT?y%>8U#`qqGrm>8snk%PVuV+_UaF+jW@SO)qRr8f zO7ETi))hb;qmSs{hTTI$m$I-%8|I3454BuM?`DUhlW;AIK#2NqpjvemJy z$i9JrtA8{7{k1?DmT+-7lPc3|w%r_|bZdFabm?${HuKGFJR1cV0s6&3vtLq@BT#Oc z8k{Ht(uIOoi^^`=`uZdcJ$xarxR7OKk)vA`&%48WL%xdm*>A#*9z2;-(>8$~gS9`K z?8|0GpG)zK;CU@CD5xOBGVFu8P#GR!H94dF9Zq|D>{zAoOK>sx0G|Ew^60JR`-Dn{ zlAf{aHMN0ygYEt-^(!teiN^;dkXOq%94;ccJ>FLq4YJZVGM_8}^}UR* z@K13u%Y2DvolYxocQ`ycnXKqG^( z$`4t?H|CQD>gwtiJClVh0s=Z0UgqY^MM^nAETup1WNxnOwW;AFOG`_OL9h)J?)68* zNy^EgEmF?IM0!4m=hN|}Gw5lcaCoJyDl2CXNvup>F+id{fVh>K4-XIgwL&jrYm4JO zAN&USt#4IourZnY-EOXqX?On=5gSEt{7rukO26oDZp}1YLZ9v`8Z)M2U@!y)|3? z5&$(?Pm;x92nT~ZpMZeT-PJKB2Y|8Ygaman3bjEjNa@GMAkeYVF*H>CEKzK`PiN}# za7m-SxVgDGTo>(R@}mMc)9$O|RYMaKR8LP&ItGS~!{oZg#$RA=B2Z2Pl>zbQAvsT#H*oH<%qEJv#Ul*zlG&MD8Mv}dOe`cCoPm@%c zjT71RO@Pp83W^vkoSdcN(D--^VDh2xdj+-23ST5N zW{)|D0cdEk07gI5+bf;rH_!`z>fqp@*!}XLSSFs?0%Q;HYmjA*uLQBL()`a)4tIBV zZman^F*SD(5G(-cis0yJdARvq!qw9gFJzb#7i> z1&{S&InZq@fX!42xnGn6Hb!)t?EQG}ys^El^+`}|wU7OmAP|{hVBM9ee?GDe2%DOj zz4%p8VK_B4WpQ)1ElU&gY@lqp<^_Hz=5S7(rt5^pPu2H^ZffqyKNB3awZCiciY}b5 zZEP^y&J7Po1_lPMA0)#q2`CaIoF-U35v2a0^JE#+oGQ&7fdC^RExih4YhLFA3ecSe zCHLAI%M$AZ<+Kpc=F%}biqjiKDXyza0i*(4YU;1x09OscOF39W0(qPM=kxp3uOdKM4+Yl^vKJ@=11cEN+Z|49d%mMaA?Sh&N?gomat7AcUqSc6 z3ZM$nGI`PO=<1yI$*6?f0zlOY;$zW*vYD2Yq-mBe2~?9OdQC0}rlzKXplBb(i}JoYG6WQ08OSn~*4V~;ePzV115?)RNhpbiwypI5T{4yPWI(eC^G}VkD8tSm zC_O!jl?3k=5u8kQE!HI&0ezKG`t$zbpV^`lN z;C{gpMZxC>i17-Li9ix=_+X8KA}nAeTf+)Gw0ul3EIgj)9&FQiqDXrR(O0y@xMYN1 z(OJmV#ij3|6s%#f#WUp=X>TM=07QT{fQg9f>r(?%2e%^di5560HK;k41I`XG=-an% zpE`FZ3suZqK-C<+R!AFgCk}%)$jt0)w%7d)36~iz{4yXwHhi8g>=_2`qOHHbaLmun z&Q2^xD$)Q{7T7*EET>qvyahjkzKk~x+rLppGemkp2p+Gs)}I8WlJlKEogjla23U|? zg8^wt#fBn_+)UIIr%13?p>A{7@GN2jGls^rVVr|JTw z5?n$;`VKV$?k6%Edb=qEeBn@rTt6>%a0CPfuKdpXP-$HaRzM>tNU_&C=Omvl7z$dgR@Mg-L7PO}9`y(iT8>ZF z2gN$qTi?P_(`NAq+PIPmZGw;KLso z83B_&1LY=gRL^=|@>(08#$Dc=e*vN7`I|R{fGm|)RUt#JZf=NX=U!;a{!}js1Gtx) zo0|#pP59#CHxwt+BP-8~Sbp%+(9+@&6Emi;8({%l230AamX;O^L2#huScr&-uS`c$ zVMfFh`31%dWuPbQ-TU`3_a)}_lLbmh$H&KTnFv%}{4%_5Fd$<;e z%tJ4&b(+9+chqRw{O9C_nV10Z8Ot;jtCb)@GOE)-SIAhFI2t-Qho_*~1B8C93lq=; zrI;m#lFDa~3K`3md;(g!;Dl8I*d^RC{vLsrNMbTJ>!am%_=3~YD79-WLP1FR2YjHt zGZ@EqxecLMyBhQHcIgogQJ{uKRKFbd+Gbf)(ES1n7$FItUG5(BdFESxo0Sd}fGq`% zm=4QrzCcJuBjdIR0W;*h^+zoL>&Q9=K?Vt+QquSD9g~yKzy$L45*DTc zotAz;Z-wWyESi~9Rj!QEe!$|24IT;V9oHi z5)%`{6)9S&2+>#uIRhgje^7Na_?`P6;sfmNA22kq!56O|z(1Zu=8U}lRa+|!$jxg` zPK33x6lS%bFNVDVD|p4h;agq(2E@6s8cQ9BD5%+U*sZ+-{XS2D(;)h0j-9#AWk*Iv zf{Rd8s#wd<;I+-Ra8nzc1r2lSl~e*w7BRb`!d~yERiva)K@~FCX@9n`M-&5k5O`P&>&{RI~h~ERDLw| z2)GUp7RklhIA$F+Rc5E%z7VDGUo0|VZ- z`!&`@+nG-YD!~J)qyM3q_@Du}HCge0LpC3At_F@vif9GeK!Y>ny`;QEshEM^{{RAZ B7XttQ literal 11489 zcma)ibySs6_vWQTy1PZXOIkomLIG){q`SMjLAs?xq@|I*TpCF!5rK;!9nv|6Z`RD3 z-#@cHUFQ4VbI;jl$FrYj$Glckz{aG&gg_wJN{VtC5C{U{<1chn@IS;A>#g7qRI^tK za*&6|pC3ERQy~yKh?3k3E$_VjUtYR|QIu#$PKc&)>(Y(05-+NWNNesP#D>;ywTLPZ z*;-u?`B2EY^hrfN;%GU~>7gwxefdbDW8|UTXj`c*7lEgEaDny|51nZ>;??S%xH`@F zpMy?eueEWbg98Z~C=XT|9T8?xd3pKRXXPSqqNMe=wch>~&%Te3TX5pXDjc)CJBurK z=cNx%K6wp(uM3UEpbsb3QbDJ$`e-JDZi+%oD1*-aISWrl_XR8*uMhK`ni>xD9D_4F zIVY-oZ~OFcrBil)sYx%F7gpj;RO<^X`9<|VKf%Tvj;H^_?RuCqFk9Fixx*P-C-FdM4yBp`*%cP;v(Xb{DQunQJ_#z^M~z}TUoGOjo0 z3iiKglBmVZOw6VsNT~6>Ex!vw+k9SSyQr!n5E8D=RTrE3`1m9%p15pJv)cvALjt<}_`gXr{j)4cz{)+y0VZJUKsV!1ZbGc&@Oii3y~h3=bV* zWCWYBd$@oHCnhGkXDKp$@Oej7h%4Z@O!l+IX>d688L!8VRy-LmVoFMig<8q?(b_8S z#$4GioH3=R=A#+aWIQI2+dHH>7r5o$ZSoT4-U~l*d&*vIw+1~RP*J0; zA9fqRGG_Px%t!jRnASw83C7dYV1@FKsmK%^s~?{FEJ)h*q?Sk6DY0BVZopw#x2a7$ z2nRhPVq(V(7E442Nj&9+6o*j`7JFsa>akXC z6dQ<(iaA$TNwa}?dJ{6#T%od_g@y3lwD%&Si3++4YL{0DeQj$X*wEYz8%bBdqd5qfDaUomS1Wr1Uey3OKt7QQmA_#EpWrLG ze;3I-Yx?N)S4!;~apa&Nbt=iKY?O#tj0(?_fB)9@_TrbCcIiaC880bZP2o(aEN8(V&K2tAn&QF~FJIPZa)NH>P+TSl%T2|IO zG=%QsV`!!21C7Ln<_bIUydT0dY;{Ixvi-3x`ZU6NG+gUR_wC6O5-!7N;N?Z{I(-ex zp_sI^w5NZkkhr+G@Zw;Gui6udw4(GON54n zwW+sjx-6r+!kh7u7L@5;#3=9WlCPZ3FHn^b9K5gF<B^%g9 z*47p~u{AU?kN6QgMX?#pet7Gpdva!G)UqM$&H`rUz=PGj?CtQ=6P8S05FLGq8itzR zb8|sU&+3!)3g>ODF~~>90?h9m9l87iB=GR?a5ZO63`#JNQKF(o+o7PyC63vN(|oM1 z#s;}$kcn*xshN&8MB~n)sWBGEE|YZPmjp7uOcXWITF(vDV!Cdkmje74N5Ws8F16f#F za>G2iqYJC(pH@A2ii5#%g0%Nc6{|! zSfciAB~EckCUkU^k|9M`bh+na#)wm_+MNpemg6$Zb&#VYj^+5t3+uny%WaIwI1{6U z@Hpg_Z0uq57gSj_UaX@v*{Ofw z;Vg{~Ke4L~E>g(32zVPUG*FB1k~^7`qh7|%nVq~BJKfz11u5(WOWNlS1F3Z1Vxjx{ z8w?zp_=pzae7=VY{pQC0)!rK27Ou}Dn@X_o&k1L{q$a0-+js=;z$Jf)sL%`pr3_)Y z`@t`LEGZV_&6D}shfu$Z8k19N+8WIYq4;=P^QFeuRl08kN7G_4*7D>S26lcltnGJV zA%+mBN<~jc;(94qZc^q+`04)nS8OID;Z>uR`9&^=j71E3v05wODU{f zGB$ZMZ)ea0&F>)E(C2P*&iTqsKgvcQCad(s?0>btEBjaU2%s9g0WtwVC#uOKNWjMI zjT-I`L@cN@gK2VZXAnXrtYvV z;dhSZ;<8(B3T<+|$wx#9(gkb!OX9XG3usm!NSMTFT6S2DFPTn$#MiAiL(#6fJe55J z;qp2C<3~D`0`UkO6rGedH`zLepW5Pqx4KV{ANRi86+kI z0`30(o-IZl7Vg|PF@YOL!dd)D;jR5#)#Bx!Ok?LiBgAv&n!NOH4{opiwYtDjJ35Jf zA4b%TPEO*5goLnd`#ctr=f=jy;gOMSXR>Ujg`mFBNCn2vl&d#TWP*yN5rs=T@XhOR zb!TV9gH134IK8*G$nEWIPn|cb5HX>KMZX#E?cE(dK0bnEp`@>&tEVR_lxN|a7q=a+ zO~MDZ2D^E#tgI}Pp=5fH0^!Hr;&O6wbRr^TX7%fYXK4ULYsGYQh=)f+&@(WE?rIGM zU0)pHYHDiEIVORJpOI_joO&)Vy<p2|E2QHdz=MYK_cwb;&?@r;B@Z`vYvgONPoL zQ1#To@^(!Yrwnx*fGLSPyHa7fwzUPmw9?&0SM^8&bZ-c5pBi6TvApPd@n6cSj4_im)MPdHS&6Q^6=2PFiq^_&wpsG1U(Sml`aQI-7vbroRypCB+jFOkPk|*HWtVWZ*@UvdS zd0j(;tYO~CRz84pRWWgKvJ(XoQ|(PC^A&g`mp9x4BkAlZ`PIvM^}4uER_ct^)7 zt^TmHIm+EFxAi?gB{}({vmqPvMk;J@utc+5t?ujBb#QlxAn0_P?a5D0Mx^wTV==Cn zK)({5m^iQwb4M<3-W@oWkEr7&Bv@jj3eci z2Vs{@dJo`gIzx&g9zOmHgQtSg`T5lG2?@tgT&baee2|ARp+k~5RF??8zP`@xR4n{? zTHH_PzZDirWpEi`n!}gM-jx^_;gv0Svfqe{h#+c~b8!iF=ryptiqQ%w4E)g9olh9nl~U*(H>;EF*TS5qxaU45wAz4l@{_7gG)y1lgmqR@bz@`N`P%aJWB51SmII!~CKT5} z_%Y-@=;yas-&76Uh3VNMGFa}*iEZ`fP{(AsHQR!O zK%?Pw_X3+nyfyThx+4Oh57JJL)*MR9A7ZCU%E7(7Aruw$y}Y)gWqPK7`1rWd1+Jlz z#Y2gTDh~p6c4)F_#`(+^lSbk?4BX8gXfrR*=4p8?3zk&c1#i#HztGW1`X2l= z_NBbM*%+DAY>iPS@D++3U^&SftW|`MZX_7=g(^S$OC_5f?~s~oS+D2t*D7n>ozK3w zhWuE|1xCIYl8+C{Xx(eQQ73SVpN+&QLF1rF)k>x+MWlAjMw2Av{+DcTkr2A1qIi~) zeT9jJ>lj&BNDB^&-E(oGA1)iU4gd=Cd>fu%gWrYi!ct;*Tif&hJa(G>>*l_{6Kp=X z-u6A>b4p$wE=Zv`@PTnS2t4{r2#;eP_xWB-h+^rbyjZEFh_eY&RaKWvgXKQ(BWrX? zh=9`y0syF>(Px~$!V^r+%?&g9rfqhz@f6&JK=f&8Q@uH<$;H9jp$Q%Tm&_F_Y6Z(N z%?{mi|2Ex`T#LnRcx~ouC?#*Ih}H6yH~47#cw^+^9ex(`xG)IDG7~epiFQ_2N_pKb(1ftP>~+6(99gO1uJ%Lr%=pMBp#>b}25a`!khHRlhW6RY6aXI2enR*gkH zJ&?c~9u5KR7#S)qjiJ5PpLR+7vq2tdXe3Hfv8iYlzZGjA6lt=F-K!0MyevQ0pdGC$ zDG4`&3tOR3va<{du#oK!zR1^~m)lsdN}kl~A{N!{mB>caBO^*esLRZeQ0m>>{#ith z>{{d&PAI^x<98IDzE@f2-1>9!V9_$9oGA39?W3@zp!e{IZ)~J>s=U9+-C^YB#`RGy zJvr?5pZ$^!DoXJJXjSDv3%$2zpOOw!bJA1Y_jz^9Myl?JyWj#J04Wbsr^Ya4ML~$2 z{Rt#(hx7@Ny}X@`%?ow)R|mT=?o;-T0=2~j=@<4!zls+uj6O5h8kh6=AelwXSlf}t z*V^N1N?*PE=pP94%_14l-s}?em;6{+i6YTiEccl6dwQg2D>M~cAWyB=BW#HdXV!;* zF>e05I=bL)#ipyc2fara;2g|Pt=j`oDmwUr-cj;fVikz{gwD>+ei@5$HrbvoJ32nT za*B&j9${_BvbM45ouAKaR{PR6JF6w`e~D*45WfceaBW25Xlrvb67=2cU%pbOL=Rx# z;y&UII=sn!_MvjtmMnB+L=N3Lh^eXR+jQIt8F294!|n$hFE1}pmwp8IX?_qF7k55h zf4SV@)4+B@|CWV=1FNg6i?|(1NpJB+SLO8dl*egBTuwnj=cQz6tl>9L>`X4B;%b6E ziZZo~^OKXlvR9eTH|Gv-w`9L4dV7;?j_2wWx%r{9CTYO>dwL)M`zgpFQ!iHF9Q^K% z00;2)@d15Sg?w69{OHUKAuB8E<-dt<;NV&z3kzjgVqP>@SXixU5n7DOq=ZOFNMm`= zpX3TnrBJJ8q`08j*jQOthS$}|kY-KfJtrjPE-0=h#LmbfLlth(;}H-5phja{>vI+v zB_$MQAtdC4qw`i$E`pEmV09#&sI~q3DtH0=ZR^?iLOp*CR)0)Ao& z<5thmP}Z)NqM+8AnVGe9ybFAD(&-t+=Jw3DR@bK}(8%$}FHn8^h4uGBeS`D%w9S&} z6y493D6{_P=R7>0VIFLyIbXDRd3kt3bAKY*FO!XUO3IDw>2vD7i$}u^wBn~NM*P_v(X;4-09ua6qnj_um~PY5og8_KLs;g@({V{NpX;_b z@-i@bWl|LS_KfKKkT9VIi;8(o^90>r4BZ^Qj0sO#He95s3*J1VD)ZhU2L7(=vvC&e z;gTJ*vGK$E^e;09NBdB`x`c^^%MT>at?xYXG@TH6`ImR1f6jt`^cR#6sduj1=rBQ& z(A*CU{i7vA!$=uzoXz0ur&+>kt>PK#7ja{q&Itjg9YV>FHmfqoad{yI{;&UrLTx^2)rdq$CWq zD9EU&UsG^Rhuhq?j{Z(DdV7021Mi^My-LjCF-3gWw65)FO+?g4Hx@Ay~X-EfWD=urVfWbv!CApZqD!Gz=EBr0=Zrn zD<~)kAeUfusl;Tq{-yGSLHJ`nKtMnknwZcLM|cwhc&-22U&z>!X?M5p?e9+ka=L$T zuz@^-g%u#Q-rnBm*jNC;G?41MsHw=wW9sU7-dkBUQ0K7VQBuZz&lfAPnkWE?-j;4I zE~cqT@cMK+>_=s{xtIW}0-$V*OG-e8(+hSPsWHs${wk9T*7AE`^=vmt3%_6ppPW48 zMHp&tUms{-6tT-bm`xYIe4>)I8kt3A`{p$#K?^{kVljwwcSj0es1KO+ zZ^x`MqC|E&w7J}Cm;jzMYr@9P41R#t68Cq&R^=BxJc!qU;Y-^cC6E`AAJ;FRZpc|) z?l}HC1;9k%+duZUjYC7(Swfsd^76Bn(ax{RU~+Vmy?cvOy7hf%1TpK8(xql<`AcX; zJe0;ks=~C-mNl=g<~%)(p$iMhXt>OueYFK+6`A_KynRw{J=NmAB>v{f+Y{D2DJj(Y z`rgZD|qt)k2$_V6($Fx_zWk9^au6-v=cf2Rr?VH?igKj?)eh45ny4 z5Ma>ZL417?Aw5-k_+-3&h>Y?o@}n6Uvq;(@C%!#3MwAdMD{fGw<(Zw#;Um8*)Cv6( zHN?+i%cp-)QBzABcdwdSYU9p)LNU2I$)21?!@|Cro=>}ie~D>qjLk4!gKv%-JMYd} zc>9cJlB=Q5Yt2Q*4I+UC&zlGn{b-;__V{wY#fVJ8H(rHXW2b`Y6$2{^!FUca_UPy+ zw9a&<-g3O<@4{4;ZyP~V@z*5t-hGs{{4%S#Z2^cL&(>VANz<>BX-RZ+pxVYLn)8~YFCL@8t+EKRp6N-ZS=+oq=AAor3pxCAZ@w4TR3E3b8AL8L3StMSOl;(MfpqhanywT+GNR_8T= z3{C?Obm1(joUs@XmHZuSBqT=r6)Iqiypb{gh-h?m4uj^1_Hz7$Vj&o42I!eK{PuoP zM(xgXJLltAF))Y&UQon+dpdVl3%vrbiIo{L`SFE0$GZ-YK?skI%}M6Bwc74(%#SaA ztMhu;j<1L^<|tKzFS|Vqf|{7~L-6re0B=zSN@1dEZYVxU22cXpR@lQo6E?9kLqMfv z6ZiLia&zIdA)3yXl7B~ofKbBgb>L+^U7E0tf&NA|ub@%e@I`rDpVhT)cOdRS;yx04 z<@d|=I7dFX?a80>CfjsJ)TZ~t?-v#p`W6>oijMVsj3s2;AgriDvwyh`2ooT=^elJ$ z6?FTz2}%m*=9r7Ttu4jQyc1nO!r;vG5KSExQdVx9#dYIAe^uY^d{Ro9J8FCT*Fy!S zktjv2^Y*Dmnj#=Y4r=P*>I$tV&`4kcI0L&p<`VJPNjsGhuGi)F>rrM(9==+rH`ndF zHZW{=#{fO&$tENq;A&T%&@Wu0V~1LO--|4RLl03_R#v4@GJjV~*8{)^l{^vr;o)H( z?k*+y=tzwlv*NO{2%~SFYkd(maFx`i0f zn46nZN%#^04Y6;lFeq^is^FThQ5JA}iLa)nmIcZQvs&JehiG`6JYy`z>&cqcqc!NG z7!@BMKUJj{RHONYCq)t2YAdC#u~F{zYrOewygs(3-{Y*`M@BHedG7atL$-QyrtiA5 z$uZzVe+3{SBO=Vz8c#f~sa68+`B9h46@me_(X=(-hG2f1CBl>`I_6m3(vtanZxPAC zAz_h@NzR5sM+MR|Y(v)9CuF+TS7dAanu&lngY#ccu5gg);Yt{BI|>_pj+}Wn!~TBM z8eBn=go`Tn>8lSQWv1??DGyJO(u@0xO9qYsdC-xKsZ@Vvh%;5D(--@t?t)`@csz7_ zM#-?85q@{mk|j1z11Q6kl>eXNRQ%GGA~Le(~}0v583hTDfNzaJnb#=s*Q;VtMdV_#?z@%={8nlew~;H)pQAk3+95H#5dyRx zK5-Kfz>Cga52#B^$&#*aQqvh26?0#H3>qjXpt0-J$Qc?^0j_^-dwcjA@3%J^1cDX& zI17;e;pEXVfX*B$$M8a5pQ7t>{Ym;nDxQaCb*vIS8XDSiyT=n$R8;Gq&75ZD^K??i zZ6wIV$E&@ZShSKvZkuDh?H;?y$;r|et@MK0O&rY9y=UT;I<@l3%9ucC6IfneTI~rD z92y_L-&nw8*6&-(zN-gFoGnhy{)p~3N6!zW(N|dN{ za{17$i9-0r?;r)=Yp2PnsSuDhfdGsJ1m3&a5RKlX-tc4!4V75hmo~FQL{CV+5B5d; zqbI_20Yb20n=1-{ecmS<_3q*+is8(vIVNLSQ_(Sc5diYLB|oRn3Cm1Pg|hra%D|Hu z=`)Y@66T6xJ})i(&s>C2hpnGL6rM)Y|1<3HUri4D@41No?$!T(bfL%-#>B*gOixcw zL8z1M19TiZHa6w5e>I=K=+f+%-JI_$s;O;?CfKq*e@+f+8n<^J5y&o3_rsO^lxO_> zng>TC8Xg_1t0v4MB3Vt|#BW?z04$8Jt#xXfxxG2;9@`jB&6ZD~;62;^BYDR!!?g3;SANasDXDV>hbs*n+-<)$!&&*VQsY`jV|JjT^H#gVnf5pdT+!YVrFdNO_ zoSyIO?4&1%X?^utDJCYSuBB!0&uFI0)_3aL<3ZYmuNF_fe*J3V@5$twQO-8zL^#$<4@o?@nK;|ZfkugpFppm0_sOrZy4IB z|4)dCii%1WU=4VIGQvmP=sgB*d;sil8{|aI?!W*`AViFT#)B+Iu5T=hH|%kPRn^tm z;3Mf@mUicBtv;#ckMLkY{m*{rjOiE$z`);CviTzPzIj$J?-+@w3k$bs{NqTftYlA3 zOX~+ufkMdF+}x}pEgihfnTm!>!(-I$ZVF12@_4s54s8C_@gI7pyNq}}S3Q=cli{(k z_hA39$Lj`OYwo$X(5tJbmwr>g{jOuk+s`kPTzyIemZ?|NWH--OP*5cfYG47sS*X3`&%EwE`M@hFlYj$uyO#Qu7Lp@j28iy zjgn&s(dCf$^%VsmEeVHO6cX&-^>ix$#4)(1(d)C_e5U{2juXJvEZ)wS9$OX%n z44{y@JwkF^ZVdsxx4zQp_p+Nf&HE4wswfo)4#h5*bYe!V76gvDeHxn~m^7$qtH<7e z148cIyLZ!D*c1Xi-4FK$M@V}B5+@fF;DGS6wzGo+4de3u=CF)WOjNXQd6`NzS11BR zhT}>HEA>jLQmO_N4T}uI&(9C(`Ss0<*LhW1z+s7qQ@^n%nO^ph1%mXf_J$pA3=;xY z9TR}AGLp2^R6_k0$An01%3{#2kO^4hfq!BHN$wPovp_?E0y$x_J19uNZVn6F@L-W_ z)DggCUnL14!Qk&;mP*@tp^o17Y$pPIeht*Pzrd4D?-mvp({pOf2NMB(Bvo(wgU#F5 zw+|3Xyu7^LN2?)?S!ouaB$sXKeNbfT1B@JSE}Xqz-$?x>X@3VjNC4v@fK32%GYAMY z&Z6z+I(5AOlIQB`D&)zNC(E6FI*yOg=5jJu`<3?(E5||5!<}$}R8Zo^#{1by9o)9I zHW8O~WEyerU{F=ff!U{Rz*s;p{CE-wEqw41N`)0Z_V4}u$hGe}*@S4 z6d^=J%fRbrfm9$bFaJ2PkT2%-et`3q19*4KtX2J`_(<$q|7*2;QPwj(E)L1qj3&Na zNbvM-g~#sPv?*9m2H>k+D>Bef*Mr6;^weMXLn=04OW_G&4URRbS5w zb{+AiM80=%k^GrjUNDFykWb$aus?V5`NwepU`j}5rvw;JNdUYKpjsdhL?onF4i0G? z%)l+B&CD41`1pXfY6rF_=ZItBusCGUePYJONKcOdzGnK04+{xMe|~;`z+qnjDaD&_ zln#_~fYDfmJ%?RJ^etf?hbz_9vJZm z1fkNrf{Dq;u?|eBI53r%e#McIr=V9Ks~+@kQ#E`0PsQJ_+Ko66En5kT_wPRfD7RWD z?n5vzFi=-tpVGC^V5L3_XpVBVd_;)*-$?{Ug+w{fdYV{SMTH=tDMx`Y%Ak0+JXs`b z>g0qA-0Cqmg`wdNfHdHIxFYfBkKm>Ty?zHofu?r(n^)}^icSXDBpg&2VB4P0Z%Rso zW@RI>dO^CO$3ssOMHclwGCAG@+jv7i-rLc;OdcBxO*2p}5Z7Kp$^UtZ$?KkvwTy2Z*} z10sH|#wczeffCx+hX{-n396HRqjg9Mqe8L6&t@KBVTDv?)uVCY-w??6La8KD?sq*a zD_vukpxl-Xys^yI1L+iGN!Vdr-$O0`446}rT<*KTxAP}&nL2$sy zZ(dG-={)l8(3l|&BpC34SkMJ6SyFn|&UN6Zes`gA z{)&@~3?d*x!tfd8>j3+kLjg)wz~ht|02$~Gu+$$^02QKRV@IT<;148HvulRLY`S`R zZHY$M+HDM_Oh0H!5k8Lg(y$-T9=Q9;L|cM+5irVo7W@ \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/d0d93f1cc26b560309dade1f1aa012f2.svg b/docs/images/chapters/arclength/d0d93f1cc26b560309dade1f1aa012f2.svg index 0e2bef64..5559c6fc 100644 --- a/docs/images/chapters/arclength/d0d93f1cc26b560309dade1f1aa012f2.svg +++ b/docs/images/chapters/arclength/d0d93f1cc26b560309dade1f1aa012f2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/d3003177813309f88f58a1f515f5df9f.svg b/docs/images/chapters/arclength/d3003177813309f88f58a1f515f5df9f.svg index 1ac2d5e3..2b847055 100644 --- a/docs/images/chapters/arclength/d3003177813309f88f58a1f515f5df9f.svg +++ b/docs/images/chapters/arclength/d3003177813309f88f58a1f515f5df9f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/e168758d35b8f6781617eda5a32b20bf.svg b/docs/images/chapters/arclength/e168758d35b8f6781617eda5a32b20bf.svg index 675d15f5..31f5eed9 100644 --- a/docs/images/chapters/arclength/e168758d35b8f6781617eda5a32b20bf.svg +++ b/docs/images/chapters/arclength/e168758d35b8f6781617eda5a32b20bf.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/e96dd431f6ef9433ccf25909dddd5bca.svg b/docs/images/chapters/arclength/e96dd431f6ef9433ccf25909dddd5bca.svg index a6dc8a62..b27e27e6 100644 --- a/docs/images/chapters/arclength/e96dd431f6ef9433ccf25909dddd5bca.svg +++ b/docs/images/chapters/arclength/e96dd431f6ef9433ccf25909dddd5bca.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/arclength/195f9a3c60f8dfe977c6450d21968f69.png b/docs/images/chapters/arclength/fa4c587126e8097206b88d9ea51974ca.png similarity index 100% rename from docs/images/chapters/arclength/195f9a3c60f8dfe977c6450d21968f69.png rename to docs/images/chapters/arclength/fa4c587126e8097206b88d9ea51974ca.png diff --git a/docs/images/chapters/arclength/fe2663b205d14c157a5a02bfbbd55987.png b/docs/images/chapters/arclength/fe2663b205d14c157a5a02bfbbd55987.png index 54c76271e477d9089fdf020021ef2dd8cb90e995..6190a5af3577d762a51c18b8a36b5bf3f899331b 100644 GIT binary patch literal 12350 zcmb_@WmMGRw=ReZk_t!(B1m^gmm(cQhje#$hZ54=45-A=-6=7ofPi#K$ACyn4fo}L z*8OnSIv?&j>%wBqnwj_a*51#KXKx~uA<{UQWSA%@C^)h*5~?UDs08~gx&x_ZZ zz{_J3d1(ohyZhfS?XV;ilvgOS67ST#vJaL#{S+_mz8}p{%za89mnu@p|0l)B)6pSj zGR+`vt5#Z6e#Ika;yK%D(@Q5AqdE02V8OAtWL_@X$~0tJh9<$i|MJ#(Qx4-}Qg)V? z7-gI&S--&H*tOs2(P;a2&b6qZqzYlpD**vgEv=cdvP@chr8U{Mw&zN@Q!#3)s_OC* zYqG)-X%}ne&FL6az3VcZ&%}$wBO{)QKUY-2qQJ0{qT zh!JfLShA$||I>mhh=(Cg>K5GEEPuCi1FL*5P)BoOes7H+^g3Tgjbj)XhM!%X1# z$*j6Lg6=k|RbR5Et!<^ih3)1SirbZi<_01Y+!4G-J$Ng|)#(f$YRJro)Yl5qN>slD z;pOBAuB|x`ym-;m^~qAZ+C)S}1y-cI>TWaRAl@0Eq*dAc zpW{bJ+8KXEg~PAXnM5vgoy5e%fewFp63#UWUb~|1Cg-Fg<*(G2CzdM#R*G!jBZ;RC z1G`Ezgo>3{d2q@9;SHzWrp1XF$R4ew0k{r>*FEUg4;_p#4K7lF9m$#@`jgI&4 zes7v@u1V5k5;quC@5spfR4G(o;^cgcPk=+nVzo8T^V+BVV`F1V7GF%;O$})hW0;Z{ z#o%C4E2)SN70!$4?aj0ivaydX(G?XHO%|&-`VRZDj7K!fpDGMOZ?EHy#-$G!wJLC# zwQ_oghoSOm->0VDx^R(T|K2crTiMt?;_Nb!H?x2|Tr<(Nc(XUY`?eCDkB`s9M3s{S zyQztUgT#(A8)_eTxV9GE=&91;t~;6=_{U@@`9i>}3dh)3&Dq0abozE=(Ce62x=p#e zTk~hD=j-`8()Vd>@=hKeW8+7*Q#QT(bK#dKV_3f`SCR?n9q=i0^BB!uFw#+v$wR_k z@RebcaD0@EqB|O-7aK29xrVhgmC)hEJ;0`D3B`PljB8vj0VlSsmz6L-wvHV*aae&A znD&qM_Uc(4Zx|jOAEPQ{ZkciHknlUPz#~(>X_VfX9?awXDps38PBZWg6@OU0B z7pTFucHA(dh!2~!WXPq1_UilK@VM2U zne~n2OE{!lqe3svda}d#>NLmiVu`nW(%S+Yc|+FokdD(#hB=au5puX}Xj098emD{o zv=>d$8iR_aW5mV!)#KpG%U5hk(N)KFpOk2gG=0QE(9bES+V zBuKCf2@S2bow2bPL%vi}QUXU|OJQ!z(u3ms6qvi~GPJ`m1?y^W0_wn8%x?U)%*t z$T&?zJrDZ`@bSO7GyP|f4I?9CG}&_nr@u~nzpP8#1?RqJboh6g9Ia`93k&78tQ*}P z&rkoXH)!@TpJrzz@aerg-4Uxguw;8-;YbdLMXeuMGig!8>{igx*8uX(6ZN)F@oQ4` zTLbddVCMK`T2jl&<}Pe%paH!-MmM*xkS%lLj_sQ`eUI#GHO$1 zwadAOWWW{isH)mII)>rirc+DG{cLhJELR(H&dIq<=XZY2ZP_t)h8Wj@B?WT|2xOF< z2erFy$CiAO7mm1iQ=uTD_w}CiEP&-mpYAO72J#xQ%-s7|V;`$a1Hl&*I36 zNgs(%H0iQ&uQ@~~kyTWr~o|ClN`7^hgLzIwXYYSfI2%jmltog$|B_Na`i zTKy;xk&{#8gX-!k`-Q;ST1$GUP+*0-94=TV@Q&+rmpfHSbT@bk_3Al5KJJK3XuIz^ ziKrh&yDvLhTODNZYugDV@a^g_JFzts0B7}ID(ef`7&1k#+p{Z%$muzLqIQF^&(Gx3 zg}sG|+4Lq(4`RWnp8=PfDCl?&d6r|cI#YKYx^I>DRouA?F!|R6MgH37EB}D|> zUQLwFU<(WXx~8G7tk(Hz+Hc(3XJFbNJC(T!LJ|J_+`zEqcFW&uYto^ZhgQ(o9&R!y ziHHwl6mcAlW}dETK{`gb8}df7!7iigd$3_V*3|=n5X|Q#Dy<&!QZZx&ga1I7^IoUQ z=#~9EHq6ObtXyr7r%cmo(gHJ!*WUE<7)`G&y>?w5oZS*JUB1}loYA=Qvc#RKSvjD^ z{W|*z!Ikr^&uB+}k_k1rlq&wsnHK&hbi4w`l}i$A2!JGl0rQQ+BC4Y!C9k7FdYeLX|K)hf2l9L)13B^^UWh3M*n^2hh!+^>_( zR#4R(eDcLlLY@xQz88FRqN#)gUyJi;(uF)pAAh3X9IAJ2q8n_68aNsa#Ao;&5B8_m zc)Ng$R-~ortu>Kk$devZoOz^JR4kWrm*=*7`~%wheR-2rNCrRwX5F?s2~#fDc`ujD zFc$NIPJu2op9YI43d^GQxul9R;cFC&T2jezQ?3tH+Sog1n8n5H26(e|w;UN|H1rED zjU%5vPVKol2DoXn#3!3k)Ah*=r{+GzpFk1o#Qjya8`gMn!lwo_AAihvO~2VCbgDG% z?`B%Rle;_I>LES7lWXmnG7s4qNlZgdDT-9y_;S)&K<*TAEqWQNw3B0Ss&0?)eoELlnkUXi}leTaj5O#*gXJT%T_5AKy_qsk1_3|E+?h^QFIi~D! zpz}`s7v&tjA+UPR7To)Du9fbZ|8;IGORL-M~X)x52PY=$Of?!CJ{H{G3a zBn-!$t0*m!ykBa)FDBo0`-op)5XVM9QRR#IaE@Ll5*;0PUxTLs*lJS~6QiY;gWlf7 zuMSJ2IpN0!D$n;8Gs&KWpZyQKK|?|W0ZbW+DXUx}nCH0z*|7#Gp355dPb8vh1=_?WkQvNqfAV^Wmc z-ka1EX3J-kly|=t?tKW%r>zqyx3=K8&1E}nV0Wugp00pN6cwDGudYBxVNsj#OI<#! zqtK%EozHiR_juY#gBUw9va;1y~A~U{8%B!{eh=|_ZxQ5|TBGtE} zPJ>dsO8T+za;1%o(1wzWdpC!TICh*}YR;J4U0vH}R?Y%eCh9s0C(wAWeZJGtXE{4N zSC9G5lead_()Fgof?GYmT2DUhi@7ESIR_Pwjh9-!%=9R+ch+ll_lrOJsqDEut%tGW zg3phz%QP93zdQi$NV_v&SxuxLI3MMhZ{I&Y!YWpSp#rqkL8OIWLq|OhKo}uFL$^F~ z>;bNa>Ca-Yek=av=_KhJn>S%B24MuaLo1yRQkbSJr%EJ0EQ9<@d8ENU>R-Q@&FUfL z7k4J{NA?S`t5NKQN$Kh71!n+k8Z`9uwZ=VeK4)a5;CotlRHu}Yk)p+zfrNN>QkD`h z%q80OHjJpKJPf+$lsYhK^~B_d@7|fFi~0-tp3{gOT}r7c^t#H+${J6XDeX>38l-IS zm=CoVXlmZgRG7{+9dRot{ma&ljPSD1 zWF{B3GPyccvYs%*c6QdWq^WuT_Inl~yFsu!LQ}*;gpqEod4H)jaScAKTCA#Q9grOE zzRw@KJ1ORENAC;1&G^7V)ZHWY)mE!{fv3`UGbNLdQ8imKs=L{P^~4=$uO-pTj^LZi zsN*Zd8Bk2K+Fl7@t~eF4ctdL~xdWdt!6k$VN~eZE2C(zURx z78bu6jhR5xToch~J6i9btXK-yF2{^C5m$-MFU;h~I@4xp=qPN+$&1g-jQmDYfNsaO zhic3FqDtrN;`~D#{6TRs5ew0RhtUFzh*j_@5pTpwz;#5LL5+x!qR)4^HWqlR6RO8P z|M#PH%iYCGky9UCN>%9SbnYA4%>YUbdipBuA0SZ6o0P?yUHpZ{>yO=z46s|cvu~b@ zjUhN}=L<6*7R{4SJ7^#&fyPiP$;$-Q+rq}%F5j{c(Kovr{4D#x2gw!fKJ2{11;Nz^ zx1%-d(d^5Jt&x=(!RM>5vZ4CB)AkH%FvueyP!^pUGcHyg?7oo^HH3P|CmBeXT*}qS zL8I@#wWwO4dP%oO{gnGFcNB_Q=ab<1w`H0fB#XN%fufOXkt&Fgko7D5dl z0tHf$;$o*0y0$B(#SVL4%Jbvlrxf;4AF5tui{VK|&Wb{WJx7W7ILA{BGq@W3k`jM_ zX*PzQ>-sr5F7#)xw?8Dp>V?018^oGBtIeP{+W;NM5EXUWjI`GyCSDLtV@Qae+n3WL zPiCrvrrLxfS2s0>+m|VzWc*HI&J^lJRA<-ntb2IYbwXo*}VTGRa*SDw(>Eq)K z?uU!Px{Y?1i!JVf6&3om@Qc%s;WT?!yXsjNb}ifr10Ls#3Iedl=_!Q$wcl;a0SUj* zLTpl}Sa1JAY{UWoeBZ@c{Q)d1%RXA{PW|si<5HH>HE%L2mgix2CeLdp4~QA^=2FSs zWb-_(n|68fUZGC!Znj%P!pD;1u6o~_m^wav*%6|WCk3MCfk&qlf;U+Q3&aVTz(%ok zciAlqhxf&NIyyPI7wB*7$3H#y)U&rnUbvp_sAgx^L1g(OdwU-?*y~D+<@D4;BsU&Z zwz(XNCMCR#Y^5V<$6Y{uDwyX(Ini|abqJ?vzDk{!;JJxv6UXTvk<5`SG5GLs zhQ^DIU(fsu6~_2p#LC3=iq6qjrGj+&ZRmeU)RF*3y+QTVeuZ&8an zXZgM1=?iWPZ22^ZctY!}0l(Ny)gyX(z7h@Fe0L^lVxOY)H}>;{dE@JwgNm; zcPeWVDZkSjT6r62%s>p+0qR2Yi8PCWaE4q8nNjtukM_KeUZyOB7lt^puD^iQoi(|2 znbn*v*6FyPFJ}a`J6hV5q$Cq!{g#lE!=y{Xje;8;c3N}oPM(#k@3%7@UNpHi#2Ht| zf8DkM1BjxM+O=Til!ccDVhXqI$hbnj*y~RBZ6g`XoG_d?)D<0Bk3azwo4T|SED=XqgXwkic{E;zA_{Pk8v_Zs-n#`pfWG=1$7jkx;_P03maLw9Ey4zJ z(E~9d0f9M(a>W^G{67~5ZXVMh8GTsR)YPZ>Pc%w@hW zV8grMqc`tkx;J^Y=+>4iDYfxOPnembUz^$bO+N7dkPL!fYg7$v5l! zr4U|qMqfXYTOPQ3yPg2fZB@6KdtRGFU^o9JB~A>Pesg(J>hW!}kiA5o` z+`yc*#pXPLl(>O+%gca4rU}Ej<_iucx~`|D%7L3IQPR`X&)2_rr#;)7JtV#HrKsq2 zwpd^y)q5Z1rYhi6{c^mnfIcUw!Eo_Oy{YMsp9xrvWJX|92;vhH69W(E{oOPwBJ0Hs z!mt9HQZySXMF0B$s%9Or?}5DGq^1riaNT|hfOY)2pNIf>D?6{hzdOi{o^AzF+sIXEjMif zl+94ICm8MSt6^uyh0YrrXu<$a+o3219v{BGS@Q1l`+6Mg2Gy8kG|JO*X_;R4n-e{P31qaDECtPe2zrvzJ3d$2Ge{>gzST z@CqG2o9nd+t*VlJW6S$cN$E1$u;{QjDx$HGPrnt{cuBCCnYWRH=SjTf6bBqVO$x*W^qNSAZbCnmOvnS3wKfnIS)JTmYR>FU(41yCuZ9MJvmzovXGKlHd49efPt36w{`u^)F z5iN8qz)$;}lJu;>O>>z!zlyfMG%>|35j|6m%2}nH0qbbEgnKbg>*9{1i zK?ksbL~!!a0n)>47dAye)Z7koQcdE{ImX@c5vSz}a0@qp%Kt2OP%-x`I! zg-15vo{DeO*9=y;90q26j!l&|HEWzI?H_OV4KxV2yiZQqtL&OZCi>Cm8_rg* z&Q$hiITMk$jb{BE5BLL-4AOCbOvb5qedy~_SSuCm47bBk(XO76dS_0;0)NCB8+Z|6 z{mA5rKR@VSU!{tP3u&l1Ba*eWv=qJCQ3Fg}I#?FM23D6Y?G`e5X9DjM42 z1>QfB4bJQ2Oj;FEOD*mI6&Sw-KrX7$_3`hrFD<`&3FFx6tCFl?EM{i27qGqIloEwKG~RK9h0jJXVyYWn{80_#ZoY=U=rcd zO206uvtNj7YFgNzt%k7miK0cpdp|y+i!G98>I5P5UD zFA&P8=3~U0RVPEGCE)FX#>lAkp~;D1s?-)5^E6|!Y~86R>|ii$EX^HZF|+{fmy!8Q z%VNimMH~>E^oHpfu0pK|K1q7_)mhYBhreKP@pipj&nm0FVB+4?N}*H?9}vjr{)w`5 zegVd0MzxRQdHqLomhDwKn^8f#yKYV!0|o)N?)3VtkSRe5svMaU^wQJaNjymv3_Qak zcP3m(Sd{7R#7h?KzmH;G_zu^84DFe0OW!&30eaH+O_JbqWaKYFituWiDGV}RJ2@vO zQ$N3Wgk1NkwShu5^s8(VS2QU>_hPfYvvUHv7lmM5(t7^|mvQ$SpyJfSZ`kR4L_k5a zC+w_eVIhgfmd+ZQSO}tH4u2o^$2gctf2^ss#@o{K$9LU+&W9hQ9 zjc%_D+O8d>eNKx$rKL@iK1p!LRZ~Fm^EWi<{mf3nQ-XDLmG*&12Hes0QZS6 z88yHB05d_CU!C*l_#-OXa-nRJRGIepVW}$+s?pyQv;AyYZ+$4uC6(0AkM)e@{@G>D^{$| z_*84A?K+gu(sH)yE1zQ4wCO}XE(yi)XN)7WxsktNgD5C?+xNWy%V_5x)}J$<!`PyrM4E3j8$ahMx2!F)=3)nG*^M-(v*q{XXAC?c4k= zjeewi$|wkrws}*e^Vsr9<+Yh=>z{DY^(=;C+V%1di#?9;K4)u@OrBctOD_iX+n?o!Q> z2|)^t-u@MnzUamb&UNk4dWbZ})JCMq+5t`qbDGgY!@z> zSq==$o*u;b$`l@$m1JOK^gIklw?CPYg5P~FXnI%pdFfR58eE@2wKu|kfk+t^3k3fa z)L;~_AMec7qSjilns5DRyhKzQ)Bo; z8~feG`tNVgS=-f~SUqHyicXDb66PrmP=c6FA!MctmDtd4-m{1J7#MKaX=8Qw^kndq zzV5uKfgqB(K1W4;^*nqgBR;rS2#WTL{_!0h}hLww60LKoA;1K+NfCfu~uqFKP0vWhME? zk2tXa`CQQyPO@@xfnzLIotsbMp*8;6ROE6wOmryho!ITZd|QjnD@VsJFy9Lo5Tg@E z(Q2Gkv+4bV3b^W2*-Skxgh0mt(e?NIT+^SN%H@-=mcoRWukXobn(J(hIbIsuf%(o) ztq;vEY@m=V>bYN3L=Y0_5V?cHN+l8GiHoGQKy$^f#vg0X; zLcQm6o^BkOB=!wH`S_`nfV?f%bsK5X^)bb6fj5iWvSszqFhjL~Y4s11tD{4d1RFGU ze4m``9mxs=o;NXyIIzdct?=EaLI5k$dfOS0_`Z^q`0Qrz*(7nfw2}zWhj_twKr_t( zt`A7)m0qsy&&f+j-vREJj-aT-!cxt0px`(sxV$+Ti}?Kc)tfiTm7PekAkA_ePX8;nj;lT9>sSCq*Yo`k0e82aB^sqt zGBOzN!*MseL$TT}x3cVJt55+d#oxat6$=msk^<>*aw4rfm-!GON?#nMl8lT@*ppVD zGbYQioK0|V_YajBcE0rV^n8p%CgJ79504^-fjkj(ZSnS)vFkO(ulL8*T8&d95ATq8 zL6iaif-hDAbAb?C*ZXk5l#YgCx3lBpvIVSiFoj1Y&f|ck8IK|*Sr?YpjbgS4GRe|OOL9{r4%Mb$0f&@b+F;e zPyi7VP`_Tj6~FhZ-JzsH9(G}8l=Z^x-z1|f{?$TYJu@?DKq1Yv4J!1S!yWPkz5c#J zB9Z5Mld)q-Tbo_CSU5PFwPT{De-@iT#qHy#PZ>g@|HdPso4 ze9g-04oKB3#sD43X- z@cW!H0M&i(IVZLz!6*29ik_LVm8llQ}8P@#T+5>h?~ zasWGU`y%B0PC?+|ql3nk8qCo2U^;ktQ-Od${q1dmTnfgMCsZ^vG?RPR3yz)Dc5_@1sGy{a z3m0OhavOYNeuumz7j*lqn8oY7)*BH{2SU&iz^LT(gyWgk>r`vAkc;}IgL_b`HjzZR zZo-T82OSdOeF~L8kigBXBM|Zca-*Z8pt!%DFg$q;4(jaUver)-Sa-KIz!HAiPuu<@ z_V5!YWp+=$zU#eh0}=Z@oD2;Obs8N;3gpxNUR=PyzW!ZZ9WVPHCL|^v4{Yu}LPuZU z+6oH~N6*R0@$&JRXmLkiBUrSnf_8SS=Id?KjJ*{UutTwk8@5w;*{iFom9o=L&;Kk9 zr?TquJFh(iV9FNq{DZ9jh<>iGLU`TWWIb6J-shzU1bcC~;<$p8buFLVRnJ0{m2n5$ zcwL{#ZA;%PXh6cjf}*cA!Z0DDaY75Z^Xggz)F6=E`m#z0>;{Ev56BE6%~NfEc5-< zdZK|vKVK;)carAf-4%lUTVCE=l`+~QEFv0O+E7q|$-yFKdrCnu0?g0LX5n_Q`NZ^e z8FBFkz^wQ7_t%2zK8mWEn)lu9#fMr8&=TO_x0CWQE^h2S{KEMp5vlRYD6qg~W8fJs zIse<>2ao=qo|*wX0EgZ{TY38QDav=y9t1jon1G_v2@BtRjqv%~ z>-BdGFfIYNK6-k3{J>qPsHlKO6_TXE5RkqA)0aN7Mc=1E7#b85gnbP>XHIy7tE(%> z&a!~doCGBYpuqjWYR17$z8ZCXB%Stk+W*n_LjhbF0X>92MDb{{%`X;yHR3Dlby-v4Jo#LWy;y)Q?^cYmEJQXGK#-Me=rG3TCBJ8pu6lHNd? zz|1ABQZ_?iuSG?3I`5EKU%tF@SZ*5x&-^_)@@B{-xA2hSaqHf5=y*%ivpDR8&H*dWB?S$g23Y#NRr$4-0uF&&48s9aE_ZO z`@qd+*r5Q%gC@)RyF73<0Wsvi*ANKg!xcsym;m^oG~nuf=F1WQ)*~h@ZRS1V(c{Mx z75YMpOH0n4o}d`xf!8kLJ72wu9G(I?QWJO=0L(}f47U9`&9b2!u%I&)`gvdhrIhyo z2DRyUu^As0`(j>jJ1z?w`0Ua?c<=xN8yj?yjNW7Z_irQM3d3`ADepaxmRJU>5@jcd zV47N6)rypa0txT>blN#d~A%pr}^KPd(rrV zO&=_XSyzY%3+M39PzbsWOz4T(Pz2pxU$`F3^L+gHaUV1Z(BXr?3ISq@4M!Xp4j1Sl z!zONg>5j@)N`9%EkjAD@&AYS@6a?%1ox1ld;dh)rRP_G9ZL`kL}C-$Q80Ec zk~>ZoDgvZWw);!05wQm96o$#-Qu$KE#|kQ*lY&%}+_j`WqRHu1qs{4A zg0P1SK>w>V{ysJ@iMOS@@30rvSQ}g*|8K!~otWoGD zd9j+F)?gNNkn2^fX0bYP;u`#5$0DWBT*@DXuIJkOlJZcjhtY2t$?>U zH330)x6sbOd7AHjf1_nXw2B&Wh?1PVd~0VX)5~%TSbLloA(tm|*wW*D`DBqUEure7 ze8UVW*DzA*KFzi?Ec~$qiMrCK$3MQB(0+OwLQF*Si8UwbK8+>~SdjUUg;C>>_ z97!dY)f0(j(Yjtkm4L0OSNkhHh^dzU?na_2w)#JRA;G~};aJ$36 z1TS!80pb7AfilHJkAE9XZuJK+sZdxhb=bFeP%RGSUe`D+urdCe9j2CqN<-&C{TaJqFus@gpGcGn`yj{ z8h1Y0ASuxgM@5U{|1y*3V^X=0Okh>rn{ie4I^S}L=g`wZk9Mo6D@mmzn2pO@zdRQ> zIUF8H<}oEd-6vU0ww!utGs5@-%F$En`k3(cn>S9&_v6_gJjHGAltjWFlUg$J47N63 zJD4nWl;*2tKO7L74lFUi87wj2XlSS~?Ac^ON-cY{usogf-O>2Qk^1@zxw02#)-hjg z=>ezFJ^!astY;@DL*L&hvO?{`C)3&;n>mbk|BdTZ6+yCP{N=3HmWY|Z`lB;n31PAA z7agEzST}GaBnx*@8R9&i+XHyiP4S&nzKfZr=jZ2x1;bc*%EA)KyzeXQCIjahaa=CX z+(~#nRfn*l%ktx;MyTRynO~Lz(6hs2nPlER7Pa3B5+BpqwDE}9txy|U*bulx>qiex zL%y%#&A~0NahOz+yq2G^@ux=Fj^o91+S7;`sw%*Oeuvn%BcJgk6My_jktS-J^Oi;! ziq^_gI;B3xIGVJF3GvzKWGo`>bsg_%J@fbT+uhr%-HA+}h*JlaKMfbf)vMZE2)IVS z4tY3GW;ZEz`}V~N#%TBWn2`Z_I@n=0lszuoe7w(FbA>tfP&qh0mO)?#-}3YK504fw zhE_TBL35pQAdQbFC8B&9JhiIvq+vFbNw#cQOx;I<*N*1A!1aW^E6x6DVh*yC_;Lo^?h3u!R%r{1k=;^KCgTZkov@W^v z#3xJ9#J_(VA_qzZvF}Nl^3|adOjX5B35WBFQQ6UR%jY}eHt>Gz|E$i*F+0OJO3QVb z9}~JJz-Bt!eTt={6uMCk+jPN-Co z)sp<|r=YHWdtqTg7vW+A;8*r#Y9Ai?$Y&M!=iMPidc+IdAwnH?pT~+(yR)9+ z+}`^F`gJ+(GVAg@PpH~Vf_f6)cYReOW>JsLQ=T7#V$gFJg{C zvxyorq<6Ltquu@Xv(9)cw*iVpwFjcGO?m z8e~}7+0%o|RjPMjp-rF@*F9M^Xf|Y8meX-Icl@!gK+ag{3F9Lx`ixeTKO=E(XgtVNw_-W(9!tQ4a7 zY2M>L=kNK#|D3bkfnWr}P`$rV=nojiUEEb0I1Jd%)oR~!m8~gdue0?tUBsftp^s?r zJr3iG6S*iV(cE>UFEDPs^QCC}i>q_pxew=(#Tw3fw{DSGP3{{&+&B9A;ZrMsY1D8O zjw)n`ISwNRG%qekg^6OOnIF1s9CGgMp-zscnfvwuJ(*FrW5=TsNoZ+V)GRzs8C$Or z%^qy;iphBCIOkMi*!V*p|K>D^&!G{tDCtkW+QHA25|poH>YoH#^=b!2nMktC?vtA( zDS~C<2KD%vR)dS+(mcd>As!S1DX(nbHTpb94WKq}7EPb7raB4+T=Bt$3C18K(OJyj z$5DuY>+VRh!O)&W*Q(KM@P2-WnZTMFvwQdyz4bdEV1|xE5QgZHA6l~eE4YjhAC;&m zHt@PH*H^($=ornbVfRvSIcVh7p`eXWOo@)Zqof~9_K~wsp^14T4}0ba4SoG$>BUxo!Wi2ZyeK| zxr&q5W|Ba692dvaj+^t%5yx9A-wSp9{0|08jp#G{VqZ>c!ovS*y6~onSR)+ggMf!W zfxxTBSXRhkw@aI*g3;q#<<`SzcGRjj>l7aLrc^%8<_Y}!cg(9L7%c)`XxtKLt(3y| zuy8b`(bU}5jb@vUhbIUbK}RO!!YGqHHo2@a`lC@UnKvOx$d&&o?xe>zC7%`r5#=T2 zbdhvKhQsUbSQ4RtxrfX-If6f@m2+|?xXCFew)*)ap@k&%2GNstZ5A)T569$r+RUxr zN+oZzaOFffB?0FKzC7zdFEsgavZ&KyI4;d@=?@8AUy8EX=EOZ>&Y5sj28JQvDl`C> z`Nk8c+l5_M@zm6Cb!walnwpx(zWiIcD<;5{ZnBo?X(3TAOrUbT zz72caI#ldw!~v?QiBXA>*|354Xrt1iFD2S)%8i%cTwM`3+0$MNL9fU6@W>akiJxc-5##_gT)9sIfWreb^}eo)$a;Bp)dk* zKk@&pN(qCJzX`>^rsL+8Lu>BGf8)UUWe?OgQ;RFDCQwC86ti@7V#>y(vY9I#A*PFn zMd=h@RoJ{rF>I9i=}hPFIFIQZ!nAWQC#S0f zkxOc5g~Qz5UIgXHYsjMQw418<=y&?jdk?vKbCGp7NS*t0RWma|kA&^_z&Bk!joO&6 z50xFRzcfT^wkxmvdDTAO%)Qhh?R>b_)_Fq(+EEz+{UBspn1^yP-%_e0+Q;j1KHm*xpWWVv@HzrWZ5xVoF)7B5L+1AUJzMBBFP{mgx)w zL?ytRL?^cXp)hyAKBk)!wP~W~#?C-;b}vmk@X|ljiRCJ4k3vXd9ym6Vs3`Rk$Hr1^ z7KalPW!B-6{wrn_n z3>wckNR^|QILQ8v7yjwfCw8v?gq4jwPD7>lZJ(2s(oTr}wOF_smkGWlrn4v~iCBSV zXaTp$Vg^yIY%;A;BNwNrPShBFx>lyc&I}to@)4wv89$bvg-SMwG}&M7#(Ty~ zuXrADlTrQXJm2qmr&&A|IFw6`8e-rkKl1XN;hMral;|Vs};v1_lMqOrN8v-XxyH=K?i5 z$|*N%zHwfrv1-|VbLDZ3;2JHP9>P6|syVU*wNtOE*$nFVLmrBD%+wZ!Mf7-4u`n(M73)^U z{`*HeQgj+SRuE?Q?JHJaYBYGv9);l7J-xR#O9UzK8I{OX6FK)w=u5qhC(l5>Tjq`) ze|Du0@{eCcOvbCdrMIYoNPf6OXmQ-P&cu2WqkDEOffIg%L++Mad_lO|3I)fFkCe>f zrS|>FQ%>DJNd}H%K3(nD;vk^We8mPN>5`;^0Hj{c?_#gh^FrxnZ?2}K*9euJ?BR9b zeaqa^L4W`9r-}N8sES`E)5$tq-Yklp54eUaCN6sIA;-ZgtJi8Tgx;wZLfcL@%lGsf zywH{)uUs@|F*GxyFKy(%Q$HKj_8zdl*jSTRlR?w+XP^kOweq9QrgG7VEC;6u=P0mp z`q9J|WE?VWS3Nc<)EAWHHJGo)1TCTHnQPR`S4W;Q6M;Iz9xutx=DU-HQ2Wi<=ZXXA zqJPowM(HCTkVm%K+$}$a&O?8i@+LbRngy$sX&zj}dtP`wn1RlE%ijiZz}%$RL7$ z{^SQV5b_#7_W=!63J){$r~G`K5+knH#xL&NX;~kBn}?^v?zBxIa!jV*WY;!5EmxrK zv>JI(q3y)o-XRfm+n85qXEOh7t9Si=rS03SJNgZ4Y1LM0g5HF;vEkQOS9+OF?4 zL}4G|Ki}LtL_F{wlDKeMa=$K6?>`z@Pdm*JS??X}>=g1SP-n@>IdQrYA!b?BCy0AM z<=rmi_&V@lK8CKJ!j2yWN#xw>Wn$?Tx?GgrJql@gjho2jtCkn(Dtf%-S|V#gOV1=+ zjX6E&C(V_6Vu}CeO+QZ*wdd80okx^G4Yz)+2@W1H+p2!QnM)HDLPh9WAUVxc{FGk5 z@gXUv;F4j@KYbLfbXpGy+v*Io-b094T`GEXqqo^i9tA1VeT669OfPnMILyAKlm3BK zf6<&{ZZP|Mz;^91_)@v@jnuaD)|9k~$y08V_WM91RIld?hOc$19XKrxw2EDyI9O~= zJ>#>R_`HaWu!X~%T<>A8344Bs1Z2D1asZX2q>G@Rk#=#Ro&O-5xIG(c1&8foY{S#kMIk9ImU0+CJ+2gOc)o?=+`M$ zE6UARb+KQ+E{>EK=m8@QbtZ}1Us-^AZfG=ky}_pli!q7CVSxp&t?jvO(2pmC71b}v zG{?}%5|SLz!2HI#T|bQDe?inWs}D(Wss;iJu^kg6=J04vuGi7iX}N2roK z>ib6vhmEnyC(}x(^UI_2Ny^_vx4l;ycjaS1e(qbf^G=+S9k!{=92Ppax~;?hEwxc{ zYhvr(p%2QX0Bu($cCFxJvD$?Z~G-3!M1W%XfVO=V5cY1n{U-BQ#Iy7BKCwFSGaQ zha1lo*WAY6W;fb7ta$@mqvmR(`pMNa@!7nGcCykImqDT7Q(_{iahnxit&f6_@BGH7 zHSaV1Mw-UP#xfnb@xtMr9`EwhZnwftCgvmuLzmPlZNx0Tn3#-qsS3zgMY%Q3p?O=B zDN}{RlP`yb4aEPBh-E=$;XS7(WWz^K+^=SOMyrX6N~qw5hM(Pfa!Xuoj5GjJ-n{n! zI-rJoFZhzl+7PjAaqS2sGWsig`_PG><{RSUmAi zaj1$X+SbvLuBquU$*UM(9C6|SA4Wa+RO{4~7e)OV@KWitN{TGk{$fs#r=3sE3;COz zGy<+piL^@%vkZj2{X)E)o;{6|r3w=BpE{TiU=sS^r>BCVcbT|2U0NHlCcB5yW2T|% zGMMHk$Gi6#@0p65TL%Hl({xoedQ50s`D zEzar5Yo*>$yywT_e-gDFsC)?*TW4G`JjqHG)-NM-6+2gN7QqF}BHBVRAR!~TjlJ^2 za?fe|ygJ``Nno=1TJ`GE(@15R&gCzR#Pk`TRSjAx<}txiIE?3Nxb!NUm5!GQR*)!c&tl=6*#Of%1?^lS*ID3b~>he;@Uf=cVFD|h`_OmPv9yvnzdTZ)xa5=v}(5F7-h5!)VU$Kp8yByIqnr?oR@Z zNCTU^{I&DNiNz}yLRKA+L2gY)w_5pqR}BBu#jB;V0lbEmR?K+eH)iD-(%~Owemv%@ z(-)s32uK3DBsJ?La+Fi6m|?$F#fzbAIbK*-R~}7QXa2Nwof_qN`dIWXQ8vD*fG}DP zg!iTjJglG1gX+XcH(ygp%gJ%i)(arKoQun!c!&Q8sIwV;nEf_0w#ewZmTz`2aMT9S zXQz%Rc)mL;ErEJ*5*gm^#R0eH_8k+Gjzv^r4%8|}-gdk{({0`6ra}Ykiz;VBmsumW@^0HAAeEJ(O5l)P1BJEDjnUz-=;p7K3rKqV-kv?*U(1fZkx$#N+@w2q-^4MtMv}k!_{#S45-O20 z`+gw67vRw{XUG1kH#bV;K(>3QiZmRkP)AV+wE&`=LfN+LjgO<0F_(c)NeikH9kLR7 zlRn`&0NzbIluV{7S_LVhHYr#Kc*y?kE|9$l_ncb~61gX9#W7u4?J%~f_3`7!cjXrE zJqQvIf)w5C`X^MbC>4Z@x#*ky!-tt=6t&)_f4^JzrjV$p55218g)*SW10<}hls85T z5g?_)A{fNxFK=l0?tKt@ap9`bbjp}!*vJ?YoApA}n7RRHv(}aAU9|&5G4ZOz#z<8a zEyTJv!!{>*6xauok7HEJlwj^lIm&WbVU;78z}dM~Z`|rc{%S+9Kz(Ira{LvWNEs@> z-L=$9$RpaP_2b?3VM}7_0QLa~@3%5^`nCJdE&DfL&}NDMhnqaEUbbqBz^6QO+L|I6 zD=~PF?;n=@5UNHg*^`-Y>?QGXCjRTZa%jruS!h4zzVWh2xp ztmJj8>Rz z+L|7BUhY!i_>2*}hpm)y_>>ZYmuvS<=q>F`93zrG;OfF{3le2L>|;u($g0R@dO#ve^@SUJ_aoHadO_NFj4TWhs1%IlILH!jIag=scqn~d5cS2 zydHL{pC9S5&klc*9c)O-8CrMiO)3kkv_<{$+}Y7ZWIy2I(rKt+q7?SX(yK=0c$Vxk zJ7_3j!JhhmY7Iv5__%4u#+KN^Rie(f>xJ}doKjdc#ByHW(&u>aY4?tUmeT%8a1gfM zV2(Up(@BW?R)OExwOTwp$!XEuNv~{KJEM0j+diLy{t8`e z9MQ@AwPCj7yehLs-p8@^`+Kiv_8pr6@@gPH$fNoPh{$!n_?@N?LUQd)`6M(oxl;JN z!w0j4R|`B%X+67-seTfWm+F+st`C2{Uz3A{MX+)+3t;)ww4=g&bApnXl{k&fw*~N9 zzQx5W^V9vKq`vX4Wku)tEzAr0^mgAQFQGAP{=&T<+Myex(^>9+lZK2hfO3AEvpD5Hww(!lX!nFI;Zv$q?{?h)ugcPo1IoC82}?m6j6Ty|u~mTf>Ne{=@ZRL0^yh zF&1;!?6&crcrkiLLk89j#Yh*P@U9RMo6@oMe}l4sj6jo={x%2Tik%o!($H-CsineC z4}4u#{=Cam)(g#;zf^6*T?iN1fXnNGD3#?ne>d{k@W)`BfH4RhZ_@6mMc+o?Bt_>` zrDB2hK&X=b5Zx!){RtEG?^uykvmdnzp*)U;Odgv$p!K&-&)D(OOpffkX?LvqiM;r& zm>zFCz=&GMNy%UN1SPNqtVVFrCW!|Wp@-Z#;NsLhIMgD_jXndvT+I1G9(EhF&|(fI zOk$x&8wom<8>CSbryv zgV$pC3t&sWe-hYwQXR+sjT;H9Sm8faBved1HapsIX4kDq-kvoY7~Bi_t6Rd%SODmE z65qNhqf$~&d$_31&+km(;Tv--$uS&yO}PQrOrSo$Id_RutS1hza8j)3u>*rP2~i-e z^mkuO2Pk7O8HtI5UNmh_;y}AadA``#-qQK$;qX&-BeAeDQ*raThLAgV?-qzfJx+fy zP7gT3$0%nGOw1dF~F#7Y~um1l*o@tV}u(12Iw6r3O4i+6@ zVPVFL?ctLU59mt!u@h;}HxAR4KMA^s7`9^l+SpgNV}i|UL-_{vRqBOM4hA}qiuF02 z1^?Oh0u68lFRvP#yP32@7qZ^RCappwi*?tR9PQMZS8K-8=K{SO!emhvti4 zbyqfxRN5u_YCeZ+nZz8rnk>Lphw42Yk#_uSuq@`XvNDCGjxPyczdpX}wBlL4Uf?iO zlUd;~tNQ>SANnykIN^9}8W31{;2GNShK)WfNEk`IX^|#=sAPd*V_j@gQatG_yb(rY=_x8@Zn==H6YL$^kKzQ4qYh;iQ6DNfv&_bFyaL1h^J+4>*_Wm`K?iu z!V_htIQ5=87JG}x^>4F)V1+y+`8_``j^dZVm!BOA#iy*>siG3|^UA9_nq3VK3wsT2 z+pKNq9nudMUfS7-9<(w8Kux9*+?y_%%46D5({y!lFmMYsy%5Kw3MO@^78e)SCd%kQ z#oJSPzS@x*p_-v0a0$-coT>z^#p#zmhgKj*mT+_9!-7NHZ~6)p5I1oB`%PyXY*>cg zDD5IH-wawUotYNvG3s-kN(gSIi4`p zEYgX&nM<3Va9!`h}+uPmHDg2=or4ellPJMBM zXkXvn-Q8WcY1$+7v}Xr+70nS-6&=sz=EgD%lKn({x-C)mT2y{jDO zRRC3HdHWp;i$Nj&A2`L0>ScIzv?Wlw+uGkCd`igA8znC-8Q|^!h34logWvRnB78fT zYuia_0-aCcJZdq&BBKXK*RnI$Xt|7OlU#i zWDpTa1G2;`+%XEcL;?g1q&PNTek<0i{$<*UZ(?FH0Zg9qd6~=?ata}r zPjF$+o4JqaEzmWMqmzx=1+z)mH64xq0Cqj+c`S5i>)h#>nZrPZ}mWB`YJ8<8LtZXYHs_baiWb*RWF`fLm9FxHxdBEHEV0aJEqh>M1Zn z28G=j*MS=i&Ur08>a{p9Kp;l*l%Ip~ussZh>BWmcPy{gaKN@vAxN)kQ8o{Yb+e8N+ zKR*$$mCH&(odI~b&-_;GShV<67pQae%{BT8d2Et}5>Pj}7yYYp*Cs|*a&@$~&+v3K zn&fgeyQ87w`0*WdtL-L75mJ50gyxlkCB+5`%i3 z3ac2~RYv8Mw+&v-3g6h}0Vv)GRDW18p4qwc5D4$)30S}aq=xg9S>FAkH~$l#>3y(D zA?Sn^m}vAN86bem-l8-}gSi(6ljD3yHIQL^9H4GCE)cSC%^*< zQ8s8!f|eI-C|9xEV@ns{lSj4x?LYuxZ%g!r!1S2}PzA_h@Nn=czJs+TM+HXBSCl_$x#SP{tIdX9}qQX{`skmBxm zAs$mu_{r`yj(fzpug*G@mxl8ueN~hh?(DFHD)n`5D^MIV)jVe z9z9mv3l}C`S+y4yzu3jTzQj-i5u3JsepF(VM*ZO=$Q9K;%QI`tU32e;W+a+L~2EW8)+U8%(O{IY4GQ#n79% z#)ybEi}G24k}PH*#5}!>zEpwvvNVw00GuDklD=SO`p>ks&00A@J<69dgR`B}xzl0?}!zJZ31C8zy zXA)@|28NKIKe;1i#t}Ad5K36q3{dBIiGd1U zK|w*_`40j+sRPpZ?Wb<+cw@X&6?lxna4Mg*OXp#QZiUqw9UZdF%uG#S$2X1xoWuEK z_dOJloaOGg)8#l-Fn&UF2KsY5LCszQ*W6(STWQ_tSfHdPZ-ymM=;c8ZD z^f_YIE}>9P;mZUD3YxNWJVuo^qgLZ3lpj8PI0405;Nikz>E`ZsHAfzmz$fiy>k@7t z8emVo%7E1*D29RvFAEMRkC&7wb(G<8q<)!Q1D9nAbJ8 z0s)4E4VvS%w;0c?_WNj?DSO>|2|yznoc4r}P(n`b{;gZL+|XlR0G%l}?|BNg2?ntj z0*?ZooZEu{fCA!9`110yTd6Wo-se-#?U`prMn*S&pU7#DZ`cUIdi0z>2aJ=7U}jvw z@RJ*4ma+%29RWrzRjaw?wr|ukU#utaAFR8&y28wk0SM_GscM=Q!P2XCSedDH1@=(u zBB!803k(jC?z3^_`3Ql}>$UsO4X1kB1B7|4^SPdh*n0!+*XvGUBi`|li| ziLra?&WGTV#)=1Ax#8H&vWTljkrEL}0)ho1MYB7<>d1)1?5((pv{||63xV8WQ diff --git a/docs/images/chapters/arclengthapprox/a040f6b7c7c33ada25ecfd1060726545.png b/docs/images/chapters/arclengthapprox/3fc083ea7bdcc6b021560f2f2491f8aa.png similarity index 100% rename from docs/images/chapters/arclengthapprox/a040f6b7c7c33ada25ecfd1060726545.png rename to docs/images/chapters/arclengthapprox/3fc083ea7bdcc6b021560f2f2491f8aa.png diff --git a/docs/images/chapters/arclengthapprox/c270144cc41e4ebc4b0b2331473530fa.png b/docs/images/chapters/arclengthapprox/537260c4aa9e98ffdea7c8120afbd427.png similarity index 100% rename from docs/images/chapters/arclengthapprox/c270144cc41e4ebc4b0b2331473530fa.png rename to docs/images/chapters/arclengthapprox/537260c4aa9e98ffdea7c8120afbd427.png diff --git a/docs/images/chapters/boundingbox/e2c621442e98e2cd20af7efe1cfb041f.png b/docs/images/chapters/boundingbox/12ec4a5039de2e2cc06611db5e826282.png similarity index 100% rename from docs/images/chapters/boundingbox/e2c621442e98e2cd20af7efe1cfb041f.png rename to docs/images/chapters/boundingbox/12ec4a5039de2e2cc06611db5e826282.png diff --git a/docs/images/chapters/boundingbox/f8989a62ebec9d6f123291c146caab5b.png b/docs/images/chapters/boundingbox/daad01218ba430e2355d151811aa971b.png similarity index 100% rename from docs/images/chapters/boundingbox/f8989a62ebec9d6f123291c146caab5b.png rename to docs/images/chapters/boundingbox/daad01218ba430e2355d151811aa971b.png diff --git a/docs/images/chapters/bsplines/0f3451c711c0fe5d0b018aa4aa77d855.svg b/docs/images/chapters/bsplines/0f3451c711c0fe5d0b018aa4aa77d855.svg index 3d89be81..634d7727 100644 --- a/docs/images/chapters/bsplines/0f3451c711c0fe5d0b018aa4aa77d855.svg +++ b/docs/images/chapters/bsplines/0f3451c711c0fe5d0b018aa4aa77d855.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/4c8f9814c50c708757eeb5a68afabb7f.svg b/docs/images/chapters/bsplines/4c8f9814c50c708757eeb5a68afabb7f.svg index b6ae592a..75a2c494 100644 --- a/docs/images/chapters/bsplines/4c8f9814c50c708757eeb5a68afabb7f.svg +++ b/docs/images/chapters/bsplines/4c8f9814c50c708757eeb5a68afabb7f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/763838ea6f9e6c6aa63ea5f9c6d9542f.svg b/docs/images/chapters/bsplines/763838ea6f9e6c6aa63ea5f9c6d9542f.svg index 98f9af31..aa90f371 100644 --- a/docs/images/chapters/bsplines/763838ea6f9e6c6aa63ea5f9c6d9542f.svg +++ b/docs/images/chapters/bsplines/763838ea6f9e6c6aa63ea5f9c6d9542f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/892209dad8fd1f839470dd061e870913.svg b/docs/images/chapters/bsplines/892209dad8fd1f839470dd061e870913.svg index 318ec473..0e46a541 100644 --- a/docs/images/chapters/bsplines/892209dad8fd1f839470dd061e870913.svg +++ b/docs/images/chapters/bsplines/892209dad8fd1f839470dd061e870913.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/adac18ea69cc58e01c8d5e15498e4aa6.svg b/docs/images/chapters/bsplines/adac18ea69cc58e01c8d5e15498e4aa6.svg index c25e7948..57100931 100644 --- a/docs/images/chapters/bsplines/adac18ea69cc58e01c8d5e15498e4aa6.svg +++ b/docs/images/chapters/bsplines/adac18ea69cc58e01c8d5e15498e4aa6.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/bd187c361b285ef878d0bc17af8a3900.svg b/docs/images/chapters/bsplines/bd187c361b285ef878d0bc17af8a3900.svg index 6403e730..5cd6bcb3 100644 --- a/docs/images/chapters/bsplines/bd187c361b285ef878d0bc17af8a3900.svg +++ b/docs/images/chapters/bsplines/bd187c361b285ef878d0bc17af8a3900.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/bsplines/cf45d1ea00d4866abc8a058b130299b4.svg b/docs/images/chapters/bsplines/cf45d1ea00d4866abc8a058b130299b4.svg index 8f58bdba..147fc968 100644 --- a/docs/images/chapters/bsplines/cf45d1ea00d4866abc8a058b130299b4.svg +++ b/docs/images/chapters/bsplines/cf45d1ea00d4866abc8a058b130299b4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/0430e8c7f7d4ec80e6527f96f3d56e5c.svg b/docs/images/chapters/canonical/0430e8c7f7d4ec80e6527f96f3d56e5c.svg index a6f9f724..2d717931 100644 --- a/docs/images/chapters/canonical/0430e8c7f7d4ec80e6527f96f3d56e5c.svg +++ b/docs/images/chapters/canonical/0430e8c7f7d4ec80e6527f96f3d56e5c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/10025fdab2b3fd20f5d389cbe7e3e3ce.svg b/docs/images/chapters/canonical/10025fdab2b3fd20f5d389cbe7e3e3ce.svg index 8c3946b3..cf89ea1f 100644 --- a/docs/images/chapters/canonical/10025fdab2b3fd20f5d389cbe7e3e3ce.svg +++ b/docs/images/chapters/canonical/10025fdab2b3fd20f5d389cbe7e3e3ce.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/13c09950363c33627fd3a20343f2f6ce.svg b/docs/images/chapters/canonical/13c09950363c33627fd3a20343f2f6ce.svg index cbf2c4b1..d2be9f86 100644 --- a/docs/images/chapters/canonical/13c09950363c33627fd3a20343f2f6ce.svg +++ b/docs/images/chapters/canonical/13c09950363c33627fd3a20343f2f6ce.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/20684d22b3ddc52fd6abde8ce56608a9.svg b/docs/images/chapters/canonical/20684d22b3ddc52fd6abde8ce56608a9.svg index 9ff90d59..1c005dbf 100644 --- a/docs/images/chapters/canonical/20684d22b3ddc52fd6abde8ce56608a9.svg +++ b/docs/images/chapters/canonical/20684d22b3ddc52fd6abde8ce56608a9.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/2a411f175dcc987cdcc12e7df49ca272.svg b/docs/images/chapters/canonical/2a411f175dcc987cdcc12e7df49ca272.svg index a57bc626..43309b28 100644 --- a/docs/images/chapters/canonical/2a411f175dcc987cdcc12e7df49ca272.svg +++ b/docs/images/chapters/canonical/2a411f175dcc987cdcc12e7df49ca272.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/4230e959138d8400e04abf316360009a.svg b/docs/images/chapters/canonical/4230e959138d8400e04abf316360009a.svg index b252d264..242f5876 100644 --- a/docs/images/chapters/canonical/4230e959138d8400e04abf316360009a.svg +++ b/docs/images/chapters/canonical/4230e959138d8400e04abf316360009a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/63ccae0ebe0ca70dc2afb507ab32e4bd.svg b/docs/images/chapters/canonical/63ccae0ebe0ca70dc2afb507ab32e4bd.svg index cb7d8351..0ec30bbf 100644 --- a/docs/images/chapters/canonical/63ccae0ebe0ca70dc2afb507ab32e4bd.svg +++ b/docs/images/chapters/canonical/63ccae0ebe0ca70dc2afb507ab32e4bd.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/8cbef24b8c3b26f9daf2f89d27d36e95.svg b/docs/images/chapters/canonical/8cbef24b8c3b26f9daf2f89d27d36e95.svg index f9f308d8..44620a29 100644 --- a/docs/images/chapters/canonical/8cbef24b8c3b26f9daf2f89d27d36e95.svg +++ b/docs/images/chapters/canonical/8cbef24b8c3b26f9daf2f89d27d36e95.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/add5f7fb210a306fe9ff933113f6fb91.svg b/docs/images/chapters/canonical/add5f7fb210a306fe9ff933113f6fb91.svg index 6d68f6bb..554461dc 100644 --- a/docs/images/chapters/canonical/add5f7fb210a306fe9ff933113f6fb91.svg +++ b/docs/images/chapters/canonical/add5f7fb210a306fe9ff933113f6fb91.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/ba5f418452c3657f3c4dd4b319e59070.svg b/docs/images/chapters/canonical/ba5f418452c3657f3c4dd4b319e59070.svg index fda471a7..d1d5bed6 100644 --- a/docs/images/chapters/canonical/ba5f418452c3657f3c4dd4b319e59070.svg +++ b/docs/images/chapters/canonical/ba5f418452c3657f3c4dd4b319e59070.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/ddee51855ef3a9ee7660c395b0a041c7.svg b/docs/images/chapters/canonical/ddee51855ef3a9ee7660c395b0a041c7.svg index 7e283e5f..52b555b3 100644 --- a/docs/images/chapters/canonical/ddee51855ef3a9ee7660c395b0a041c7.svg +++ b/docs/images/chapters/canonical/ddee51855ef3a9ee7660c395b0a041c7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/canonical/f039b4e7cf0203df9fac48dad820b2b7.svg b/docs/images/chapters/canonical/f039b4e7cf0203df9fac48dad820b2b7.svg index 31325d78..04c0bbfc 100644 --- a/docs/images/chapters/canonical/f039b4e7cf0203df9fac48dad820b2b7.svg +++ b/docs/images/chapters/canonical/f039b4e7cf0203df9fac48dad820b2b7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/06ae1e3fdc660e59d618e0760e8e9ab5.svg b/docs/images/chapters/catmullconv/06ae1e3fdc660e59d618e0760e8e9ab5.svg index f3b0a47d..37e9a3a1 100644 --- a/docs/images/chapters/catmullconv/06ae1e3fdc660e59d618e0760e8e9ab5.svg +++ b/docs/images/chapters/catmullconv/06ae1e3fdc660e59d618e0760e8e9ab5.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/169fd85a95e4d16fe289a75583017a11.svg b/docs/images/chapters/catmullconv/169fd85a95e4d16fe289a75583017a11.svg index e6579ea8..de960168 100644 --- a/docs/images/chapters/catmullconv/169fd85a95e4d16fe289a75583017a11.svg +++ b/docs/images/chapters/catmullconv/169fd85a95e4d16fe289a75583017a11.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/1811b59c5ab9233f08590396e5d03303.svg b/docs/images/chapters/catmullconv/1811b59c5ab9233f08590396e5d03303.svg index 41acb642..7a0d16a8 100644 --- a/docs/images/chapters/catmullconv/1811b59c5ab9233f08590396e5d03303.svg +++ b/docs/images/chapters/catmullconv/1811b59c5ab9233f08590396e5d03303.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/1b8a782f7540503d38067317e4cd00b0.svg b/docs/images/chapters/catmullconv/1b8a782f7540503d38067317e4cd00b0.svg index bc0ef446..a96e63eb 100644 --- a/docs/images/chapters/catmullconv/1b8a782f7540503d38067317e4cd00b0.svg +++ b/docs/images/chapters/catmullconv/1b8a782f7540503d38067317e4cd00b0.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/26363fc09f8cf2d41ea5b4256656bb6d.svg b/docs/images/chapters/catmullconv/26363fc09f8cf2d41ea5b4256656bb6d.svg index 0d73182c..d1522362 100644 --- a/docs/images/chapters/catmullconv/26363fc09f8cf2d41ea5b4256656bb6d.svg +++ b/docs/images/chapters/catmullconv/26363fc09f8cf2d41ea5b4256656bb6d.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/2844a4f4d222374a25b5f673c94679d9.svg b/docs/images/chapters/catmullconv/2844a4f4d222374a25b5f673c94679d9.svg index bb3f7d82..667c34d1 100644 --- a/docs/images/chapters/catmullconv/2844a4f4d222374a25b5f673c94679d9.svg +++ b/docs/images/chapters/catmullconv/2844a4f4d222374a25b5f673c94679d9.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/3ea54fe939d076f8db605c5b480e7db0.svg b/docs/images/chapters/catmullconv/3ea54fe939d076f8db605c5b480e7db0.svg index 8d1358c5..326350af 100644 --- a/docs/images/chapters/catmullconv/3ea54fe939d076f8db605c5b480e7db0.svg +++ b/docs/images/chapters/catmullconv/3ea54fe939d076f8db605c5b480e7db0.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/4d524810417b4caffedd13af23135f5b.svg b/docs/images/chapters/catmullconv/4d524810417b4caffedd13af23135f5b.svg index 03c46584..4a923a8e 100644 --- a/docs/images/chapters/catmullconv/4d524810417b4caffedd13af23135f5b.svg +++ b/docs/images/chapters/catmullconv/4d524810417b4caffedd13af23135f5b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/5f2750de827497375d9a915f96686885.svg b/docs/images/chapters/catmullconv/5f2750de827497375d9a915f96686885.svg index bbc2f617..336cc086 100644 --- a/docs/images/chapters/catmullconv/5f2750de827497375d9a915f96686885.svg +++ b/docs/images/chapters/catmullconv/5f2750de827497375d9a915f96686885.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/78ac9df086ec19147414359369b563fc.svg b/docs/images/chapters/catmullconv/78ac9df086ec19147414359369b563fc.svg index 3497c999..a887711e 100644 --- a/docs/images/chapters/catmullconv/78ac9df086ec19147414359369b563fc.svg +++ b/docs/images/chapters/catmullconv/78ac9df086ec19147414359369b563fc.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg b/docs/images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg index 2650db3d..4697a3ec 100644 --- a/docs/images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg +++ b/docs/images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/841fb6a2a035c9bcf5a2d46f2a67709b.svg b/docs/images/chapters/catmullconv/841fb6a2a035c9bcf5a2d46f2a67709b.svg index 91f8e7e9..36365389 100644 --- a/docs/images/chapters/catmullconv/841fb6a2a035c9bcf5a2d46f2a67709b.svg +++ b/docs/images/chapters/catmullconv/841fb6a2a035c9bcf5a2d46f2a67709b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/8f56909fcb62b8eef18b9b9559575c13.svg b/docs/images/chapters/catmullconv/8f56909fcb62b8eef18b9b9559575c13.svg index 6976feb2..ad67f783 100644 --- a/docs/images/chapters/catmullconv/8f56909fcb62b8eef18b9b9559575c13.svg +++ b/docs/images/chapters/catmullconv/8f56909fcb62b8eef18b9b9559575c13.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/9215d05705c8e8a7ebd718ae6f690371.svg b/docs/images/chapters/catmullconv/9215d05705c8e8a7ebd718ae6f690371.svg index d880b477..8612576c 100644 --- a/docs/images/chapters/catmullconv/9215d05705c8e8a7ebd718ae6f690371.svg +++ b/docs/images/chapters/catmullconv/9215d05705c8e8a7ebd718ae6f690371.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/a47b072a325812ac4f0ff52c22792588.svg b/docs/images/chapters/catmullconv/a47b072a325812ac4f0ff52c22792588.svg index 2ad281e0..166d50b1 100644 --- a/docs/images/chapters/catmullconv/a47b072a325812ac4f0ff52c22792588.svg +++ b/docs/images/chapters/catmullconv/a47b072a325812ac4f0ff52c22792588.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg b/docs/images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg index 33417bbf..b442ce32 100644 --- a/docs/images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg +++ b/docs/images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/ba31c32eba62f1e3b15066cd5ddda597.svg b/docs/images/chapters/catmullconv/ba31c32eba62f1e3b15066cd5ddda597.svg index f4f9bc9b..3f6aa6a8 100644 --- a/docs/images/chapters/catmullconv/ba31c32eba62f1e3b15066cd5ddda597.svg +++ b/docs/images/chapters/catmullconv/ba31c32eba62f1e3b15066cd5ddda597.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/cbdd46d5e2e1a6202ef46fb03711ebe4.svg b/docs/images/chapters/catmullconv/cbdd46d5e2e1a6202ef46fb03711ebe4.svg index 7a3d8ee3..d680eaa7 100644 --- a/docs/images/chapters/catmullconv/cbdd46d5e2e1a6202ef46fb03711ebe4.svg +++ b/docs/images/chapters/catmullconv/cbdd46d5e2e1a6202ef46fb03711ebe4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/cc1e2ff43350c32f0ae9ba9a7652b8fb.svg b/docs/images/chapters/catmullconv/cc1e2ff43350c32f0ae9ba9a7652b8fb.svg index d880b477..8612576c 100644 --- a/docs/images/chapters/catmullconv/cc1e2ff43350c32f0ae9ba9a7652b8fb.svg +++ b/docs/images/chapters/catmullconv/cc1e2ff43350c32f0ae9ba9a7652b8fb.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/e3d30ab368dcead1411532ce3814d3f3.svg b/docs/images/chapters/catmullconv/e3d30ab368dcead1411532ce3814d3f3.svg index 8832a55e..41cb5446 100644 --- a/docs/images/chapters/catmullconv/e3d30ab368dcead1411532ce3814d3f3.svg +++ b/docs/images/chapters/catmullconv/e3d30ab368dcead1411532ce3814d3f3.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/eae7f01976e511ee38b08b6edc8765d2.svg b/docs/images/chapters/catmullconv/eae7f01976e511ee38b08b6edc8765d2.svg index 7c783bfd..4da99e81 100644 --- a/docs/images/chapters/catmullconv/eae7f01976e511ee38b08b6edc8765d2.svg +++ b/docs/images/chapters/catmullconv/eae7f01976e511ee38b08b6edc8765d2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/f08e34395ce2812276fd70548f805041.svg b/docs/images/chapters/catmullconv/f08e34395ce2812276fd70548f805041.svg index 2ae488c9..434c9986 100644 --- a/docs/images/chapters/catmullconv/f08e34395ce2812276fd70548f805041.svg +++ b/docs/images/chapters/catmullconv/f08e34395ce2812276fd70548f805041.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/f2b2a16a41d134ce0dfd544ab77ff25e.svg b/docs/images/chapters/catmullconv/f2b2a16a41d134ce0dfd544ab77ff25e.svg index aa26f769..72879fca 100644 --- a/docs/images/chapters/catmullconv/f2b2a16a41d134ce0dfd544ab77ff25e.svg +++ b/docs/images/chapters/catmullconv/f2b2a16a41d134ce0dfd544ab77ff25e.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/f41487aff3e34fafd5d4ee5979f133f1.svg b/docs/images/chapters/catmullconv/f41487aff3e34fafd5d4ee5979f133f1.svg index a5bec69b..03cc4061 100644 --- a/docs/images/chapters/catmullconv/f41487aff3e34fafd5d4ee5979f133f1.svg +++ b/docs/images/chapters/catmullconv/f41487aff3e34fafd5d4ee5979f133f1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/catmullconv/f814bb8d627f9c8f33b347c1cf13d4c7.svg b/docs/images/chapters/catmullconv/f814bb8d627f9c8f33b347c1cf13d4c7.svg index 3e92ede9..e14bef1b 100644 --- a/docs/images/chapters/catmullconv/f814bb8d627f9c8f33b347c1cf13d4c7.svg +++ b/docs/images/chapters/catmullconv/f814bb8d627f9c8f33b347c1cf13d4c7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/7754bc3c96ae3c90162fec3bd46bedff.svg b/docs/images/chapters/circles/7754bc3c96ae3c90162fec3bd46bedff.svg index 44ae6bbb..3f2fe19e 100644 --- a/docs/images/chapters/circles/7754bc3c96ae3c90162fec3bd46bedff.svg +++ b/docs/images/chapters/circles/7754bc3c96ae3c90162fec3bd46bedff.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/8374c4190d6213b0ac0621481afaa754.svg b/docs/images/chapters/circles/8374c4190d6213b0ac0621481afaa754.svg index a5458b6c..3730c296 100644 --- a/docs/images/chapters/circles/8374c4190d6213b0ac0621481afaa754.svg +++ b/docs/images/chapters/circles/8374c4190d6213b0ac0621481afaa754.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/9e4d886c372f916f6511c41245ceee39.svg b/docs/images/chapters/circles/9e4d886c372f916f6511c41245ceee39.svg index 99b7bbe7..d55b4a7e 100644 --- a/docs/images/chapters/circles/9e4d886c372f916f6511c41245ceee39.svg +++ b/docs/images/chapters/circles/9e4d886c372f916f6511c41245ceee39.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/a127f926eced2751a09c54bf7c361b4a.svg b/docs/images/chapters/circles/a127f926eced2751a09c54bf7c361b4a.svg index 562ac87e..79bfb625 100644 --- a/docs/images/chapters/circles/a127f926eced2751a09c54bf7c361b4a.svg +++ b/docs/images/chapters/circles/a127f926eced2751a09c54bf7c361b4a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/adbd056f4b8fcd05b1d4f2fce27d7657.svg b/docs/images/chapters/circles/adbd056f4b8fcd05b1d4f2fce27d7657.svg index a3298b57..fb584165 100644 --- a/docs/images/chapters/circles/adbd056f4b8fcd05b1d4f2fce27d7657.svg +++ b/docs/images/chapters/circles/adbd056f4b8fcd05b1d4f2fce27d7657.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/b5d864e9ed0c44c56d454fbaa4218d5e.svg b/docs/images/chapters/circles/b5d864e9ed0c44c56d454fbaa4218d5e.svg index eee1d8fa..438d76fd 100644 --- a/docs/images/chapters/circles/b5d864e9ed0c44c56d454fbaa4218d5e.svg +++ b/docs/images/chapters/circles/b5d864e9ed0c44c56d454fbaa4218d5e.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/c22f6d343ee0cce7bff6a617c946ca17.svg b/docs/images/chapters/circles/c22f6d343ee0cce7bff6a617c946ca17.svg index ba2e8445..e1ff7e7c 100644 --- a/docs/images/chapters/circles/c22f6d343ee0cce7bff6a617c946ca17.svg +++ b/docs/images/chapters/circles/c22f6d343ee0cce7bff6a617c946ca17.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/df87674db0f31fc3944aaeb6b890e196.svg b/docs/images/chapters/circles/df87674db0f31fc3944aaeb6b890e196.svg index c36d08d2..39f8190e 100644 --- a/docs/images/chapters/circles/df87674db0f31fc3944aaeb6b890e196.svg +++ b/docs/images/chapters/circles/df87674db0f31fc3944aaeb6b890e196.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/e1059e611aa1e51db41f9ce0b4ebb95a.svg b/docs/images/chapters/circles/e1059e611aa1e51db41f9ce0b4ebb95a.svg index 11112bc8..5863c8fc 100644 --- a/docs/images/chapters/circles/e1059e611aa1e51db41f9ce0b4ebb95a.svg +++ b/docs/images/chapters/circles/e1059e611aa1e51db41f9ce0b4ebb95a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/ef3ab62bb896019c6157c85aae5d1ed3.svg b/docs/images/chapters/circles/ef3ab62bb896019c6157c85aae5d1ed3.svg index 06f527af..5eb24ed1 100644 --- a/docs/images/chapters/circles/ef3ab62bb896019c6157c85aae5d1ed3.svg +++ b/docs/images/chapters/circles/ef3ab62bb896019c6157c85aae5d1ed3.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles/fe32474b4616ee9478e1308308f1b6bf.svg b/docs/images/chapters/circles/fe32474b4616ee9478e1308308f1b6bf.svg index dea287d7..a3533922 100644 --- a/docs/images/chapters/circles/fe32474b4616ee9478e1308308f1b6bf.svg +++ b/docs/images/chapters/circles/fe32474b4616ee9478e1308308f1b6bf.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/0364731626a530c8a9b30f424ada53c5.svg b/docs/images/chapters/circles_cubic/0364731626a530c8a9b30f424ada53c5.svg index 08f5460d..dfb2ece0 100644 --- a/docs/images/chapters/circles_cubic/0364731626a530c8a9b30f424ada53c5.svg +++ b/docs/images/chapters/circles_cubic/0364731626a530c8a9b30f424ada53c5.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/05d36e051a38905dcb81e65db8261f24.svg b/docs/images/chapters/circles_cubic/05d36e051a38905dcb81e65db8261f24.svg index 6c0e7823..6d2d3b15 100644 --- a/docs/images/chapters/circles_cubic/05d36e051a38905dcb81e65db8261f24.svg +++ b/docs/images/chapters/circles_cubic/05d36e051a38905dcb81e65db8261f24.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/14c238eb17045cda3205c6ce9944004c.svg b/docs/images/chapters/circles_cubic/14c238eb17045cda3205c6ce9944004c.svg index 04e8854c..fd34be51 100644 --- a/docs/images/chapters/circles_cubic/14c238eb17045cda3205c6ce9944004c.svg +++ b/docs/images/chapters/circles_cubic/14c238eb17045cda3205c6ce9944004c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/178a838274748439778e2a29f5a27d0b.svg b/docs/images/chapters/circles_cubic/178a838274748439778e2a29f5a27d0b.svg index 7de57979..3eadf6f1 100644 --- a/docs/images/chapters/circles_cubic/178a838274748439778e2a29f5a27d0b.svg +++ b/docs/images/chapters/circles_cubic/178a838274748439778e2a29f5a27d0b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/195790bae7de813aec342ea82b5d8781.svg b/docs/images/chapters/circles_cubic/195790bae7de813aec342ea82b5d8781.svg index a4cb1fd1..4a9ef33b 100644 --- a/docs/images/chapters/circles_cubic/195790bae7de813aec342ea82b5d8781.svg +++ b/docs/images/chapters/circles_cubic/195790bae7de813aec342ea82b5d8781.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/1ab9827727b8f7fe466a124b0e1867ce.svg b/docs/images/chapters/circles_cubic/1ab9827727b8f7fe466a124b0e1867ce.svg index a97cca3a..3d4afb89 100644 --- a/docs/images/chapters/circles_cubic/1ab9827727b8f7fe466a124b0e1867ce.svg +++ b/docs/images/chapters/circles_cubic/1ab9827727b8f7fe466a124b0e1867ce.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/3189cac1ddac07c1487e1e51740ecc88.svg b/docs/images/chapters/circles_cubic/3189cac1ddac07c1487e1e51740ecc88.svg index 8ebfa042..50162924 100644 --- a/docs/images/chapters/circles_cubic/3189cac1ddac07c1487e1e51740ecc88.svg +++ b/docs/images/chapters/circles_cubic/3189cac1ddac07c1487e1e51740ecc88.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/877f9c217c51c0087be751a7580ed459.svg b/docs/images/chapters/circles_cubic/877f9c217c51c0087be751a7580ed459.svg index b5d632c4..6baa4661 100644 --- a/docs/images/chapters/circles_cubic/877f9c217c51c0087be751a7580ed459.svg +++ b/docs/images/chapters/circles_cubic/877f9c217c51c0087be751a7580ed459.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/a4f0dafbfe80c88723c3cc22277a9682.svg b/docs/images/chapters/circles_cubic/a4f0dafbfe80c88723c3cc22277a9682.svg index a5458b6c..3730c296 100644 --- a/docs/images/chapters/circles_cubic/a4f0dafbfe80c88723c3cc22277a9682.svg +++ b/docs/images/chapters/circles_cubic/a4f0dafbfe80c88723c3cc22277a9682.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/acbc5efb06bc34571ccc0322376e0b9b.svg b/docs/images/chapters/circles_cubic/acbc5efb06bc34571ccc0322376e0b9b.svg index 7b252622..bb89e7c5 100644 --- a/docs/images/chapters/circles_cubic/acbc5efb06bc34571ccc0322376e0b9b.svg +++ b/docs/images/chapters/circles_cubic/acbc5efb06bc34571ccc0322376e0b9b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/dfb83eec053c30e0a41b0a52aba24cd4.svg b/docs/images/chapters/circles_cubic/dfb83eec053c30e0a41b0a52aba24cd4.svg index 9299a7ca..c26acc14 100644 --- a/docs/images/chapters/circles_cubic/dfb83eec053c30e0a41b0a52aba24cd4.svg +++ b/docs/images/chapters/circles_cubic/dfb83eec053c30e0a41b0a52aba24cd4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/e2258660a796dcd6189a6f5e14326dad.svg b/docs/images/chapters/circles_cubic/e2258660a796dcd6189a6f5e14326dad.svg index 12aa5b8a..6c823fc5 100644 --- a/docs/images/chapters/circles_cubic/e2258660a796dcd6189a6f5e14326dad.svg +++ b/docs/images/chapters/circles_cubic/e2258660a796dcd6189a6f5e14326dad.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/circles_cubic/ee08d86b7497c7ab042ee899bf15d453.svg b/docs/images/chapters/circles_cubic/ee08d86b7497c7ab042ee899bf15d453.svg index 426522ad..7cd57442 100644 --- a/docs/images/chapters/circles_cubic/ee08d86b7497c7ab042ee899bf15d453.svg +++ b/docs/images/chapters/circles_cubic/ee08d86b7497c7ab042ee899bf15d453.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/components/008604bc4c53bd7e0d97c99a67812ad1.png b/docs/images/chapters/components/008604bc4c53bd7e0d97c99a67812ad1.png deleted file mode 100644 index 755d99cfd2a9870ee53c410843f504c955f3f2f3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20250 zcmcJ%c|4b0yEgunMwy$;qNpTO$xKD&lp<0xmXI+rWGb0Ls0@`MLzzMN*FmLrM0V1|oRvzwcbXAO?bPn{!wx-Xj-z`^_XN3onIAdvio(EP_o zVgekFe?O^7v#;Ud^^J~-@{fsOS@=`7yvfk7CM{0t(rS!E(!SegSU|eMY@PO4TBzAN zTrGBikB@J-DS3^MVd3?q#reLfQ1+zV+M6zqcZT-&n>UH8Dq6gY6|Lh5sAhguVHV`@ z{#WjGMS3RI=dWKYJ-^Vj!ok6TMcQfS@3AjC3Ym3H|NQtGBjX|@KmYxidYR-)mvOE` zii!@SZF{K3R1FOaoenN9Ego)vzm7|TmO6~DDslf!J`BC)!PjE94e#E)qfoYN*^-i) zy53ePGW|p)Jkj;7rSEUP zSbidciQ9X#_^DYSzje!WuAiTu>&yfXzJE+dCnZuS(j@+TaY;#2spl0}clRXS%##DN zWOaVH{P|%>%OXOV|1+M`>eX<ve%Ga;zTP)3&MJJ)q2bA;{Q^d)EK zH*Hy`O)M+|6qXk@*nD}>nil+GUUb~s?c~Xm;kD+Qo^o<>?(S&+{F!a@=FLY9yN<=@ zKxw*~F&5b(>96sjTao@UiOGz(DV4rmx?R^P5?ty_-l$rk9 zN9(-hq@~&R@8AEi*uc zdnQB0Q308#aIfCn*OJ3?`jrS{+W2SB_FlVoO{x8X#gk{xUbUp3*u9wN{_C5`=jWDr z9f2A3`fFmvFbsbTBh33mFv9Q{do}ZqY-J_)(e4W0z|hbEnY~IWOk5g)nhc2OW{our zT(9r!I$^&s;}F6jb=--QSL|4q=O4~6J|+IZ)J&#`v!6>nWh!625;d=3+-KXt!oVf# zla*x?`Nyc()nPVl!11L)k#a^b_TkyXVO}+-yYT**Rn@oZhWp0XU|XlT70O1DjaH&_ z*+hQ*`t@XH@7}#TP&6!S`}UrAfql=4g~dgxg=c?C^YZfA3jc=Y8CF(Sarr16S4WsdDC|8WcU+H8mZ_PaZn|_o13@_qr_{1675k zq@;NE?4iTHotbJ>_}Ou(F(_L}X?5D+;LWm8jCZ$|-d0p{x15>ii4i+TL-z5HuSE*K zINW)YGHAJES)N%m4(493dHr|%EjdOClmqVW(w%NYoE0{KHOGF9d|2Z=+BWc?U(ww^ z%*bSUt(uwl!>h)AMkf43X!nFGDv=*$KjZ@P!@7xH>hCA!I+FkEOK%PdMJpyAOLHD7 zE|$#_dWR&}C^=boljq*!#9Fi98#m%>L{i#G-s@C&?jV>RQs{#JS;Nr(YsMsbHJQXC`T0Mk)&KWj+U)p}1EbH985$U{bao)MpejP|GHsJN-4U+S zIy%!z{yZgKQ(^{CgTYp1zS{RqX$0 z@o`qx?#Ff)a=0<8#onq9kMG<_W3tGl5Ov{RDm{5tVQt@t)&E?@Tt-8mnwU*nwrmp@ z-y~tzspRD)PkC^*#NFP}@mfH@n#YeHuawx1xe=2`CU@E{Bf}oRz^#1n;6cAH<6nyc zuKfAY^QX&O#n^c3_pz~6;(x!YMZWr=pnxTSp7W522~Tq~TVHp@y8@>XDT>eiFE-Po zE}P%IbFrV9FhR`5j3We@m@JtTZY!oxr>Cdy6cl{T?Y-}yj*fS%!ua)D%$M%miRoK# z+o5#$S2g|uPp5j9pdef*gv_zPXgL{gRe_lGgO04t@LOiI-Af!ipP~YcEnS+!9j*uYHWRT$6+8nO_uyS^4 z$f5W3x>(fMQ>RX`h!|7Y_FbS@3>6i4ygc?M+2_ ze(}@OW@jLXiMG>rCXMlOg`S66MVy9@dCU$(Cs~tOlG}7tZ=3t-NOeDjr5WneFD_OD zaC-%E$+>rbb?JK3^D3YzLw9#WoXnOkk14v}-#_`{xp?eZAFSoKwygDAqRSYW9VtJ4 zNbp3;U)PyqTG!UsY^F2-hN)GjW6)Y})oW#)8`jGS7U@?FD_bZO|_ll=SuTz`{W zVX5WIv!_qVOYF03UWva}K6$cjgZ0ixb*00H6Ag0^vOsmg=wejsA_1u$|+mA!R@`kRJOb%bK}O12glRj=bEW##)wb}mo124 zl8-IL6c-oMu%e0%f5{i7=a#3n7?Oz*>8Y(KZ)@A^IX9g?$tLwB-%jPig$uKdW@cu& zm&XhW3JQz?Q&>bzSBmZ3n^`QkZ{J2vX{Yi>NABZYZ$5b<^4PHGMJ1c4sHpz4^K_TL zf4quHcE`nSI(PjRAwlnp}-_c<958M#STPHuPX5vuP?uDHz1&%dg# zUyn`abdGXhaqgD`VA?*r&f3+5wc_+F}4HjG)(t1dJ zyQD-87{U)Fv8N_t+YE4UXh=v1P1xJIIsxzRaWXCfv5!=c=~BWZ`@@^uJknlX9%Dm9 z`QWOa3g0y~b#;gE%%79>!pTTr_LnYwsJCu)8f~LP5g$<0I&^4-{A~Y*i(g)3Rr;K0 z9mD!6IXUecd>0oSxmzzuC5-Fn<0ef0zAune{$dg+cTFema!n*7?y7#f!hcNV-q& z1c;@gBrAumpiE=p7UU5lX_LPL1J@SM|0uGzxAzGPV|ZcvmF7XO$TNf~AP_SF&Y$zF z1CHF^Pj$erdiBbc#sK;hpJbIVQvd~NuR)Ua??r6fv?(1xbC^rX>O{Iuf!h>6Xo1dB zqSuuxSDssbSe>1n9bP{md1;VVD^A+){M&nx2{+oX{7tQy51&8ZxJ~8e>%q78^X{E4 z^YZK;9BdoT9WR|1+JEsQ<`Ssa;Ep#?9Gds~!wwjLZ z!9m~ER%62!YrW$^+?@Yc32odsbw{1=U7Sn+{%_5fBL>_tt)-igZrN2T=l=V9(7Fx$ zQeUt5+I zrjB+LxiFxd)3NO%JHo`;`m~9C?$f8&9zNu|c=6)a+qK7z9ivbN!h{6`4xt3n(9ne6 zzaRYl`$eQ*eb9-D3aXnoZ(jKPd>3|NcYps%3yUFvoM&Vs*dbfxdM|r@?<`@@GRQlG z;^g$AXF~u7b9P1}nfNFM@$=`;1A!@?KhIyfG-u5r?X(s=VEAj1L~m~|?zVl-GMuRn zIRcr@p{H_HN1^lj_8g-%l;>8hG<#0JP?{Qi+w<)k4HoI+moL#q$-}2I=Ht?nl6cL} zo#T;{pMOF7$VpoEjUGeHn*{%v#_v`l#x;RX$?k6 zhWGU8Q~Sw&wbyUn^o*A+`xh0-AW1f*pV)zKjSkRXQ&KW7Migkp%LZ}ETs|NaZ8p(e z5hH4*oE3K!%-t!wQ1Qqovv;vlzKFfP{@UBaA9J@Uhp$p6vOofl2#(2Z4@EWsGpMcX6psQM-NJ!|a~Xo?C4|Bw*coh1v&n6_4EQ z=s3e6X-~QG`}Mytiosj;AZ3zIn}!>{u95SiYK^C_;KdB-($fuGp>m;UmRQr(xxJcsvNqrg!FNpQQ7*jc3lBnW)>HLm-d%-NtNvef{zeA2!6t$FuA` zPy6)QGly?2yS{(SrB3jg+eJiyd^;njZ!KzBUpp|Gx-$j#R2a?cU!&~+VFxthq;+f3 zzlQaNE4H4D3tbUE*jaMrW08w6K~Mg4?55>DR55Z_F3;{dq;!ug0)R*e?z|2waGg~$y^GOFt8m8G8ZPmC*8xVpI|qG}9`uK zl2C=rc(JdK4@K5>;(+jK4j)DO^hExIbhpnk!evWyyG!T3?T(fAWW%byZholI^up$} zp#q&4)u&INW`2LM%e83al9ZHuVAoa3B4Nw1W+)Zt>kzL5Sox#@9QA!#FAly$lh?pqiMCrrUb!2B^~?M zzOd`MNvf8jKWzopcjnCw%fo;bz=AhXUwZS}&%Ww?6Wj!V)09VhQ%B%1!mkNMux7xK ztf*O4$UzjliNX7JmDSY&sn3|0?moD6i`nDPSC@}Z&#nLb!X~&;e*SSYr@}8NR?QcZ zeJpC-3m9Ld&)Iwx?%riBygYUTqvA!v zmbv`B97w4tQ%|^f>Ya>iWN2W`+D)4`_h#mlRss}}(*C--n!V$^9EYQ(&x`#u$5b30 z#rE5LzP?*8+xX)XleO#C9Rx0XJ|P&Wx(^w1<*HRCcncDCRbkv=sJ}fWe>(dlM8Q`N ze6oLr)II(E(*{J%YKe|JJ>h28pOc(S;#V1F_$4-J$z!voxinI zO!T}Gz4%dtd}Xi2yX&`aZ;)S@Py|8_%mzGa)zQ(p4zOg36(az9zg=et_WF(NhfMTR z$_KWvuS!c!Nm)ra8~_o(NPu>-a?iu)v%MC)ftuGbCGLNIgn}yeAj_>~U{FB;5Otrv zP_leLfQe~w>h6711%ky%3P+HkpzSV$W27_=#b2RMOiV0( zv^rwlZPo2-*RJ&`D^t*lmAnePPU;K7=<4m;w};)8l%`qy4qXM)FsZ)D`FGeCKN>r6 z3wMW`QLN08Db6JDu$V*&E4n=P#J=ZH$yfHcK&u2L-h&tn6C^i zW8UOl1#AgTHMMnQ%L97!;Uz0?Y}y_2`@S}Z!y_V${7|D3m;eg8$D`}f&- zw{4T^VAPJ>&b;od+rXxkD_3@p=9DSh+l!p_{H0s`r}K*YCBBQiyeE=$1PGFOd^(># zPTKj9hllLF{WexDWWdR5tgc|dk$3KpoQ<7&fDG7a-+>j-SJ?JN$` zh!*O>_5|PZ1!#ikMlB&BL9iZ@-g6bFY0>j*#n!}q99{=W%Cd2wKAJEueFFniWL^Gzo)AAx zeqT-gD}$U`;Kxpn8m-CLOFk8`iACA(PcVl785^zHf4I{MOJ@kbvj_Q zpC;`lkO)~CU=tPvFIn(|Hy_jjRd;}RJ~>yvnecAc@sd9xwjGiySFgU2eOSr-J;Sb`rgwJdV(`#N3w=t$*X#WWJ-=eLUN zQfwL?UfvaiqeDPHGI+)TbU|AnlE}Ga8$zl#`|`qOz(PMp%uD<<^&CpKGbyx4Fk~~5 zDti6;N)Vm zOK5sxqSzEUy*hwHyv01N$s#ByDDdV@GJi$#Xfu* zQQeRj%2N}(Zh%9RDM*R7?I^g44g_ipfh>&*%f-X$?g5Hgd# zdI-F!xw%=y`I`7S~Swq4aSZz^o$6Ns47m<{$^;k!QI#hh4mLh_j<0YtllH@fg$1G>02}p?!G8br z%#CI>)7|H2vUn{1YX4a1yxX6F`zC;nm;W5A=47jAf9Q&gQ4rf1u<@qHr}jd6@k{k) zj5zotFYgW1o{3is3PfR#k#yi)v0{Z%J1=jBvqfY48_aX}j~_R&^}PHIj_`~2v%FHK zYSle<%xBZ?lija_Hms$mSI#+GqNIl_UO+EkU7l+%BiaL)t!BLJDJMScUcz@@zka=S z@7@h2CMNdI&f+sUN3Cyb(@Ryoz*@&iIuNKZ+*u-X`A5e(c6Ror$iP6W20(mNkk?oU z5yyU2LLdJs@4*OJE_shYAWJilW>O5_L;L+9d5T&Y102NwBS96?(srIHc4bQNUXqfP zl_djgrU_EI2K|nk%2`(v8P?CI+Vf>sa>5^oLky2UUkP&M_UjZLn3Ei+m0<)uGmqF{>1UCIdg zB*I{404l;!J)nAR6BMKce@U`tT@@M-i&Ra72Ry%~v2hKhB~y<9Y;R&>BCYA0)AGS$pNmeClA#9C<|pgBwV? zeP8U#-t0*5xCY6NJaYT>)YKhqIYwdc-yd55riQxHkOH!lbQ)$v7K->SLbryS<2BzKKFF#qbc+|~D_)kfLT#)<>tuIv@~hAl zRzI*iUlU-Ss>O-y?3=TJ>8>mYKUpULvr0f}OnJq4Aalf7buBGrEI7$7&=P)Li*3aSv|Fcs?D&%P(54{=HHUR4*tPsLuC9j`8wMI-pG=|SHEi~?Fzm? z2ZE)gr5Bo0*2ynUp9tYr;96Q*O4`j75j2lrd4ekCF;TH*xT{PdzchzWoXfFpKdb6) zt;|Vz39e4cM5FRb#O@}qP@|O09gw=gIg|l*UtIh&+0ZBf=voL2XWW{hOYob40bA#l zaXDbK~BD)aFp4+u8 zh4$uW&z|-BQ2+h=_wcwlI*Z*FXHK5Uo)*m#JWWMGWG}x?w+tJytot}g&m|l9P$QZb zDr!#go$%3b8Im>JmTXF9A=9j+pqI z#38l+(TZTz>qI&so0)XyfL*UC@uDg}x}(>ZNtXw(M-h2{d8?p+)act4n^`W%FjC$l zMAY{ZU3_jdr~UagEfllo2II#q@2fj>h%Nog3-IvJ#fySK?@U{^=#BWGh4qbH%5l3t zE$cOhzABz=+Z0K!@DP{}Wb=c^jxmx-40->O@6HM<*?tht2atp8bDa*VCNmajeC3H$ z#XmhfQwPYO^b2;vw*KnFE3d@?|Aj<6?JtO_nL`DsZc1> z2XFHqc@NqN=|e6;7kZiM_FFsT8+0#!>C4xP92p$+M=@)kKG&q`;2;WN$PbZb3em3k zngmls)bx+9>(Du!K)wjdR#Z~%N2IgJToyzzePa26AAl3-oe+)P69?2CTwY!-(CFKVP3N~;r@E@j6dlh3uSNIS?X(oY z?&0@|)W=VpXv#K}0kM*cK&d!AA|ry%W%HNJI)G`S09j4nyTH3+#~KXM7lIV>(#wbY zF;>$3MUP|c`t`4BZ|^wV&cjQcdOZD!b-U2YHEYbkY4A6`Sy@@b2Gh&?3Rgq`hOTDd z3JKmK%!}TPM|B?3)gggMQ>Z9V7amXkL=$~45UBRw?nBga0W#`<-IOQzqNL~CzI*#D zuc3+qOIRMCPrtjz;CVR|bMbdM1j&I#^$xPT=t7Nf*-$6t4A9%y-!S zmptxBDKEM5=RH(^)509;|v85?NN3hLU*(89B84 z>({SuMP{)poqaT{u4I0obn*A;?c28-H>ao>%vQ;aD2E=^yTS&ag#M{hJ-};6ON{=J z$G_6#BfBP@&bK9K6H;aQp+6{alH9*CqmWkCrHkLy(L7sER(fHSRkW}}uR2;1orMs_hs^L<65rid^ z)cZi0pwVkb+p;nzgpL7Q5Z(XUwG~P#Dxm*dka`97Lfru$Yn5C+Rl2-%#ba(HRsY3B z*5zA_OzQy9h)kad9*MH=3w0BPeYzz~VJT45tm*;q6v1D4g-66j{NMSUJVJD$<6*P^5qr{MByrCqk`_5x3rq)ItD^ z+;N~dXir2X1<}cVVzPNeB92aqo}S*`$w>*{iu}V0I}CILy``zAaqqbn8<7+sx)P-X zO)R4NRx~yJ40`sL`2;=qEygZX#e~z{?Vw(ynnqV^(wY6%z#y+k;H{A)5mQahw zXG`u;(=$cHvrF1Zb*<_#O1OYWR~>9r^g5bjUP$NdYuywtzYOX`br>8yY?1&dAH zQ&d#tb9aSlp;TEZBXm}htaQ#;O z0Lcpkz{`8i1)^jq8BCy&+Z!s;Sq?3D0w_NipNij!jSaz)^k(IE_71L4&OYhS5u~)j z&dx4Y+Bsu?)P_gUct4~b4FE1hf#fNK1H`h)I;X@Rdxfm|P5}XCELjG2>BijL+`!=A zSCC33@czNsO48@y*h)OMv!(D7CO&k_x0dt`L{G!^oxH>)UYi**T#V4%xN)O#OPY41 z{7EMTI5_m&&Q&uWX?x$Fd(OyS{+@{{OboO;a*+AK=Ls+0yvJZAm_+Dg%Q*qJ&ysN2 zd@ZiK$#<_mJ=m@AEpE=WSx}z>X#))-=m@>(VWQJe1ibbCyS0SU-P1#LSJNLC^v(_? zv`ZfSvbgW<7i>y+sGfjYf+-vwpCew0hW~;%zx~di@=t^@WAEeQ{7(1v5EFwp?>VHS zvr$k`a5^J_=YJubk^SRPgh>)4t|@s>U}B914=x9YAa!3|Lj&QNR1JCWHL5jAE|RvcbvaMp@k~Xn0|zJ=Zpb(8>&U}| z0`5KE;Dgo&_O+6Z2B7CE2#SJdi}js0@wzKrzPz7bGluf=%uOVnWB{S0-4T>L>3#^u zB1uRYuF6+z&jT2nql{wxxJM6| z7s<-G#mb}z*_ADBhCo5q?O~VKJe|VA1U1?mxe&*Yt}@=h?SKg-rcm3i(mjPYYoF!i z`Gtmt4zs141JZ`eg4DbyA;TNqi=#$}JuYUkekg??fz*(mc%yQ10RTZ4R-iYLW>i*+ zC|2GjDak@Ib!g}t!d&(BcNQ{h=Mfv;`ptsn==M1*FL~neA?miaLZo~`=6S52dnj{D z{PsRx^BO820D0C9A!{T{MUdPA!+jAqk>R=1^m4dJx(8ik0#n&r(6^F_^4#_-8}y87 z+!x8~aJ%TKM!7#6KtwwVS6kL1d5b{Qo*wVw#t20uFuOt1F;8qN;F%yP!yKvuJT^&I zX=9kVk0nMhoxvxc|z@>N>0Ppq@4)C~#wxL%NrsjMz}GruBifa?Rx=HUS}_ zs%xv(hsVSO0_{4K^W?2#|65?V0qm}04NmplC1nw!2#}mAlEQ6=k!HU53}t1Wojce5 z8SkowgrlSt9K)ZUr4CD*Ke)~yMMXu0UfUr{%k*J^qp*n3<9+-eJlNW#8>p$Srl$5#fnUrV z&1L;!S5e|u9(u=#{jeg8&;M|`j_E*MoBO;D5q z=_E$lSpdy?Mt1h~5MJwd7RA4)tn`p(VG&A_l&un}MZR;g<6gRPP3;_p8ALo4h9Spp_+G04t7OX{%G*-xTM zx5c?UFQN?=8y82sYd`y{753(*r40wsD!MPmSh%}kHD2Xew?Db~Ni2j-T)nUOTXQ?n zAhwR={cPM0=XxwEDf1O!q0EZ1al(-eRfs@Hmf<5Irnd<@dy`kL8?&N>sCUU6<>F5OgxLjmk)iAW@FAsu9s= zXKn`uI=w?GB}AHz?#^?jq^H1u zwZ23o4Hg;L&j?jA;S3C{nZ}f@2M0z6H3(5C{S*6_u-Lyn5OlVioNHDNw}$sY{|0$P z>Z3We45^V=9OAG1km4ELz!WjUhMvcduCg$2=4 z1L+mZUnl-#UU0owY(RRgJ8sKj~+dGRxl(maJmZUG2-668yj|L1!4xH zuyOyc0vOLk6}uh4J-?Q40LPj&Yb2$mdHMJro@|qGo!C0}YgBJH+9*uvuNoR?kt5M) zrv6)&>6=c(DR^_C14iP&eR>$MKEjJ0WPfN#Z+GhBfx*FE7z`$U{c4>xz{|Hb;Y^0+ zU9nXd>rNq|&4vMK$BA74*v9uCwN)Ejkm4@eKQlMii!KU$W7390(2_A3S2g)Ri~x%& ziT5B*%F7SnKk*vV*GbbBgq8?0NG^zQfzk8=(~u;JC2T0Pjt)Zy(3 z;A5xJgb>AL*oYcKsg4_T4+G<&JOZo84>l$+phQ6d7I@gMcoVW%q0`7Uw0YwCckuC5 zR9CC)_=K1L-1g`QJKBe)Z*FW#$_!suhj+qM;k6iuNCVTc6JL_R$ggl}3e;+8nR9zY zMVYWaq-&w0Hv6F;(}Sv0iA|xT$Fso^nkC1g6zl(!U|HDM7@Bwz4Y|7b+aP+pJP?~Tq690D zIx~K~T55%bOH&EUTLlDYfCmqtNT8nm8LF4CdCweso9?-;cE$79kJqMlA&Rn+)AdOyf4^>0xa&;E0%Sz-k|8b^9Q#l#q}R z95j_EZqK9c-nz8{8!~GE`>FK>gZvByAyOT*VF$VR((rqpi=D-+K-i>n3ZS2{-vxhEpp*!6z%F58XAcIcg`TTyii0GQ*t1YpjqU7&NtR-12;Ts6 zLQ2Z^J5fBqnpXGJu$0Lc8Mx9qxhkYzxV&Wsb+(sTolYNL~BQ89UL67#X*c2ebD7TNyq%pNqo@9Zo(d zp_N2|YSlC9!L)5O^jle9Q&SFPE_!KD6Z8(TmvU*fR6qQFu2-(~q0qE?eFt3iLx*no z0lKddUb%UBhgDVAlJ4!pD=d#2Q4CJ9^oLU~jNi%o7H{oAoZ?n3 zsw!EC^yzwd1}J)ZdT6H~cG|?;jV(`lW#IK4U%w*dXNa$s`M0WjVqTOS&q9X~oB~s>=vX zP<>Na6?g9017*?bAod8UTCg!ZKu;5ZqE*_L%Ml&@@H=->epAT^3o~54d|CSMihJY! z3{b)@el66+tmi@oGlLaOKi71X@co1Q_5b~#Q?_M1ARw3ms2A){VHShv0w%(`WtEd@ z*BI^A@S**m5OpWn)AB)81G@sG9Ugf*2->H4IsV!(_(1POZEuIJ;`A0F~uP1ji}kxJ|3EeF*7wP%iXfLiTD3I;?QY#u|((Ll|-VK!s?xMEEL0n1a@aQoToAQ}Z>l zH?cl?Eyb)=7U}=^@nd;w>m~^Po`as`2;R5>0-g041m<3NBq~6&kzw`_&m>q4&LBAM zyZG@KHc5%`1c9rwvpwMFjm1XbT_B-WiDa8B5kDY4CcOE_i}T&YMk;7j%7OA;Ouw~h zTZn1R&&kP3>_ix)=Ue811Iuv)BZ@qFBnJ&O;{GpIO{3D#)Kr4ZZfa`U-Q7*L*ICgU zJk`z3%v@Yts+yV}-xeXsnb_K%)%Y9aU&@vj?TEXwweZRQkpRFnW3WgPCTtS6g1EdB zm#?9~O!vECy>Et&0J?t$<0%_pX%+~1o-5s{jAaMd=tre<@ zISZ22&mTqOrf4oCWyZv!j+4X+=69hrBNB_Ux_)N>$3My)S2OY7!?lL#Px zLfMH$e`&sJ`9`*>n2=Fv2=N2pm@j-)NN=qBk~tiG>W-dz1}{Gj^W9N@_|KIG0f+(G zAla&@sRa#7E01FXkhU#=iQ5gfh|Mfx;e7)GerPgmlaR=3;jZ)_?r;sr3Srwj1%X;bkFD z+hHi^+tv(BT4dVd$oSiXn;fY8BS<(ow8@Dk748Z&n|9xwn;7y#$`6oDmNTTA8H$7cO9*mQ*C2GH z$BzZClFUJ?0edp($U_?o&NkhL*ZGNAF~cbx19tnsVeb(4nh4eH6Tg2~q2SipS>r4R zIT`ZL#YaEoU2@&E`Yldt!U@Xi3S(Q(*w`NA8*Q;~{~!qm99;lSqAVBRenrl^rn$q- z5tiTO#g3EwNtrCqAt?}EN19By90gg-Kw0763NkeXLEMAde~n}S)_5xF)!j(Qo3yBR z{Mr?Xvy}?maGX{6P*Ib;Y=vw8?&VqWOZOz~ZbE2SXNxd3cWr2BVBE0b#DI|Xw3D{B z_JxiDQFJEwh%UM}=wHMaHTp2rB&r9Mzb=vTEe8Q}lVQcyEM$y_4mt5u@1e{Ix0m9O(X?Df8llE`r2X;5q*S)D+XGM5H355nfQ8P&RS&-D=G5 zw)`97WFm*9{-Sd-ifs`wjq_ks67{_O}`EcO?Blvj`(%*D=Vq zC1F&%_vOF3iWfSIrO?(vfZ)E=(KuRyb~$PPxuW!tPh+~nw?(LSkBxN=cwJ43lqW|MWb%Yz_%_?vXVwnTswu&Vu zpBwf6|LE?2JB*%D_XTGWh-eiiKd0JPIyX0uqvfoQ@jzQAMi1#iME&P*`dmzVk&7LN zl;cY8rP&=IOKXCZlJF}UKxpfB7u|C?@_#$AekjX`R;y>qcz zM|atQ!<*@hkW`S@gJVPRpz->-!q z+nG{TrEJqtpzYG-ng3~kQb4b!(62AJISZ{KBhO!vpB_>uJ}a5%1As@J=Ew3gU%Y6; zQ_rNPa64`vL1x$W_AXoSD*NYq6Ypfkck=Na{`KqE`REnKG%SwWfhRA3VLBFl#U~Vs zW?NHJVthPT$#k;@lf?QpB6~&pRndUZc5{0vEhF=H^fALY%BriP5`)w=~l?IqSj3#wJ#@kwP)P*3)C+?BbI7^5rRb)6Yj!cdr)dKjU1@=~82xpIK7! z^*eq`j?X$Y8SA{#001UkWuJZ-yH&NCOO0mb3j6~TPlAr2VHR}iz4a^c z`*#?9F)PX{D$d>IRHy)Iv+@ab9kz=(sVcXouQ=pt$xj9@XhhZY{k#C94@VOfE@3{? z?7d?M6cei0Et+?+O>cf#QbnM&JASm6u$3){tN{eNtgTS|M z-?Ha-Zo;dHuw!2OoTSe^`_y8jlOoK!NI`;KV5rYB;dI|cX=__$Vgd+MJFLLnEiQ`p3~mhc5=+dCUWSmMZeKg zrAvbi+Ro0uQvTF@D)TNwC(TS28@TGIi%UL^j|r){;~0fA#B0c=Ck$R(yo(bvk%5n2 zyx8wK(-SZURsI*0kCC7q@qzbbY@arWTel6PK7`fFV^dMi-%2TCP1_EM+6s|12Y)}} zz-ej0&F_`Tr?Ja>aD*AU{8N3w+e?dRR^{3ERHik)JR>v)>Eu?+r%&mClW7kg9FTGO z(SkEo?71ah#`b%8cVAs|CoaxLHeSXh`{MrlKVA-T;i6Atzt#4lZIgzJG%daHc*f>r!em&!>1tj_L&ysfmu3R_U>X zxVR-wI92uG*n4_enNjmc#tk+iw^GpH!I|1az$wK7yLX5FI&J&%FnxexPRZ|kIFsu3 zR6JggvGwfu)zMHP;`C4+Dh}gB_$<=quE8hizlxZ43CUNRQEOE zrJV7*cSf*X@3fDK$LFM{Yh%%I>el)(;_K*42vvF6m0C2U_V?(F-Mh!eDdngH;l7Hk zWTh%SM{STV2wz%ergi0K^oIF4-bAEGba|XOo1=${`)y=I`_iRn+m93&d_Hkh?%~y| zQ~-vb3vPYJQGw7d7yxs?#71GcD>;8&PcNG5%J~dh&PQg^2 zfqn+nT^ls&^XJb_=rei(L6T(K_95v^FXw^D8*Li4CBNDN&pyRbJNI?r*Jo0y4;mWA zSy@}}c+4s5Dq<=V@QTTKF@e7*|7}@&_4tzXsXUj@sA1bm?YfDSb(9{U5R?U!|x2s`Pt(dbT*(?Wm@k9dy107x6!@^YM5wWhSM~>*? zxWJudFKOG)pE^6UTUuHQhE_;e!7G61rU`fjCu2C5$Hc)tsr)Zl-@aM(dH?xvR6+Oj z>H90L`lz+8P}P}crnFavQ6w`tn>KA? z&Ak?`-3LGbn0#|c=^Z-xUoYP$XQ%pd z-=4p{?{ZoCqeuK^o-n15l{7I)BF%J<+`@8!h}ZA)&227-4fw=|xg<=vGOy)fmJr!Pj;K!3)S?DF!*m^ZRxPMXw^ z+9i^iLd(DqprWkYkWF1q+t$$`sOApndn9{hxu&u(6{D~v>T+F8%}gVmZ-sG#QAhA9 zxBdu;E0a|@C-=3s$5@U>qX68Gm(6U=0J*=OMe4zQDYsY%X#f5gk$(J<5~I7sU|u`= UTKh{t5c#v(VJ)TXL&n$sKhOq)1ONa4 diff --git a/docs/images/chapters/components/1e6e38f6403dbe4c8b80295a94fc6748.png b/docs/images/chapters/components/1e6e38f6403dbe4c8b80295a94fc6748.png new file mode 100644 index 0000000000000000000000000000000000000000..e8741a4be13a7f8badbaeba08bb5ffd08463e131 GIT binary patch literal 19022 zcmc({c{rBc8#R1upg}T|F_bApnKP7bL&{7fL{gbDq>_{}4DF*mpMl(O^l51ut{6#Uy!b?ywMHjG6i@WV#IFUJh~mPdq#n<`6B z6!YPKCMKpBWz&jg0YUQ9PV3?sN`7>*ivIPhq@cmcG1F<+bDMZT5NvR1|K;vvu;GG&ZI=cH9XK53et>Ybf$t zywDbt&2#R@=eo+XGt$ReZh0QMb>!$#L1}5mGgE_XSE9t9zkIoFIW0XS?`}zN$u@?{ zYh%IvW!K2~^G|Qxd1GQ@1r?d%v-FdcrDbHq=BL!OF72TBh-OOQt^C7W@2t{9vy^m)`-4=q7W#KWk9UcNp`{QUf% z2Oe>pIC0|m+v@XuBioO@@cvNt;>Eto`N>C$r$1Y`YHxa1N?ki`sS)q6DXw{AT(gaj z?THgo5)u-o@=J3+uCE%imHzYR&+Zf5l9bx~gAbn#hHZX1+Zx>4-u~@o;g*@1P#p}W zO{((RtLL0y3_Gc&EPQ-?I(m9f=Dv;;V`d&dc@h>yWjp?+Oy&TH!=1&FExQ0subr#8bMY6K61c;g38N&N<$~j#fQ>12OdP@ql8&ryf zgvz!@@$O(`X7*3r9g=30uH`*D#`NOl%PlGwnqxPY-iXqv`TJMcO|Qv$b<79jkN<4J zj4bY%4I4J3dWgm6~zn6K9GgnqtIw@^ta#Xh28#>EEra{N=5Q}Dx zX|-2_(blb7FZ1r$KTsU1^Bjwqk>YKD9ldGCjvbpsMA9=dR`~t>&S7)@yIEUIsLtB2 zaJ0n8(LoH7^-t{ z>9f6~j4_QqzuyIhW($)SRwpk^ewLzcDKy3YKSJ}Li?lq;c{DXOg>cBJ_d#j zioSEw!SoyI4ZO(On}+@zWz5-i_^{xbHEY}_uC1$Ypc{Ipx#Q|p&a{ljj2v701yp<~ zCkC7X|NQZ_s`NJUvikR%=&U>Owt5|-8k(~nXA8Qqq zlVdYTR@pVu82R=0L}9u?iW=qO%*R&ySGV8BT{}D!{8v_%!ii^(drAKRp)*Rii)l(tXWXTG8#TSVXdeKFb5MQ3GY zkyj`xF0Q*Gu=`4K^1>U=H9^aUhlh_3RLEr*JN9*!*QC6D==S#B$=4;00T@!=?EGFt zPKMK;O(A3aS9LeX#>IVY;`bYR9L7?1;ji+VwQEyN#oMaSpPT#r``t^0x0qswKBe;V z^488Px|w6IA8uvfSEHv3p`ZJ$_LlQTVj>v<+hojr`zD4Jw6xdG^KRG>hQe0c*2Y8% z=hGOWm}}Se506~Bbm@3c0q+BsK7W+#6?Am=4Z-VLFBczvvgYog8osxFi>m#l&gR$N zPkofKEXn@-X0Yme_CwIaC$goH-QEzeB8*=1$LQ$6=?t;K-@z)s6l&;9WIV0G}|>w71;<(vXh z*2UF1$Oi3yEF9uB_*Ok<&%S++Be@l9j~rQ%X&i=Cb8jd(P z1ld&i*nNHXMA36}mD;aSmW(@h)J~r8@$u;^N9AkX*Rd4rR2NU3kALpx?9tWrN5p>W z$_vqs<|8rueWIr+(XBd+%)DNrJXg87-p7`tn1lq&?oq0?w*Bwf@!sn5^V`?yYexV4 z+{c1^a6`e3Z-1dpB%i8}ih@>(+WBY6kEnu|jB|V^-(Zv6J85EK(w1W)QmT54BqTH2 zxZRe8m3Qv!3ZNxXks$9H-W1J0^11JR(Zh!rhU)bD>xa@X0InMKm-ACK(dpXJX?w3r zQ7*QnYcHqxeE(#2`UQR`?yDjz%gTRYPT+2SK0@pgHV=F4{g*FdH}92p>J+W~`{Olv z05hOqs%hLL!9cSD}pE3mo z1r5iW+w3Z|sggeNMzOcQKUX!S;?scx2Zn1eEf>%GDSJqdD>m!w!Y^MrkBSsg;DPo0 zYE&B=KCBig6r!wap1${F<=`MFCMYPV^_B@T;fEWYu%^Jv|(_w9NO{whIftj=e}x=ik47|JcAIg|zha zHcV8T!6mO7m}fwp$v5Qzot>r`Sy>|sf9K~W3Tv+1yt$f%g~h_sG7Z5lt)Sp{$0J5J zQ(9g=xV&5mDe>FP49)G&e}GR$KYkQaSLa7mK7IDgUnBKmPL3E>-_F@N!rbQU%G0M$ z7u~-f5D>6CXkLQMX#!FakD@yTiSJTX70G8=4_2liYq_%xn2d~$ns#?`a&p$z*DrH) zbnGp4=0Gx8AtWR;J2}9OJ%O9C{FT+A%fw)x#c$Ek)zvUIWiwfHUuEoJ zA8L9Gkar$-Z+R`-FmbmmWOCEeceRTSZt%F16 zH6G-sE+Eo%pL>g!fBpJ(`s>#^1Z3C39oa;l+*9$6P7BrhJb)4y_*6peo1%t)e0e?A zk+q&((sBhd>!ntIuSkv5+7!QqFci*_Kfh)OoCOqad*FJo#JPuoM2Ka{aT*ho4$Ib~ zPEKp+=;+V}sr)>)a^*?~z25PTEG9O#AjDupU*Cp;f`YMEsmpnIcoZ|QgoZlB))SmcS~Kje|kmWhK#*d{>z;RV<+>jJ0HfCNI+a#PUrr6*0IFxEuWBfRA5L5-Q~-3 zJ=aV}P&AN?CD7)1jJI!AR8~&g9m2pV@51?^C28&U?c3X!4&?$vxO;e9iip_TXOBHd z#=kH(vL1I4+Prz?m;TZKq(pRxe_jldTA6zlSsUg1Fq$p*)2ACV_QVBN%Dgm>$nZqm ziiwH6mtr+EGMO>e*JmJ;hD$ZX;}1^{)lH*BPzBrOHmB^F5o29LYQbo8+}uxKAtWiU z$u}D?xF?uGI~NxT)hV_8M|J0c^kdx|DVOhnI;SGavNm`PF#Paj|YI zoyX=kj5l*gy~xr0;>Ba6@}e_SHnONB7}4Xq2kw^~4rg?%M!FrI9&S)P`)w0qCIpv} z5I^;)lZjVPk(6;BMMivp>fs^t?%g}mmrGccF-}fSa>^cO>@RT?QU+3VESj71M$sUt zh2M9Yrn0I^?o;G8d8Jw7uJWu8nkkikfOO`DL-^f)d_I7h#`64{UUQD#yY!mUrTa$8M|js3A*ZGq#w|IEn%N`zx+ ztLHYw6MXP>q{(A;%xHG%Ek6duti0ah;LRI1Zi8qbnQiiIO*E#!7GaBA&{VVVeXF;( z_wmk0UYPtHy1Kg4Gp*|OuOGM`@5*KS@ZzS)WOzyfn2@gHsTZ#|KYLa`Iq;|$b6?`v zL3_ye>&iC+1Le0QbFQYQ3fP?cA_qJ+qgfW-+uLjV;)cxJY=^;Dth7C1&7#6fY~g#M zpB*-|Z-9TO&U#ihHoL`zzrE!rMFzb`)=5}bm^#Z_AB#&5ajG!f>F}oVEX(|lFAX=h z9~&AO2{<*;oeGE~?n6s$J@-D|ymu%YP>@FX)TclMA^`ye`Vn9aEHNCgUTw%!UQm$N z)X?xEQV9*PiYAJ5(TM@&{DXHx^rH9-yEJIxnGhC8YeTK-i;uB$m>3x^qEhD!9bk+( z{@}rb8!BhFHD2BjaDM)WU47tcl48_;j|o+W?V@HZPnK7pW8m4@nykvi%bS1dPv9BaHcUKMnCTR zqwkozmlrE9YF2J`Q4!;gGm~VOzk29)$Yr2{4KL5eo2S(~Iz~Aq!D_f+^XAQpUSo_X zQ$~e0s+ajxxdtAc3Bh#yEEQ;9PD@KmmKrY-)RAQ%v}w}{y#(1hBtY4PU{m0{QBS4Q zU;2Xp_i9m>6BXQ0u*%0Q#Os8$*XEo|z4*-g+vw`UhYvII@qBSLHW!%nnWH+ zL+-UJO@pnZnn>)Pn%G}*Vt@%#wI_z^ zEWdj7s_oQZRd26`jUy0Kipi*V>=l zO=XMK+2lQu|8NK(3TVdeO_>L&Q`-FJR}ggfH8gZK3YjfNNV~{mM2ny#kSh&a3M&Pb zuUQs1w^2%~uo2_&bmZ*Ns36MTTMAuwgaI)?JHY4d)-_Ib#25_V0e;=>BbKkYoA|GgapEUA(}moWOhl@l?$S zcJwN>80735?U45lM&@eRPAH*vBqQ{fh<#{HiAIJrKfBNM*J7QITw#`}xS3_5R|HT+ zV-#-$5UO3@JqN4q~vHchWimQOKasIa0<|9{{ zk8D*1f-%qRNT1C~HqLqcB!c6)wJ6yh`uh52)md8Bt-#IqEvkK$P&Al$c<9fZ`N`E~ za!Rec0BSGQ$v_%(&}H6vJOAw_m>UaL-()udSRit6Tnl1!$vKUJ~L@0HEPTtuk;=qg3g{j zVrNn*t}af=73Y3R;kH+9-MXA(l2zZ)VdAw(Fl`$R zW7wisFVM4saxF{NKen^{~2D>v*o{h6e+V(+hqbux|H zibF%6y&oSB!+?ZTRCsC@es2Ni@kET1n$e@XcW<$Cj}*a(APqulYSgDvFRZTmGkJUl zH#{|5ztZ=6m-!O+>-xHJoS&M(1_&sF7y1KUg;V{43d-LqH#ax(6sLh-Gark+#*Gzs z?65~_wK`oBJDb+r7KCLH2fRkLtH*l|O-)6k1b|egnmV{u{}Lv3DKIc_qr5!(g$ozr z`(HbzF4Ad>?a}=A-g8)sHaZBil!nZV#b?TSf|6YX?t(Dtq__J0eWHm?ByX2U0*|$| z=(sjA4sq!d$fHfD@l49{ZZF_WPY2n4cU^Z8+Ur#!hBF7HlrR2XU$v9nDL?<~t5gA_EKi~SbPO&hJs{(}ruF^Vp->pNkW8~s`c7__JBZMAY2x|?T@#LE1 z!LrmWF0=U^i8pS9`ui_?gg$oh}{|EMT{O(n)JFd}AsU3AetzJ$CKN zPD4O{K=OYx2!90hsk7?A!NE6V9hn#YPWh2CjalCXWT)ALR5Sgy&*1s>t=iby8oPH7 zkBx~c$F}61jys7>LaANQo=XIB@@HYDozzMtg4jF9`kL1t^Oa z_m8eywrm;6XVGfEb;#X!kB^Vfeab7eb#b|jM9GER%F4T^kh2-=02`axr=c1JVcpDo z?EyNQVm%YN%oLO>_D>-RlLF}Tb28FE?HAZa+SX3SBrxw&Ik{HrL!AOZE(r<=6}t~> zytuiYZr83|U6x@+Nojh>r`&`=&M?n;s z7l{h%-}=t1Q(OFV5^?yg!(Grg4=~Uckw^M~>R%tY2h}AFOV4oMd-#x!LcfiFMY`wF zstt9k0$$M3P!i;v_n(M_T3I>MvZE{VHalohmfr;>#yMmsBY}iuXJ>nI^FULmgz#hs zEKBmMv5ARhlYk&ESyk89^81oiHlVe5jA-v2TDAX+a1+uBa$Hb)vCuLu+SDNnAFh= zWQ4xpw%glk9RmZug8h)N5cA3Bw117;FZx!dCAjvN)FFiO=3R4Q-n~1#V&%$VG_}2z zXSbi378W#)AxtiqJOaw44pmDiGcb)`0j?*oPDfwA5t9p`C#lSwN~;%TDy|94M#e^G zPd8`z>u}~5-Mb~$VOu3?E(R1Y$D#pDm<+3oVW2A84P>@$W9F83sRh;cT-lDY3Sa_E z#}x!1W==>^ajx8waHU2yMP|IEcHYtpx}2xMRMpp?Kbw%|83CW5=Cl=$`8ky=M@P&Cy~H1-VWW~#xyzGM z5rgE~$B$R+4yM0UTsZQ;cXHSyG)8x*+I+SD??`hj5 z_0QqRk*fpeSb+G^Q6W7p8jd`(73=x87r=EtSipbS<AP0t%oIY5VNjHd`T3FnTTWb$>JuWlehHHD5i0EcD$pv$Zk0|&$_H@!gLfB6%`xh zk0|;rt#`f1Ow|R@*#o$?`mX7`f6M?B&qkmS@ONW)fyfy%)9sLnP`z_K{$BqDa#$Md zzQm#GTZ=lOp(`MQSX6q;B&(eDN2%VOYDh{F*C)s)oI6fSKz|4;tp2T=`Fh(GpX~hR zuRnfhfvX3cLc#>6)r2QJuSOx068-9xArUpYySqtK!M@doeyFcX zDY>BF$L!bZf2-3HKvWYp-gGX>dk_+I5zrKd#Dk1xHi5!tDzkj~@_i|4yr4x_ty!b7 zXHOVlO2#fwnM@F^(J|VB*Lu@y5`jS#KX?#~C1z%37FRini7G?B?CUWw*O;H*3W^M@ z?mNIlQ3;91=&tD@D|~cPwYL5;RU@9e`gVQ7>eZ_`w;c%;uVHKLedxx&Ki@K_)VZg= zxp|N42qTlxd%atVOlZv?Uq5sq4B4Q~1C8LV9cLKO7cp5rJQ2yZW&dr+8_@XKFc=z& zfk7*W{(d<3CH5$30`cVu5GkTOlGZEsNwhT zS3;TrLmLsbo9a(GO&~l1HjW<`9rRl~U*MY;)Y(7k^`)PUL(1x+m6Z8MY0F`}7}*-o za%_(s6G0|oiXTCvq6s2r=;OyGtq`5{1LY^_KmuriSXDUM0|SFwiXO|*GJoRJ6(S9UgakeCORI~oE|r>)hm{8PcPS->e}92h7`Oleh@Ff< zhoF)QY~8xPt*x!--aTgCFw>p+DWjB&AS*!;=Ukr(-YhIE2+{yM`FQu;n-~YxbS3N< zb%1=Aw^q+-Z1oFf8V>+^ut$GFsLXHgpZ5)oF_tPQp|^BDd2+Xl%iW5Qc2Nbl!KLL} zxt87i=5awm$?qQ$-IhA#t70b8V{JlYQ8iiDtRyfD!?GK$58_nz66N4{CFA7gNdbnK z$m9ZAIKiks$&45Ix7b+%)1iP3js@f>K905F*8A; zKra^ZbMRbr#M-ekOGnR5%&RNB#{EHGb~d`#!%K1)Nty7P*bStJ3bK8ATcb|9o{wH# zT^&qoIChkop`~T`)2BLAO-(zrz}{d)G_?igw!@nvDlVSeSqJK+i!U3vl59;t5^MR7 z#lqj82~`ZjdT|9YjZnXSu3*gfZj;Za+^nd`vthDrP)Y1;Z7JBeq@iCTIKx71fLWFU zBG)??Rs};5Yj~>jC1PzHt@QtN_#9~dy7-==sKY`*G&=NA&Q=Cpznm;lm(PbrL^Oa} zcy8@v>ZJxB)~W81mkAjLzkg0e-@3&Eq$H@Ka%=02P}yFvaz(zsJm-G>sv~_RPp)R^ zHtR29>({SOvbs2giL)s8+zhh+aTP0A7Sb;czkBBoN^nYGmefkSm;btE}v@#$Wo)G@P&(BX^q|3gvAHf32 zyk*~k*Twd95KUxU`(@jVLcKJQ?5A6HObtP(--+gD&}Txj;IJl_o?y&I#8XaA4j8Pw zF~wQ+J9q97${GHKNTjy8xw&b}G`iEDdoO`^Ax$(AEh}%xioEYX9)PW%n|w4SUX_-3 z2lQ+`nu)>|wDQv0lAn;oPSiy~VZTs;lmZK+}0)J`c~`1Iz*3wkg=gw^-;^>sSu z9e?Hd`x{Cph41XUxeSCQ;>PRQv6S<{@1I{EdHD81M@~+D#%n0h;2Wep-cg~8pIpzd zPWr+h@3QjpVU)Gr8o!z`#SGzxCkE=#0Z9XR(DN!|E3|JcRkL0c#*;XG>Lq~{SYuP1g(FK<| zOQ9O~BdHA!4b=uGWhaD3M3C<5abx3Q04x{x?Djx8CCbqI_k_^ionsn)`KvM1kKGV* zkZvWgQ3eU%$;yq$o}TNh5hI@*j-jKY!^rzyDN)|F z9C6dWVcsmF$vZa{S>uG0GaS8;|~ZEqG9N0qELrhXqlS*BImRZ3^C}{*n2gINK zVC7jt)=tS83fb%}*$ws$nE!ur0aGlo^BEb%ykd;zSJ%Q~fSs^|drbDZ31J(0iv);2 z1hXNV91*dWvT^ff&CTD5Yz4lM$gc3|2Ic2}SsRVsLX|>fF7XX1+42%Lm7KtJ4KU~I!&Ys zxdL+&LUREq{Fr*X9*RPIr|HL^XzLBURLyEwT#pWkC-VbNT?y%jXn|g=f~CYtMg&ljs)lMW zVPW`QWeYb!@bByEgBg}(+Xb*H{SV!up;MVXox?3^h+aoPAm9uFFQ=2#0-zPZ<9$Mt zRlJRQ|n8?$BP(XFYVMw|}j78E8 zOixe8`e@7MHq$KlJxegox!dKj2+bd{SJ0+UrPjm9M$Bd?ELx{eKS0Xw+7Gc7_;(0J zvH`FNRxlxD=J5@Y&Yu5iWKHu%(8e)>9Lw&Kf#-0cxut~x&Il!cfB)NtqSPjV+o4JxH3VnnID(ukE&_(nX;ZYiXRuk7(mLx?3q0SY9jUAce;+w z`{%$JOo(b$j9ye}sT@jj%#|yKTSlHdetesB^4r+42^_!#6R-mtO4*sIWX!-;udnYk z33>-A-wg>Cuhag5j9pdL+2NTb+ztgcRpIErbI(h_YnDr59GQ*j-&rX1*(r$SFOqg} z{EKeHJt?wf&Ex&0TcoVYDCJfK-5#(WFaUc#J+iHoKt)qt7z!?8Vr_T(XtZQKz!pP7%SO$kP~dh0Smjam zVI}yaw6qj$aqFvIVLHRbtEJ#*fi-J^gI(=mEbh9B?FAYh5|Ib+e4B?(E0GZ4Ai|9B z?Z0br>7Nob%M*FR6Z$!^I)F&Y&b)vY9~_HOmOgK3r-&frD6mB2#lb*2r99I!WrA54 z3J38U5!jYtoP%M!Zy)=gm^9n_x2#MNl74n3_H#^b>G8H@YHDg0rB3l|FfgqX~9(i3?ou<#kbzFOMbYvDECt|?iHeb{LSmAcGtQSE1Is%3mk%q1vY zc8^1u-l!y%`2WX$*7EYD+4xX=&aq?1LJ)WF(Ci21=etHusKzHGtf3SY6=hGWFtuJs zTI8NsI)NaZ7Oq;Q{_%dR8nIE@xw&mcM3e#O+QI05L-m|IQEUj*d!mCgAx^(Waj?O{ z!Xn#cD7SM0s}9EDRmCai_|D}Q!ByTybz(~v`u6J{--P2qRs91SbFGgaJ$gg!yfO&! zq6>e0203;)orKmzrgANZ6m^LM7s!>3OevuKvv^g`toooY{u%o3E{E^%{yCYz`}7JX z(xt-4+HOQx6X2Mlqc6GS6*Eqiq&0hZc?E)EG&YWX<|K@@@9Hx9=cBK|S%pJ~c?ZHg zE&WQA5@dREt^uCBbO@r@d1g2F%L2;`52xN+xoX???M4N96 zQRXhdL6gdL@X={P(Lj7+AeuLzt)6oNkF&Eg_!&U~fz-xQpy>MYOr*~3=nC3O98Fx_ zR$F_qwi^TCkkud*(?97yKTD3JZXciABhUJgUtZ;!ZDCvThSS3oI0uev8U+?v$5JcR zkPz26q*8}Tv;~)<%xo0tXcpIjX(jG5&+8XLPq|}*}m31Q&%fiZU;cMbRSA_N4bJ#mO z(X$>BGbW!M=8KEa9Busmp7Moh2a}(3b-$d_&X-wtH;afgw6sJ`nUcqIfpY*;Nf23^ zkxl@t*Q=lgX}}aJ?K!H0IWyItuo-{!=+Ow8Fl@8UwQpr8O$yMN*jY!dfym_jhAJKIQTAGj`P zyC3eg&t3-CK|Ir7Y&GF|AQgx^-+74($?G@iCXkKPx+lb&F1z>VNpMAWOm36X>2G04lgauiz{^ueZpS@nJ%n~3g zkrGIchnz$nyCdJ_e;~W*uQ&5Qr=ap{t;->gj)2LLU^l=fR6iuSD_5_w?n_c;tE;Oc zq7XJ}sRkZCw3v0*>{NjVgeER|m+U*Hs4@xf(QSsr#j!x&7gk=g8Xpb3c##5;wwB0` zJZYBcrFv26=|aFa*dyZSTR@~?6RpAymJ@~-xLpEmK?AAmFio@>WwVnG4!q3cG|h-t zFc9L+o#MOYm%_{_bLA?eJs{W2Mm(FE&;)KBmKK6TL8xjrrCMIOa^)g;-NR^(kGG`- zk)iA7CGubjaXQKDw|`P%;#&O3Wnr<~RX~<%BIHQN91*4AbQ&%&0xuyyzk9GDF?JUoibj`LTqoeqAglCGFxG>? zKIC)PN~*9kYd>bV!Udj;IndO^JBff=Nz8UW-<^m$0BRax=(r-E(0d&nEMQ{Jk9$0M z@&trvTbU5Y*J3MRt{@^AQCiq@={+($xZDGPqpmT5kiCm=GT?&$?%DOqZU57sZ&fLPzKH25y&8^(-ar4X zSp>epBk}Ux!Y|!Fb&8Q*3QMX1XEZ@9iug2TCwy#&DrB;ab4JAt@uG|N$B&0%J4z>XzDP(0cne9B5a0}$-#((%n(g-p+Mq<}PW+y%hM&2OtVG!JPgw;X% zC`i+qU8dYIssle1U_MR?=1g;f!5*~T1BG=xi}1dkz`HnWp{bq90R;Ypm|!4V0Cs}D z&S>+x10o!*4Tw$^^#eVTk&!TM#98X26U*pBFdcnygHTN7bK9>zR)$NGsGKNjFj5k{ zADLzHuc&hjQZQV~PU0!(vWV9`fNnkV`XaHBqNh0we^C+Uk2geT%a|#M37qL;liGn+79mAWRl#z#eY|d&qsB*(|0-?q7}WmY;*%2o)Dm78=!`NQ!Ek&P%9F+WIGLZnex%G-=)+fk%tAkx5|Uf0s1j~U6& zh||;WDX{hcJb3#4+c7?*?>+QJ)5ETeWIcEv(%}#>Su{T2M>);9`++8&uIZ5;CSqa{V7% zc~$i&8c{&bZ`BZg({$l83*C^t*f?l-B_$>Inn;_H zoGc~1G;`yiKCuBjAW63wd1-;8CC6WU5&L8PrC?^M%Gz0pJm>+j_lB?-4$)OO5k%bn zEAEi=qGs^3Wq3cmoH?u@Fop~zof*9J@Zm%9!9DmO0nznfjh;_#08i~e4i}ng0>3qp z^B@TCHlq?tP*#LP#o=2b)FT&;OC-7dw-;PN0jy|1%ei8y*r*YIGg`r4FJ#?wRX~}e zm8>Oah3Obb@MVqr{u6u-=RU|fwyz+kiEoi4I*&HY7TJ$*cw?fLV&Ie^!PZ0YLOaxc z)~9XM``kGpDJce=_5eAlMp3!%M~+FF=_7e*YQNG28rO7m6eH6^s3(6LStX=yyp^Vg z#xhDRa2c{J^DX4g(AheK5b1Ov9476ZWa(nAI=+Kc@}JzBc}{ zMiI&)1OWjxH9kqp648UMk>qu|h?q82v&ctC6r6a(g7|2=B`kptIk!O`2vL|WTix?b$q)|_BHSZN{QEVbxxU84d zDva4+D&b#fjkpSR_U-#;)FoEfsbGm$fX}b|+Q^Mv!!%pe3_I>vd*)h#&oKrTQh}C+ zVNA{@g0~@NXc%>gc(Ry&Mvs9|N;Np|hLG_1`}-8$22-~dCklwm1=@uM+}KE$D6!9l zo51oK=dj`s^%8gJI50Lvp{$-D-wQzIu>@YQ2wR+Afp->lfx2kB>H2dVqBG42K+kHX zT=vul#)`)P1|HzrA#ik-**FyOO^iFKW*XBqy{sm^xS_Z z2HUpp#G!)@ZwSzZaNK~|vf?D=$al?utl`IodT@UJG+OVCFf`H9`Y4G7>x_(lso4j# zCF|PHie3tCNT#KQFR6vs(PM7fPQtQe6@ft`j7BSGA1vv{2Az54>tWDbD$g;&dvVAO zZki$(eLM3Hnj@?D&{Uo9tT_E894ySzd36nJ4zAD0JFryMVMDjw-nAUlIktJWVkzOn zSq9dx=`Z;rf@~{tb_vUYZj_w9!gblqxQ^x`If4W-?fTY3P$6)oEIA)W*cPIyJ$a&u zC+BXeawEAM6sSM`kxVt749DyWv_+gM-qJ87U^}IWzncFy383ilE)bjrD!u?%K!W^W zj5!Ru4|!#_@$*O+i@$qn+!q(lA31Ua-+w^vXbWu;Wo7#NcQyZ>?FM6`AQ1e}Co$K29s5p{)l*VaCi|32)myKCq#+){y%X@m8%v0=!cV81ZhJ&I0*hvP>{K{vy&C~(nvf@4?p za2A0;q8X}Lx1K`2eBu9b#F^SiA_vtG^O*JDBhFl#Mbho}(PJ9eDDH)NiHput3mR#< zi;7WxFKT4_6~mQ+3KpfPf^5aizt`UMvlOH^3fEYb7P0Pk0OO_@)7?yR9EaJxmEVEPhbmu1MR0sKIrGrJsgYGh z{!U88qtcOgnv#BBH5wWkK21(0Pfaev$L8p04vkj&{xXg&`7o%uGCET4tg5%mKIh4S zxJ^ntQT%;!xQKF}aayzG)vGI;#7+b+6P`RMAX~hZ{C<(`+jxgaWK`6Jo))R=&$H-$ zhNwJzt@^QP`pLOwq1Kd{g)cu>;movD5Vn$UkH0xCI{8!P(DZec^tNo|-s2lLYi?Pb zv+qAo8ymNI51a@0C-2wX+In{MrKXLc;g!~VG!)80-o=!HYk%@D{yP6r|NQEkKKIMF z3JCnhU-qDaw3lqKx3?D;6T5j|twrnXS*1m5Itpdy&NXv_BHOo{&<5-(G%@+^?2x%& zRb}ZH6f#jb?f&=X&74D9w!Gh`XLjUB1`d0wx;Db9e>ExTOCQ6UH3_po(D9pa05`9w z$Pn=_E+w_!&u{UnMB>Xkkh{TaisIIil9C-q^{21hgw*nAVDf(JYD|fR=(6gk*mWiz z9>oCBO+5`tUOGL_PF_`aw0<1A5VL)=CI}mGaq({zS}ma4%?u5P`c6L@NY*}fEDMak z=pJQ+DLgNk1qD*D$4>yJo80^K=@Wb=a;km{R$$V);dje=nKUGM|Mu;j*zVt(kFCI? zB{tF2aAt49=&~WDgFTOH7=DFSdvoI9Wvz5j?pI@CQegxtoI?L|Nd6 zy0Ki`++A&LsW6}*Iq!qt?Z&;Dmq%w*-d3Ky54KYEHJZ)1I@?#!j~t3Ej>vLV9TgT9 z&P`9Z-=BinrW9Q<8ueviXTS6LvrB8qeZQIAUw}Boq@+&hLXLbyPa6QHY1Fe^R#7n< z57`sj=W?xMd^Vx)?c2g{-#oiIJ9W5f!e_oum@6geV^F+`?mP4I^KG^x1s0&8yRb-} zLXlvmQMZ1{ff30`OG{@~Ra97NNAY}hX=-fz1T+=f7;$5KjnEz^XJ-=|n`HQTbAjIt z=E2Y%kxx7YQePFabK}0O4zalA(L@$9Y3z&zqjS*YlYP#ei@$PZ$Pp!?^Mv1vRMpy<;kDX=) zx233@P0P*A-4MOMLwEP0){~bOk`q_<)$N2EDR;ITJIe0j73)Ju!hveHPh)yc>0lbe0)4Kr4+a;^NaANU(N(lVZcDE#NLRbQ6jTGCd&_-SY0gcNg$ib{yE#UOheJy=_Vm05qBU)L z+P(1R8!6sZDwj7?j%vg#9}0Q)?3wZY{oPl8z}BJHzc9}lH`Tm?(PHVY-0Mj|SeRmD z_>mB2#g{i>H^<+GI$EKvt^M&4KZU&r-`TULJBwnO^tXv{Wrh+;MU<6FGLlV55)IiQI|oacKS@8dYmZ-~C0Iz25XErmj%*VIrkq)@12D3lc} zG;8oLY)_wC<3DSTYpbhJ{*wPCR-{K$D4QvoDvHML_r86&WD$P)FZIO1KS^(uHrWfU zQPte^Nbkb^rrp2K20x0t9`en+;ZA&WW%%bBGwRz-yE#s77tlTBuVa`LE%E*HOyf20 zm%+D;I%VQp{!CBZ(fcqnGktwY+5c#KIAvQ@F74l`AncuX9d@ormKzBWpV8!gLd$wf-XJ_tF7Vdxy!!qwh*-x+I z!)zKOLLv-B-G#S2FB!@;8(zj&w_cvSTD z89%+e{j*PMduC=P&AN5ZqPHJhm74O=)y1XebApektXkXO-4sYS(j!K?AtPYIrrKpI&|h<*GgN-eB&O7MUDX?1gEMpxH-_?O zT!S^Xa4UFoMGNTG-ri#?cBV_L)g@R%bJ9#H^^W^N>}M)s>G+S{($SvcT{^nDlVj~W zN56jEP`Y?yo3@Y`ca;6*KLSpwjW%neJ_@zitVLWKYB;ffde_#b^6JjssJOV``RT7! z7kl#a#d<3)Z^$`Z^l;#&O6n-NzwYw=E9AF_>InQ9y_$k=Ud_vMy41+Wx2+CWwErlN z_`IH-oz2M08(Cg1C+9WKT4dkO%pDSZlQD9e%EJ&_@&@!=(v0K{u%E3Dbnh})Dj!ra zX64ZiHfC9Vo)1sYQ&HqRe$n`?p=Z7q7<`j$`FBaUW=lEgAtA3eGV`_92?S-Zy1KeD za&w0xiuvW`xsmQ`)~v~Y^yq3z3jgDxB31RR$V@|XJh;|qeb@#X1_pICwT6BD2N8z$ z_Cg;&etc7U&X!}-CORz*By;Nfu3^TQ1A2Pvv5&qlU+To&X{hU-leTYvN==y^V%XPP z(n{adBuTC_-dAx+jT8e7iryAoWN8FGkFOPcEdHVzSB@P@84g^m%@av z*8b&3^6-$QR6k1{UDNPvcyM12GrnU`|Mq2bv(kkN7YZbAX{EVx-|-28KMMeoZO))&|;xi56BC@qzJ{;IuZs4+tN!b{$! zrYCRSz4P<)tGn#*t*4klPfsr(GLlzey{#?To4VFkCfnEdR!nquM@jkg-MV?xUoT#^ z=H<(EN1wVW8XCT>YLLG0je}Fl(ZcNK!rV{Z-p<#r*AEU3x?Tz=wOYj{TG@Ez`}glh z-=@+1`t@tclEGH)$=M@*XL~v}%XxC$h(4Q`mluhGwV_n)bzjBh)&iTx+Qv<7Rr^o9x-*@3_QJO=U#~yEw`|+C z`rN0NzIl1$)HC0^3iy?jl$saj8L?r4D@E6687nn3G>m>IlRAF2yc-MrLMaT3)A~C-m|jzp6jIx=T0SICmY-!Y?h&v2o)@n)U0|$}W6gDtcvV z6`ZH+E3&QI^#lU1=e{WeY8<@0OqxVX3hM1xtmyUU=YleCOX&8t`RCJ&8k zP)ixv*?-q~@$>PCIS*7ns$e7!PJ49*8Et?r(AFOI_mX0j_u`vkr~cZ;@wN6-l6*JN+-3Ui&710r{a)K= zxK5hCER>rfArw-JJZ#QLMJ>cv%q{?elQ&~y8<$auhA*IqPzv^$L3BxzJkhwvo}Uhv zfHjQOE?v5WDu^#F>!usqfs zv#V}vdu-9zigG3N``a3)L%OjWI&9=m=EdH+wT7FUyR`lC-QDdwUnr&GcT#0*>*`w5 zv}0X))&IA;Wx8=pGwp3{KduO|3y6&`I|?bofU_83cqkAr#kHR(hIm+2g-l6|$6r)+YgavB?T7Ki1sTwtv@l zaQbU!$;EM=-rimzHw&`Y)q9pvr|Q1*W32Csova4wf(r2zRDFPxz@m?VGEKVPOFNN@ zr?qLSkA41n|N7oz z`n=2YqMEUmpr9a11QWL(R#;=O+A=Xywlkjpe(x$UWpIQd*=>FAxseTR4^8L-0|RS! zlO;`i_Dsdh%Kw?~URAiTBdG%0Z;o`-aoyYUj?K|1MeW;-8tM+}!m?jvQ$T9PRnXbk*evho)Go3NJNEDAk(887wpqSp z(ZzAg0J$(KazpWderN2)jT_gmU#Fn?w;J??A??-)+*=`%yOj zrqK2v>Qiup;a1#y8{>uzK?fBUjsMB!EeI$kBs4l#XvCBvxz9fto%zTpT`%e6i(9ll zU-sk5$8R*92o4VqsHmv;=keHb6B8+ye}AjFzC~F@eQw9A>}=r^wzeA_Y%-07I%_am z-puSn6W34EV#Dpr3&-#F^R~{ZbVN6uaLv)h3x~leW|-#PAKg(;S}O-h;;yc)#Q%yFlZ@{@#WuswqmpfI20s|3 zs5B3tdpo=8&46&d<+Jm1k8&@FV4bwl*C)tnZyWoESYp={>A2H@id(BIXwPpIX?EkaQkD4J6v%f`S=Aj(Ud-3roj@P^w=h-5>(EhmO zJy_}3g|B2~?Ua+3Z_PH}W9Q)T;=Ct1U2%ZFzja%N0bY!jyjaPF@0{p5DvgP>hfo+W zm>xr^n*G_L&{}c%;_J6Ed$V(LTG5CQ-Tb?EGb=33^4}6RUx{~dzjUdl zrY1>g4V-zQ^XGIR36ZIRcQ0LiFkuJdNU8U!?pE-M0{L<73 zz-xUsVagSR_4_Ah!@$w-?c2AB4B$`Cf4zSHe#CyS`9wU{y%pDkgNKiQ?a1K}Kkh%u zk%n*_rE)!Y&gIYVv%-fTYq+rr*vTj-$i>N?7s7<<{PEdZ&*^s4{KCSzSS#KA~okSmM zI@6WE0yTOAcZv>Kl4^9E*78f|TE#Q&Au(()2$S~zKrfzFU0uC3s#yhLi%`E38@mA@ zN!)ARt?T{!+Q!D9SAZpK+7=dEyLaz?ld8$mYS8SzvxUj)z=;!E4?nisBD*HW4;)TS zPtT@~j*hNMud=sN(oROErs{b20@UEgXM5O}mX>H}X_d6JLPzb;zy_3*m1CBK*AvX4 zs->w}gJ_gKXR<9iK0f^X*N(wXE1&wY_N#H!@NNaWaVY0Gg@k?A(CStOoSY zmM9ICM!@9N=f?Zwhd+I)?d!92ySaPlHditqc&^pCxw$6~_eQa5dwR;1S5zE3e*7wG zzt)F=azeOx&Ht(??)Rnxw8NnDadvX(deezy%*9bF&C4!`05tQ<23kyf*kr(jgu8Mm z=Ws}bqN^*Gd)2B{*6$ym=8$#E(2~p}pgqGNg^`*0>htFs*Eqyi78DdD+mP#&pn_hz zcFo$>cDrn-#f0nLEgp1gp*2^pUL{L@je8&a)2C0DpN<0P)m7qRlXiHw@}8YL>AJhS>))FR#WbIH z2JThO*??+;I8IJX97q|eoLe;b^!Z4KN2o`)(Wz4cr(WM%%fiBveYA}I&YcB|&u3r1 zeoZpt-?~g@QG{sDs2KoX4TjbrkLj_Rw{H#ISW8=PYHY24y23;#rWPZrBUK^KS3%bb zYJyq?nt@s3B)TJ(Hz_@6E@vJK;^(E}YtfEh8nH=A2sSZ_UeAP`8uDR4cvtTo(lcNSh1U^?c$ET((acp z7uE=;6jN1#k!Ffu>`LyqXnfj zGIFdSRaLomhFBH~olqxPYb z{hb(!R7gfJCfn!>E=;}H6+mYt^hfIz-|gGCk4=xYqY~BRAFE?zW7|d^C&mveM6R9z z#%pwkD<-N@5g8eo*)Qn{UBf$)Zr)^l87EGqeM>l#H7ri>D$tsB`$H3&wQChMG-xma ztE!`|%4q88HIO9EGTns~T#Zs%Y*FFChEjm=3mn~HywYcBj?B*aCz_bsvP=)U-P5XX zZl=8}EycBdpT6>mh-Sg)(DQe+LhK4tme{m%u>1sfLYFgF2ukQNRenO-nNW&r&QzzQm z+Xsh+sCapK@m}krqN0-d(Hz82oH${P0uC;fg*&acplQoWg2T2SyidXd&{HrR(7^`N zISn11vY8nN5>f@Loy^enT`cBNuGy+6! zl|@Zn6yf7ri8%4g%E}tu!4^pFFtsc%um z896ya^D5`H+-}m=3j`Uz2h0HTqOB)=V5_=-fB*uo1^|+ggCiKv-WnAgY~0b2a|AG$ z0gPE#gke(G@O7=8vWvUse}AVte||}bu_^k=6G^Nj^}c=kuJOoowj?NQ05hvG@~okO z50H*(%{oTzwA#sd?#%4ZEeWKZC-^L3mQac5KwgQ1JG!=U&zhMZA6U49f;CREva(u# zd7Bm|dG?N$cU+c7OWddv!Mso!a+%N7vxKxgK5c{+Orxl%7#tePOnzw_m$Wm503x(D zRdpt%|5+Rjrt$L5vlGY8ynmee@_hfo(vGR0BI6$ArT6wf0JcN+s~$K&;o0vQytMcS z9K4G0>9o|;fwJ++I`BfcsM`O=8f<^mM~J;-Rl2rJqx6?WZf=ZxuNhdWm)p}uea-mFFWh;RXVDxHk3K|i--s<9yfiD$p-PL*Y&6ags z()vh;82%`Ye77%#Cr+I@j*zUcya9$O^mA8%jhK{F&@ysRLS)AjV!oEJdqV+hi^$I0 z3XF(Wl?aT+vFFq}%X0TEh%|#VLd$*wc=z`9PEMggF*4S|fP3LbZ^*8y1yp*ENCH+7 zjscP5AIgIM%#73NsEnMRofsVL%;QxH=L`U$5E7vrqhV;soNG~PI4dnFd8?86;ja_B zH=b&_Pw(U7qxTT=Wa{wqFU` zFI-SVfw&}`q$PrWMS=`*tg3Fnfh;^pM!_FHevombH{D2JZljFrRv>|ZjEo(cz4P8^zBLl<2=tv6%{SzFaZ0v~D`P7oYprD`t)g&w; zMGRw8=BiBNP>kbsjg9JVtn)M?A|fb*bzp6QVA;8Yg!F;QNxB9H)13M6)WnU;(3Lr4 z6}UxbXXh(9IXR=!DkG$3KPUslAC@8hzyQj8Iyx3JWfPqg;QnCS9 zQnfLO_CZ!w7|JUdd(EDl+4xV*+x8$YujSyAOvB3%#Jpz*sgcKr-B<%4g$Pyjd;g(F zkNCXefTqrUxs3qF_2}aS#ULmlg0bmfxI!)htJQ%Ty&fG+8gW!@Q&Uq-`K6zvpF;Hu zj!1Ft8rDzSz{PcKur3JY9T0jx7;}Ci8u=_5X)A!uukn7~4Wbr|++nNqO-+NUsuX|( zgVwSL41lsq=8s~2Xp+U=sgk1QFgG))$zYEsCMRof6>G>eh=wSnen`XtV^Oec0oSgr^PH^TkesqZ z_YBsD!<$j~FlnhF+OhYTtgTO;Tn(^Y8R8R(hz4A}A9h?Y6V%|Ay?fc9crkMaupYq9 z8DI#TotxXTV+RdArvxK+$jw!e+l+6YIC*l*=FODCQ?IU~6^u&LhTFQ{tPb0-3pDYH z-Vzro6r1NwO^P5_(Ue?<8X$%_Q$S@gavLRW-MZDfztSsC+9erKK?@5E9`)CHWG5-3 zfZu9vZjVQ$Q@6ScCpDh{m4xu|UnU)BBW+z-E&iKs)zDZsH|x^&^dbXgA}F5Q(d}#C ziA|gQgMv~(;K`*>C1T>j1sec?tbsYvtC|c@lM9a3ts%i<Gg0I8Kc zB;*eirg-!yH*#nLcYv1Qu3h65RxB%gL^yx^3g7=9FThj#b|I(%RKO2t6|5XsO>;8Z zlWb2`4NJ^@T|8c2W2#w0#xcskg<%?rzH?VPaNnLNe#({E+1b!*53YkBBydLOu4Fj% ziftFL=yI2)RsqPFRe4un>8^lJVM4BA>H-MjP9C~`^&_g5U+gZck9VCaYakyPpa{0Q z++4HE)W{jrI)xI=AR#8;Bcqlyk|mKzh&`8^q5n5;IpebXc6M*$^~TCj z{c#A>%Of`m)$wqVJWnTYpPP%*JGCorEXgm%p=TWHest3P*C+^J8_&VEX1HP-xQPo>u%6d}JY%7IA8 zo9^$fUiAQ7eM{s>AUG=uCHKO3#KO!%N_<{sNY;lkD$4%3;pmx;<`*xNF^#|2mCc1( zllRPa^`l3R#Lm8#AP^WVyKwpm<5rZ}2&@mLK`kX+U3#LI;laec7u>;NA4c(K+$MiZ z?(*+!u6K-VEiDRvuYvn~8Nbi;2k+L0w30Hk0?2mEP4(5jR4(7T#3jzYXT@;me##-t zW@*X&+rSkIZtmf+(Sd>#{)o9h{M{Yw9v&X3_wG)wAOhAjHDyi|+_`gjFrk=jdNDP1 ztJ_%H+Eb@a5d{+T=F(m@7yHV^!esmR-Q8Q{yzX_nbZ-1+>)efEa zMq%ZYJQEC74ZF>Y+9ve7(&_KF?+F`B3Xw&?qH_~r)3?T}{_>!@)T6nCRxmJ`I08;T z!vcz5_+|z`g$Apof))f=Akz@ZOUmoD((z3Gbjy4!Tfa&-J1lCMWPHG%H7^EZM2XzBn7!^t; zn0PiBHDhB|VG$AS_({ON63@BaAOgieFFiif{Yd4HY1Scn?5bUB^6HLkbH6)#9oWs^ zy?x7!Vjz0xLrIA=6wx)ujvc#a7!}+HZey*yyu41F*a{3v0WmQ#qZ+9yT-@B`frwWE zA}HqIAPB$vOjQ}1jv$+0H}Su6g|a;8aiuj1s8hgXV5}OL7(`=zegI?fh|sF8Js{W~LydrMcFpC|rbm0$ac4Yt?qk&3qnr%gXlsi~L?DDDWb8fc|gl zV0O#D@cpogx;p>Xt*h+q?K$?^x9#IqVQx}JU%(5ja&mG4-U*8^63lPPJTNymSK>a& zSNV78GT6fuz))ehI+&3CpT0$;$ zsZce*>*5)zCaxJ8?2V3&R*>Cy7^*2Lm_*or_pZ>mB_!C`ucAU8u^oyPMANSB?lwo_ zDn&#@5G+S%-tbLQN(iXR%1XPojHppNHB9!otrM0Ce@zz0#C7NE5W*n;w7vhq$a|F$5rHR^ohY@ODPBy};J3 ziKpK^;LR>NUQatZHb!E2o6l~QR98@;1(?~h%?eh60**$vc}AeE%aGc-O_J*zkZ;dI zSeRH?_+{Az3!r}!Lc!6|5oUnmQRx`kmf@Qzoq1M6_#x<92cT|&YVZCyWKJ>=Zp}q6T#Av_k(yXz_P=> zU&`w1moG_}sk@$@-$`LL--Fo{B#iJ>>6!jYZkQRm9-n4uYwu2BF_?@4OM;0zPVUlf zPzbg*sk>bO!ZCd39xV$5Ii_S~#Y@)xO``9pU8)M;sTgXznYsBf%pl1_#yEoeCT+qoY*BYjSmlhv-|Yv z)9hp;uYz=g!c2@-nrg&!(jBPj;QaRVm9;=oB-0o0HXF#jIcpxiWS`v<63@V@iJc!a zPKAk~r{@Sk`Cu5G&!4ZyGv}Y_CO!H%c<%Dk_x6wJ`jHZX2MI=OPo_A_Xu%bPSFBu` zcL1|{4A7Nhzo+{k{cqrhIEmBDP%T&a`23~a$AVn<9k2YO_v5_wQ#)H1&zTPw-@JJ< z+c}eGQF;}rWdmDZhGoUm-o|Zw?fL)|*@ug0Nx3d}7hi_*$y&sRcI3$!#f1G{`RLg? z@v>}?SvGKou^J<@VHu>u0ED0oi7+}{&=ln-<yIS+F3W4%v~M|cn(+zk!K6ZfBa#|sK$T@`$5>Osp<~^VVnWMg(oV0l)BnF~jp|$^vwS?6n>xLw5o_?a?2qtP^aL^ZM_;_FWrHrFxl4=oLYY7r+ z)kp-5K_)-)EeIGc3S4qM~t?W#xVWy?eoliJM_;0I?Nw4YC(xb|IG2YA;A zLZ&tUm@=_Bu5QmXqDJ@h2g!L~!RNKMc1CXoIALH~yLS)hlarGfxwzIrC?9OkRJA#Rl^ec3xWR%tART2?-Vf+(RhZ@{giJ48YbIO?&K+SI+a@5uCnv{6r2GC#d3Iql zN{9+ytS6}6tA&NiW2 zCXU`M`C%orc$yR0GrjIMF+r3J?ZC}(^vBxG&n{Mb$sd|?0T{nxS(4SOA@1kG|? zK6n!7h)7t{7k_YpKWqGw#Acj!#+7tqmhE~sFNNQI1ks&|AS-Oaq1mobqRamM)BiXB zY>y-vuPiMs31uG>nv)}fXeOLG8Lv^>SnvS)AW&PYe0<;^+VJ^xd>zVoR7^|&QSJ&` z_782{II;t5OBlPz)u141;KAwFi@m94LMG8aPlewFrmm^0OVM%YeO_mq;1vj-lNrJk z(=ElvFutr>y&B~B7GYr>jY3V8tq0+uBn&vAtuFsQL*iV@FPd>|Y>Y4>>FL`)4h^|r z_Qw_y35aYj%+RXp*%Fo&9s#H@WN080G9gbielf*-{8-c0W=xnwE1$)^2!(vlIakzt zi`iFJDEokyOyEiRB!XxF1t3Gzfj42(<-bqM`>CKKX^ATf?vL)_z+9pDFMexcVe z)`K^#$7+Jc3WZ5(=xbh81H5he`udw?@4sz^Zszm%kJUO3F$!2xLST0f>{y$&Kl&%8 zIHJh_mDzRXaw7y%oWn%JLEEzk=v)Dx+}!KuikeHnW`g&;AcBLQj*gB90mFJI%jnb@ zM~X!W6AWKgZB31$o3Nn^upe>XzkxhOs1?x0jb!YE1sY>#5=ggXexcPEQ80gR#xwwJ z1Ne~|b}>;|_LwV%k}`iSh8h|hsZqgbI|nES!0Nq$A3*rXlXWONIcw4HzeKf1$67^!BjhT)sUW_6$@qxY2o6*Ylfz`U zZGs{SxtmIW+vG=8ctw*y>YC+SuYf~9RXy2I|Bk?C8;9NBP0>{0#q6LmkAuf|D=UIXF1Tos?{cx6K*N3aGcCIAXAg zz*-*%7Kl^u*$*UjNN~LXc;7l0h@8RnkxYb;FeuEglKKd2I4ONN#bFKB%k0sKWv5Rg zpNBen=bH=zenP_;7#I-!6)lvE@$McTwcXvNhUMylxnSRjV1*r2$0iUN2r6($gsN*| zzHY?mUdQ1ah+_&t#DkfChb((*RR+w(b#+u&gy*kbslrhZ!6P5~59&w+X0YpiwC&-c93ffz zQsP!1lOfRUNs--UwNFXG%bi+6qI{3;<7C@&2@SFt2X$7|QW>^KOfUKM^UZkeTfm#FQ&;aI(2%jMB zYcU%DKjc4oa%l8HI*M@B()`ZX_vOP-v!Lu#0J_YI9l1Lh4Oh52xsv3Wn3(YS;C}zk zolw*&nVFjWVC5%c#^1$pACg?~Km5amsv4icmGg^= z>OqeZS`=p;25<#3^gyqpf$fF3=22Ck)$pJM3-e#|@(T(S zF*g)oY{sCbtRc#*oU4ly0slFY@$7TM&}`OFNvszG#X8+4$Z`IIb@VYm@ONN^j-zq} zM?|OrJh8fl-wk~O;7@QSgni-}K-FGTQd*jX(>5S|R7+c$mY@fbQV216b|ltn;#>C~ z!u63o#^y>_Y-KXoNPGuAf0yifOT>{)A-gJPSHhTLP*OOf!kYr;yR=AAUfwRy3`|g7 z@fKv#0M@F5;6U6AV1F230KjId0fi9rR%t~#0H7MoYTyFNSs5bTARLvk@?#x2VQ8E- zZxR(r*HK6`Ip%uSH8~|E>h|pr>QaV$zVoZ6uA9yl?(4qjyz39o1LK61J?oBe$+(;=hPk|_TIREsqHh_*)0(3P}R|tiN$C(|DK4|UeX!&s-wo#M2Jns?!`6^SM*>9V+^1?H4+$q5f;B^ts@oS^ z@cHxS4VC?blqQZGv~DsfLTV1e8G?UZcwSy!7_Zs7CtjS`4V7TCygWCo{5W3*Fa8P& zI0U#^m~kRP5g>w4wy#fVj9+(%{y8zIOsS4CRqs3P-1l6WC!$>Ts%HE4B=EeW?~AhJ zg7R3&D+0^9jlNk?ZPi)Z2fYPDH^DnR3f}8*whX=+FaR*HZn$&j&bYO-Wa&u z&{~GokkdH0k^lIy3P8@%^iLFNBp@F@e@edZrJsxC<$ry~XMbPbgybj3THd^2#JD6! zr&Z6_De(D~Rom>nS-#>+aeo*oC1xkYD@xgapM_f`I5HBY#7IG_~^R(GQ^!dMYZaFa%O#`w1IE_^mjxV=K2Zhrlc}l8cgtqfszm8ejSEvcuv) z%gNp51=NR(jQ-eF+%Qb@fUYU}`w7H~dd?$J33+^-mw*0A$(R#Lw$${V2^rl5!=e(f z`tKhf=s*r)@Q*JvMPUemms+qRUA?~aUK5HGM6D~~Pw0;q+Vq!&7v0)>rRw!CnZ;15 z2preqDwmkU3Cre``~P@X*(9x0+lJDpRMJw=NfrIpu!+VG3=jLm)9};MgfDsbjj!CF zoY=pA%kAgBGhWK9$8u*Be_cL)v>E;%B6torMHkq%@DN7>9NMUAH*K?bV~pfg$Q0m9 zc7=(_@6}x?W$eFl;JO;ndc?M4XpaoTD3X+wMR!Ex$ZY3CkY5CqTbo;A$^$C(5dH;+ z*}6kLgy1JkF&UqrFhSNKsyBoU71W$9(M^mvL&2d7jG z0}7d+&-9is0X!%kK75BbzqB-SbtAwP|3m4^ciDAYmruH9i(C2a{p29_+K%hYWnoe zHUj7{P!N%ra^Sz|0kFtS{Ndhr0WOwcIV&N!a%Sd#y*pTN>E|hs64me61Zok$glmhU`Rd%XV~8jh9w1$AIwIEPkI?#Z5~MNlu-8XGKS&`!1{ZGBhetlmDx{soygf;q7hUJg_LMqQaZ#tg8pP2aZhrS$DKF zQe1$YE!-6%u&z%pd=JH&+Wh|3O@J51g!Kezf&~Ko{cc~F4f_Z#N<%|a4MB%O!I-L! zaT)fWe8&&6j~zPKQ*hxcfJC?I3b*m`3Gsk6Bxsue3uuh~B=j(@;#4IocQ}rp?68R5 z^AGRMx*s4y4IGRtAiK2DVU*FqPCzxHmXcGyglz?DLl_xMK+~^Z+T%1h0+B=BLqb3& zjzTee>L!SD9aQKCBGiup@Eqv|EkqmM6pk_##Rtn4P-i__$-#;AR6DyY9AbA zH81UrHe&xT!rI5~)8pcb3h84oC6VEhiC=9qWQL1BdVRyg>4^>rh|1@1=kDDhIQte% zEB-z0b<*1rK{%BRn+KsTfG=i$_c)2WPgn!ylmCmIWaN$v*4Po?;3^>@G4bJIe~iap zDf(-m{ori%BP1UtS>n_N^ECltlwDGeAl`z4Np*)?+ZbT2yYv>vDuGR4=3G|1k=}%L zU9+Bx24^^k2iaf0L?B%bG6sGb?Y-pkj41lmWYynA2F$%MNh$)Z&oynp=|vF`AO!nh z-l)ZmC-FeXV9tT0sXeIFsiN{wY1^H9#a~88tLy7mu`i$tsrMo1_^(MI|#25IT8y03fS z@u1suzqi){RsJJ#FK*vOQIJ7{pFXVt%?WeW0XJjpAoCtEv1**Z5W|>35H>`p08mvZ z8YEc>$XmaDJv>aIqZu$;roAOse*Ab~V1NRTxaZtREYY=qyU3IVEwKhKh38kt#?#rJ zhNIb#{a>&f%*1~kM^e!V1~4rXa0EXwxz6RwmkIU*B)|zwcJAB38Esv|bLYsnGS&eovIX~@S`Rag*manef zTJyt)Yk|~&g$2*JqX_un9Z2sZ%LKJO2|Vhp;NY9Ffq`nrek!Y^o|)AvU)Sg8j&V2; z*BXKdN(wJJFFB@wI-tZC6&#_3v`|UiEm8RB5gd9)v%}L2GcBm|bf&j5uZ5M}7u4kd zs!qxIuk6GN1oF2Ar+pD`c##l`P4}CB%?qBZkg8G$y_3f`R$=ZR3!YAc$xdtQjpG%Q zI4CV9CU(82I;QkKczbXO#H%akv&03@+cV5ZlSriGV|9TDeP7Iu-~t7<@_ub9{{MlL zz4PQ5HQY-N%VgnbD^B7uNJ&XyPR46*g4eMYb?=ysjZw*L2KZtUVEBqzdG{V|Dh?VW zbBPbbeQ|y-QPa@fJpX(z4xn%OTXZo`+~C6>&PHDUV+|4fV*a((=~pFJKig;>_(Df} z-#(G)+WopIOuAY04I8`)?@D}^6z`DOa#nYjrg(w%UE|A_l0?ovme?l|mwY<>yY-52 zCAw`cg-7H&(*W+G&Ixw)2g9BEv=mqa8At9j?h26s!%3=}{cHMo&{_W5T3gyb_fa@$Puc@W< zIu_&48fxnHuC5(b{dw5_7xqPK0w3cqySj2#;-Xt3ud^ISU7_-|wX@TJEcGxi&s0-0 zM3`OMdZVd3e&R|2ldDo(jrH}qLHyBoaVa=_d+?;KQ^u)sc}AP9B~^dU_E!4^;$(3%^cXb`-y~*^Wl$ zoxYh_9FP0Jiqa2`IUqT|fB*h4C#N0z(AL?Rj#1!Jh2_aprSk1C*8e;O+8+xV%u`dw>l5(Ws9Lx&z_XY1&t z8;Qnh14iTEVT~gju2{lPBeTcM)3cnGj?To)ECZ8tdwYB4g9mCDmD@lnj7+-Uyn8pR zyU>=p%mlw+{g%=72Qy|E-|Bbo-lagUSp8#2^WecwIHHDs&PkxnSQnE8>19`XeRPMU zNea5xy11QYc zSEuMMWZ@yIOK4;`qFe25_I$t9^SxtWAdz#^CbEe@gXTFM)z_auuU`GnBMA9(_3D%9 zZvrNxOzhkA^t6zmU{w9_wZiz25c=f{QnpYRH&}~3A9Ti_jFJ*FxGAUpEJEYDyKapi zqOROB57q4I2O-@3hauC3U6yUt)z!K=y*)kqGWVtT{mQc~?0$?2o?}*^gksqS0b&~G z{_Ne|F=v`LKY#wlk70iXMv}x|Qf$+rK0ZoCRhb!504bS82y#bt|E3c--S>1b6jX6& zXy~2C+(u5H+RNn5oCWJ`@92oBDVmU*cznT~JGBv{SWzFr3IC6imZu~*_rga0Xi-POgvLR{^{G3HNC$xypYj0<#f9XUEfhLt#2^8I(O#xe1FvQodn6bbA=!*h?W?Wnbj(a0> zGgDHO@nH?9QO4%xx9{ntTZqQuP$fPsDYxf0%!3beb34#t^X~M2_>lAChhx!`C-#^D z%NwatL^Wt+O1?st%F55z$3h^!438d-#~MC9_gPQGvfPX(QXP8s9r?>o&=aO17k>o- zW$#dCYGNX~S1PivKl;}1s`)?tkwP-1Mks%<6|5j*`q6;JfYTKewgyxn-eXxHis+ zZ|u=KUvXs70zdd8l_t7L;uA}1ZhKEpRz^mKW{>!Eh7|W#bdoPvV=cWOhT7U6qw}G`9F>ljRG#JE_jssx zL&9fiLEHh(8chsqB{uSU4`6+Cj#)#Y=*Sr1dl!)1zr0`9Dw*?JJZ46i5 z%^5W8w)7x;lX^n7B#x}ga7Bna;KOP@H)AN(!S*zvvDp_je{mZFXM95~FT!H!TpCzR z2ORSVjg0Js{C^&Y8@~Q_Ir|E-+ELS=%}h~Unw+c%JIm5$x=ECfNpJ#e64tvgjNk9DPgr>Cz?6~s-ehh9f zK~zlC(j6{#j8AR-W6|(5bP6f8Q(pe)cD;N0IGt#DX(Z-rN9mJK=UU`9m|ZCS5mVHd zRSJ_v#owhrKHuw*KQzpJ(Nw*BSx_Xi4t)VyTAXgb~7wtqOLIMJxc5!c~P!8lfZ=;SojsylQdJ2Ej zR!v^7Us1rTsi4w&#RfDC6%~E4aMNR1c@G~yHpV9!%%1;hapdRwi^CAKPJZe{*?_-;lMDn>z=h1@+ig0fDjf1n;--w@5>cyu&H~^W~msj|CiJFb1-G-_t|9duX6z z_b>l2(9yYu&*H&HXRN1ZVE7t+aK8Z#$5?x-topm1YM@FwmJ&zP?`9pEV_v8R%gB12 z$mvx@eSLi{{RgA5Z%&nSr)s?{%Fa4D<>ABE&b`gr1HWN&tc3H5AS9rN zaO;1?p(?sw?Y92@JOD`tFh@7kf?_S6Sl6s9Dk>7h+0h+~D`|A^X;ZERU8l0vGBGuE zzy##+yW4geN)B-HX{g$G&?^?ArUOy!zz5jzoA85d#Ym~C_>J>G#vnGG&!3B8)O@P& zOSn`Yjn3Uyr!-T>82|>?zAQEq4h;!0z~REa%j5DJ!y8;2`a&8lsA$gOraJ!QrYBFF z*ul>~^mHzA|NN-QJJa>zrMK@;euysr05t<@5+%-n2A@bsp`2n>T95x+*|_Z+B9{XL z4$TE#$^&u0D9w2^D!<;fSH66kqLZ&${N0oIdxiCUnAmL{;1DT`g5qLRsIk#cY{m>C tJ@%ycjm#L~QvNHEgZS_NxWmX_3WI8zfz{bh=J+;6Q&mqTSIPS7{{a;t*G>Qc literal 0 HcmV?d00001 diff --git a/docs/images/chapters/components/5214256129e6396e7ac1f1713fa9c88d.png b/docs/images/chapters/components/5214256129e6396e7ac1f1713fa9c88d.png deleted file mode 100644 index 8b2dbaeceacb58c729b7f3263f8038ae733ef2bb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21915 zcmb7s2{@K*yY8!!A~R8;kg*KOoS}G0k|ISiCS}T$giIwfNm8W96jFvtA+t(KqKPtR zNTYcw!#;0)|6c!Ed#|;R-QRKiU%c=0+|PYq!+D+8c|GC#^mj7SucfC@D2%&wsD>2E zQY8w7hJD3y{DiagxfT9z`H|f_sgwosznkS*aTLl1$}Z{-Bd_Z}I=szZc`v99=gwsq zrZF095p}p`G--Qeh2{6wNBsAsKGyRsPc6)SX7Y^tq|Ke62I=KnUnmP+u4j?S&=7iW zzpYYTZ;tBr?Yd9O+mhs%Iu&QP#)*=~(9S9EQ)-b{^n~MfFeN4?Uewt*s$wMBV8b^i zuHTua6-hsrpXMELgl{Y%E7?18wSgiv!^j_T4kjfk`D2vo`kbHq zE{#4|lZiE_ytUQj&f!N)#(8F}=E2z-k9{V@S4)_lPv036k!L7ee1#=GX4GW2VjoMa z>C5{19gjVKvheao=b1nLJU{m*ZIi(kCLYDW-B%^U^LEge`b;>rgPW4*p=qt!-p%Fn6xYX=Uk_Ut()VsSI{x>Y~Q|}vRcy2q%SEhBV*(ApFh3L z={uKviY;5K;2ecpMC2J@1=)1uV%~TDUQE?@nq_iwl0u=Qqf_x3-tHNw-4loG~U=IC?uq{UGt5H+3t5sTi7mLbv}0NR=dI{gGu$(WY;(ar2-fY zj;_n}bN2C3zIXqA?4?WRqM}x1dWg}FalE~AXse= zKQQjRz$4b;-w6}xr5mvR+LftE(@QDFpNgm-=MqE$ zEDRjO1-xC}#_MdvnXmV?($%Hc+p}kP5$obYwn;5y*=Kfy2+XaOwF~Tce7g4CJC41{ zDm%)3COE#O{qS%2v*7*v_iubR_}<;ScNtVaG&Ql5mX;26RFsx=MqE2?XSc%7Z|>YG z+sUoc(t$?eoTEOGrn@72l5fxX*&XRja@^%_VgKRMy>E3YGozgryE$H+Npj9f)}m$z zTvKqlP+Y7SwPx$`Q0Dd8US7q6x<*mo-sjr1`gJ8GLC*1DbqXCVZFOra zHx7>FK&;w^1!_-S%=+HJ=5)?)vpji1-+EsaW%$qirr^ku{$(?7-@kwQ^=+10-*eU| z9;JItsrxcaXJ==voSe-1+{SZqa-P3>^>n1SF8=p^EyIdu(d*LPdY`2^ikcfZuFMhs zH!J%2v8~N!w68wRv579>+O;E}9@uNmAL@S*zs2TRl)E!k=zsy;bzdBIZIWYsoBF%Y zrfGaHY$ST#zYo)~<=y7FDoMd*Kx8X5gC$RhdM%XLeuhom1?v}=#il1(EVnqdN;jVh z)7f)F#ru-u%Gl+fdmN}4mnMIF4AP2Ro$At6QSjiwlb2VetdATq{Lu?{IW+vep+T=C zZ>^XVImX~}?@Nzv{~4)Uzq|YjhZg688r<{Lt4%M9&M)3;cHP+5Z{N~eLY#l?pCLRtnBmCOTM@&)?E&XH?uOw>C# z*y7@Ee)-^CQ|oux1{CoRe#`KU1F!d=in#NiKK}&{s|!z9eZ zn^+sCI}8j=)ZuoEFY7d5Hk zIdE}GARRNGRnyHK=h|3eOTV=i3PwdmAwt-5Be-PT8>QnF5YTd!;D4h6x7X$0w22`$ zHr8u;nBQ>!e*U<6D+h-N(;|oJr%!2N&1sw1SXo)^H{+{9gW{gG%?}!nfmo=uLlWx%esX!!gV*u$gq9=`nBL*X=t9gar(i#>zbPD&tA}H za(G{Q7C)(dGs^eo%^TO=XN=9K!tpg(wosllw&H*VHA+=&ue67Ud*{qa-Wxn#UOdYw zPo6!ya$Jst(BI7DV>)~G&{9lHIMl05OxmT!O~`M=ElWv&*UfZSRYVxdS$CXo?4873 z;kfu2`O72iqm3^uHL2yD*uK*;@9Y;y5I?hLjpHtZzE_(ZBn&q0wIEsHa!S^wSe*^A zI(?r4b8_r+-#S9yc74LqvJzV!W9;y7yl(vx(2Yik} zjj{0IL+u;Nr@99RSE#C%A4yry%1U$iaND{37~X9Mhri38_*B)<@T0s<-FtMSq(#|^ zO`A69-B9L~IQ-D}%a%V=Lv+JF``&!`02i1!lj7*;7#YbW^`eB1*tO9*Jh~wsJv29W zlbN~s7SA6h+-uh!`O#YFuBxD8IC%%VHd~d0on%T8$SHZn|ONM<4 zbaiw@N8M&ZOAh21(w>?6(kF>ah)e?(Y;*&Z)`pwFL?oY(CrO{Um$y2^dBCq8kwxw+9=BC7JL`ixh7xO zs$YHdWK|%I;;C;&)h%jjYC3v)PmZVf9dwl|GS0W)EWP(Bsgh~cswdIw6s)YR&khdS z-7zUl>)tYh?d$33q0!XTykl0vmYSM60i8h75wnw zthy8&Vg2vPpNEG}85r-|y=#})WQE*^4?`IeOzN=|-x z@jivD_5I>ncQG5kZEmiPQJ>Eq=Zk1>xWD-~3+@qKQ~N%Q!|2Ulxb|W-032<9U*BJ> zX2=hBKK%%CB^^CE<#HPic#>Lexekps|!926@?CflrmtQVwW^C}kq)B|F za(vw5$&)8l_4PRo53Bh@b#{FG_z{M~WgbKpC2?K(6upIog>5M#0x|uI#>N4WMWE=e z?Dl!t{LsRDzTPA9H5w%)rROhS_9C6)Pv7uhvmlJ4>dl*bdXLhR5);Ly-ZPF4UCZ0t zV3S<>MMy-XwyJ8oy|;^DR@tl^HTHz)X#4*d?UIH2d6hj@oM?L(f97%K&;Lu{dslY( z^5t_w>ks@ew(y<_vao-YYNxKLS*y`z{Ai9K;UT%DOPA_o8d}dSLYz1{;OJf6GKs6W zB+aT6x_tK!&mBBC=T*Emc8NuWuUHH7O7bYO9htkYcK`UXxg{`NlrnviE517KM9Heqt^WnLp`W_c_c_;p4e6Q4>L zpQ_L0@A68xV)xTXuGx(Q(r0t$Ta;^fc*v@#sJuA!n3zJEaq>MV_CZtn@l_=IS3>x>0z6cqW3WiK%Hs-VWS0!~FuEYJ_t~>B=@W64i9| z^r%G+@Bg`|*dyl-jp(&zJB-&sn2?=w5S#mUL(U%&q|`BQVKvpm?do7@nvnZOln zY{-|_DZM?lp{^%SvVYQ4*t(V7Fvlp5E-NEL^i(g5RQb!?pP@==d3nj{d4nSV{=}>( zznjlbZk3VgtlyXQk3ltmw_n8WqbSP64Lh0DX9GQdeiD;-^gyYUEqobUI5m$EVDyTE zV1tc?)=T`U9sBayAWNUOz1VFjZkYKy{&e!$vow^;KIdA(ejAbfM>)v_149} z;yI0O8}0JoB#GZT0p1Jzf zt34j^0>mQEBH6V+KFxgU+dGuO*khdp^T(dnz`ALU9FgRrs5L29u3V9pmF4*Rfv~>5 zqh_TZD}S~<;xf-PA(!tSs$9^X`#qtx=n!lJb?XDDIEU2qbiq>HLh|6-_4HP${T>u- zmLmsw9td#-1A`_xD`RgdvU7h6cG-{haU#w4Y-P^5t!-`ThMBr)xg^QP=K^0^ z^*xVGbG#guH@JlQt^2k5!uj0X+`+XO%Tc6^Opn;8_>8YWS*o*pcWth5{>8YsrIe<( zZ-cH}S-pyp(crGBoXO$Cwa=a{KX~vU!s6>2FqNYA3cq#8kJ*-$6@%hJHAt6C0do^v zKI4P@rOR^?NR^ylIj?c_=tlTn5R4CKz53IqwYY}#)~!J$B}!4z(fqMGH}msje*AC( z*b-1s;CkfJg?d~uSG!j?z;-K$NhAgoK1J|3r9nH8F%#%}~%KNATck z8xYx%R-V)ZGiVv}SC5X44u44r`26GJeZ_!zl?O#dBlRLF-En)>b}Y=#8RQ<6C{c?R z`*kS+k3EeKx_)WoM=t3IGTEj@w+F>HK1bqo8)#T_UCnPTR$YyV6j2>SSNrCTVNP3)S&2-0 zdwci5KnP$q4dqu?Wem#8p69WGCZ!%??HwIG{r$nW_9SUoT3Y6`i3kYz?00pQ){fzm zDAmqERQesb$vCg7wpP=FQT({KxA*kVM_mPHrkpb}GgATfrYGB6;(g+_dbfW3Sl!sj zo@j$x zMdergrbj%ZSfpsCJHW%5N=_d4_|?7!<+LJ-h2_kAQTSwB*1A_y*bNp~;2XZRaSUeV09{7_r&tJT# z0SmLm{>?^3W#!M2QWb&a<>iAuu&!hBE}c;;*@eUMQd!`ULnBBw>4)wgOLN?}X4jrQ zPr=!+f)QM^^%x35Ef1mK!SCO}9`X%-xVx^VrbhaBBM(wdRZGj&S_I#EAz|U=0QiJj zq8b~l7*g3e&IkN$*PIqSxYlTSo>|EfKxmwtb=?JC2lei{uykOtEcB`^We)m;_*j%pG8k&!G+Ep z%0=5`?{0kX;6YQWCY_hJcMrk|x10k9DK_Ce8UnFlc{_oEgq4-o0wcS+yR(^VSp#il zb6=G-KL=YkQ#ieGf@R%01}xCT#AJh_VzCCZqRX52@3m6Y{D$YIx-^C3th=kuDti9l zJ}Q$q=z#6hkaubgEVQYM$V=t$MRgbjfRGN#C(ZHVB_4Hup8LmM)xa~icnt1~=CNR8 zWZVLfwv3KWP(_7DP&=v$=|!sriHy^=r-s%D1>1!S7t(S?X_<`$#m^auKSjutKK;wA z`GC$2ctYy~d-k-nw1QLL4;q1@@(}9TEFn?o@zv1mu_q(8jcmKLbGstl#!7saQY}?lzWg7J{+tkylKMo-Pa*a3*z=6jOz+qy3|(jD6+sLB#WCu#K&!t z2l~S;_JW|~sE^|sOAt{Wnw=RdxPM<0!G^QZIKCwptVf?RjT~W4PR}00N|c6P#BZ`| z$-80JCcDUR9{AppYxiG()!gOF9LNjS0}Y9T;HH){t~L7RWIMipq6`$_O~;lz5?mTn z)MJnrYa1K&ZGUgsdvcVTpXHJ-6fsaA9rvpCa*G}(KZl>!S z82H>?a?-A&v}jP=NOxppgj?NT#n;!DgU?k~3!YTqJ$B5?%ggFb#x6o>Xc>cFcP|K7 z@PFX&o*q#i2gV7ve`HqX#VY6c;e2#-G%iGcdZ_d1b)}QUMIM}JJLth%l$MzpY*FsR zk17~+>@#dk?6qs+rK^#=ViDOEZC2SMdr(}rjz4rzqH=bWLG90vtq4&ZK+wUkeH-8% zhk&eOu>j@;uzFeNcJA5`MquLegSsebmJ>1qw@6(~i=w<(mIBG9ut6U8cl&_o2O4ig z#&0qv6iC{4qZOn;N0eaY;fVs}fvt$hL&Vg*bn#+fSlEj3Z|`?|#LJ*W9AvyIWf@Xl zt_s#sxRgGAJJ@jo>d2*VKU_)_u)YShK1ijdi0lNlf{$d4WxHcp$p>2x%yWKPmcELt zhzEqNd8r4hd64dNkljdny&{UXRAXZ&dWCc&2U zv8IG<($QIQ>Cz?X6Q5*}2*b(FXnCPnlC-QavzA&jC(opmF(R{ds~f7Z@gE=elN)B_ z=Q9Tc1Uzu=SSz^m0@cas&f*QPyw5eZfibTgTZ#fQV+2r(4v53#(4p`=jf@XIlRsAC zTO<@CXL6dOAe}$??VT7x&YEApe&ONPk#AKj%%2(m)p6K^F^!(EzSY&$tzgp#`S$#% z4B13k)TnDUG&H1UsNHt|I5RjIh7%|JH?fGtRaB_0maPq9oqG-1f$Qz;@tUh7*<@lPS0Q6478m&`3~lA;dWG z4Lf`L96j}c@Yn3+|538y&Y)LL4m4CZByLsrIujK!>=RjA`(CG)L==)=6oiWVe4_G{4#B7#!*0o;G!bAMWg#Ez*Ru{fF6p9C&&&+GOMUsTH$$` zoaa+h`Abg^T>yzIh%N}Cg4younqF&%;I9#q+l?$p&a|mxLf=*2gHt>tJbdNA>lEUL z#g8AS@6XbAb#r4ik9?5;au=a$%gF&f@Tp9Ikeue>@2=^a6v8M#UgzMbzQ_ZKcuM?Ox zHt=eAY>e<0oE1-Gn-jL!G!?tqkQk^wHy$^rOtsam zy=h$=;_B*(6Uc7xo$5H9y+4Zy-w`g2&;@t1wkOG@;_TI{TwSucXAeJe?ty7ZD=5^R z?(!2UWs2V_C@4t!)!-Xyk!UVny(&`5ma~POot=B#y2!j8M#p}2JPu6>m|p`}%WAIG z@A^EIehB}r1_mppWQSupN1D^LTG0g{i4OEAn$g!`nfx0zkWNH`YMkp8fq!WM&d8&| zOGP?2R62C%kV%=>7Mzr&>wf3o3yOXFg1I<2&Vyr0*NqoX%Wa|~3KGcHTtvtW3+ zfywJ;#=Zc*(V*(u;`iI*U9K@RyNLc1l$N-voKdPEG z)F?GLG_)76e6a0NK8h-Iyy<@6KfAvJKdyAryiICZ@IK1Eetw0XKTQ`YHL61faG2f4 zdzoN^bO{%TWY9DATAj;W%hnB>fi?pJ%BS;{mFnXYpep#&48OIPY!x@oTcxh9e#fGG zEt)zcFRvWyt7k_?VJYHvT5h&1lahnLf8Wy!cKIARj5@5QzCK*xso{P^PaR!d4OCcE zV}8yia2ZBu79jN{D4i5Wi3f}%H!{@~peY{j4%gcOtPW>K&qWQbajg~udliwLjKtO9 zM0G`uEf+6eK7Z%V=A*}t3!*!S=5#HIuxK1M%N@`)Gvgt!2Bb-3o<^p}{H(Wyc{IJ7 zhsP6CRpI?FuL{b@7<%v;vLnpvS`x0$4cw4=NaON-`I*5|A32APVwxM*c?SFXZhnYfM}D$- zs6!L?ac(c>FU`|c^cvm(t7)zb2xvZ#ec9dJJz`dll|ptASe9^vZa7@HRj`{xYQ$#{ z3^g$QEiRoZc8+5|AFC8!HEM?e(opz9nKiS*XiY^#=);HwJ3C9BJ9lma z8p7aoOPO*+N$UkU4tZpUot-GU)IxCS1Tb<=?ZvE66I?WXQD0w8fHEo<{MmrQz(c5r zJ?*NULLK|?RR_Q$2^4CR&HbqH(R%FAoE*-$a;jOjUpm~ z&7FMjUAiPkw}hkBYO!$n_JbP-`X{c)gSS4@3gm)ioE1NC`?90@-^5(h84xkBhMSub zXt*#J91`*wF~+^4UTLBC&+IDF(cQ1&(o+*W{Vg}Y;Ml9Rn=Q(?OG`)BXWzV#|0r!B z{;AJe#3kg*s}5MJ_z>25rwnB35()wZSlUeYIV05=5sB< zgOjIDxs{wbP1*kQQ&D6CwtffT#ml@qY#=Q1pQKpW9y>;`P=d7elG~_Bv|nYHAs4Lz z@5yc+^zJ;EvRnE$B1rrrSp9FL;{=OzD6Oau1&VEJh>lvo>_2gkp94gQF7TDtV;I_~b&NQMjgDHl*8BjVS7 z{8;k50nb+R{(VumBLoEJ7CMdEhwAF;($Q-HJ)(i;Fw6S&3yt!9^}b`TBVKxVcu-Nj zhff}|vf4ltH$Z6dgWgo5k@25xTqK$I)yK)rt7wUrfQusxFM7T;aBX-1BPTn15Q33_ zv~)qY&Ps7$c=69DCtHi%1PMl2O2;&^R`{zv z%(sjw80n3*a$$yTpeLefX<7OF2T&*}RcI|=9=#`^E+O`7YVNWgq$e@xI7%CY~@rQvNMl4B&5qK0ZExx0{6Z z5&~T+=T;*xRwEyZm9DnG2wu^u@wyTS*)@w*+XYiJ_?AV6hgXBFbDR2Q4#++D?b{KQ zKfoknUQwVbp{|I|&K89XLO@QA6Zr4ety?68^YHSfW@Q=wkO#g1iF^3l1zi0Jh%jqg z+hAnfG~1U~gnax_ntcC*#LsVA|n}4Nrr;_7eI`HN(5AnQEIwC*kuXytoGm1s|G*U zryLs98KZfDf>n}?0h;IHl`A2zGD3z!Q02@$Um6!%H~7o(2oa-b+~1auH9N-y;ML@5QX(BwBJ{)m0bZ^lFK|= zJOQ9YFHwdTUF_lUaSrn=jqV{*inD;mh}NN^V8;^K1ZEL&4iQ2|-SHgsstW6vYH zQbH5%$#%TVcZLm&)TZf;w~HGfO_Q~M(^q~7lqCrVpepx|a$%));B^s>>Hr*FCx0A5 zzKSj>Ej~f1{OYnvA=6tRD)`jaPb;n<#t=!8 zWx$-=gCeDL_E=w78Ogdt{(%ayY^|W!6XX@J0EC0C`2B4YxPB`LzOc@-gAN(mp!5s8 zMvlC@eSiT(JC}J@P0z*s%Pq>h&LWB+Gcee7mMJY+vIN>8qPjwqw*LGi9F%4a9`oP#CdhYj`)|8>WYQXhm9&+u9OMp541_R#=yXa|#tnxEq}` zBOm8oE}z6=)(6b8qOKd7od@+vcFn1^fChm0z;DlRovr97t^_>NLZ9v69h0*t-2v~H zz>S_j0T86-_uJ}e1Se{o<>*3(hv0Z^wtF><*3v;MY zro+d3LZ%Pw&Z3^QL7i1lR1}<_FEuoD>nv*KEw(Q>2qg+`f!%zkpzHJ4{Xm2M3v;JQ zA|p~RXb8|3IyiXyh*oUf3NZU#l3jRj za#Ua-1@bm>(oujtpB|owgsQ6>Hf>Vu$`6qO0W+xSBlC9J_5qv|0vb!0PQG>B?YWpX zbjSYlGslSpr?Ih-cB)t`hcunx2P(`v^(zt}$U|`_6-P^Akp@0Z0ATlk8oL3 z^XEpG4lCO5gjhhLiA_jYVQJaLoE)$#BMbpN4d4rnU zAZ4JcD&c_9?P4?EWn*u9^yu>p!<<3B8dNph*4EZx5fK^?lr*Eyq_dGN^Qe?%1&_0{ zGujF1hNI$XpqWUa@;XJm4*A}Iu(9#FKOlgn1R{0OI}0>MaBiYd;MS|}%^}KDDETIu zy7BSx!4N|c90h@Gnes8EZqw0EAZiMZzvd&^Zt3z>+v9}yDB9(oMXT5bR14`Qg3f$d zxwRT4MYx&ExBZ5O^d0Sn25DoR6?LybfYW#MYOk4NV`JM_>F);(3VlHN?Sv_C$%K`K zIhj=W&YbDmo;~_q?r+EBqkn(w)rIo?pH7H=dfn7i&@}n}#KM-nr^Y}r723XB-EdG({PAo*>sQ-!aDD<6nc2xS>Ng@ldV#UiNXK|LlV>Vd_e>~14O=^z#$_Yr@O=^di4a-?hT-YPBI(_4sKN+S!gGva5rvn zyL#7TS0X4sfu%~jeWt#WOcWX)>RJyB_7vM20^uokj2%AN$NBMv3DgP|v!lCZT{?N7#1!{XQ^>hOFW1-C z)jRMPV3cS~6&r-?RiERq^c|sv_X*z#vV%Tz#flYydcvA^cG(xL};AYe0HJCZWGgxU*I3)y$^rEzvh8*a5`t<_DoGK-v+M0X<7oh2I(9 zxrr8%wrZrMr3r#3S`!@R1~IW+9zt(iF;+s5!9%ByOLp(xO~BaJJA|1QsW#sK||Sfb>^xAH0i>VSJz|lafnU?=v)^phXu~ z=%#GPKuJ^inbRbOt&?}kZZhr+L#YP{5Q}Est~lXTI5%Pb;!DV>qRxFrco3^93P~^c z1r3FWWxsukAlf=eI?kn}tjFm#L!LlBA-!b_tGR*D-29&*(!C;mQ6#TLof$Rrro3ij z=r6bQ7grtlwjNtW(l!EeZC6)iO$W^s%1si|5#xhd1+{OYHvj<+yLn_-Her0MfUOC# zLAA8yc;oe{&hCV471EYN;^0>H5GAMt0yA>FXdY1E3(aNTC!^K#p{w9rr2ynPJT)cN zvT5|vXwK|K!EbyDFEW6cFxX)Y7)ZPt^|Lwu>Nu!^e{`0wBemkq9YF=IJsK9a=fh;L zAl(xbPKaj+3Tn}ewgzq~U2VXRhtxpWB8m|7+qyv=ka`BN4>c97g2E&E5k4&oKnX?2 zX^D6eheqISnT9!S>OIX1g9smoA^ju`WXxMIqs&^dY88jS_4zkY+iF6x;`ysRoMeUJ z?rK7ghOQG3D4S2c5);FmXHg!3EK4GTU28$=pec2z>B9$Y@cHEF2~mpnJ!unyf4hF; zMsuF|wg*lh4Lx4TutTqr;{SUkG*Nb46{=7uP!NkUGBU#Qv~|GQ(xH!|Y<6@1N zf^z#kZcjos+UJ9v<=cQayzK004+szKyMON<3-k+UkP`-iLb{>^=V6{e%YW5v2jHkp za4BvzUq$5GAdqz3=<0EA^W1Fu&?(0~v^z5^s}~T890{}%L{zf*(7p4<%mM?xVdN&pX-QEA;KlKh_rT_lUGwu5dU!*m!jN=F%I zQtnfvZRYT?x|#-sASs|(FfhcpPW~oX03cKLhK7do6T15P&k&(p5nBjVh3aeYeJ&SD z0NHQc=0M5PGBPy)CBu~qbIfS5lZm@U{b5m9-@(V8Cs2i3K{Zc?upnD<{rX0T6g5*r zU7=t|*UCE)of+v_fZ*ehpFVo*n1HxAJ!ybpiIR0{-Rhdkr zRifxWtB4b4P2!ETk&59rUCT&um35_Z#Yq8XfwYFeCSn+1B{^lllhM&j&;p=e zsR1r~1cO*M81~ z1W79w7iLfaD7crB!t&D@dca3GA>s4U*C0GOfNm^Q;H9U&f5yo?L$qkhHV~W-JQyT) z>UlWy2mtrLY`bc&Wyn3>pg&2Z}iy zRv1`9l|^^__!o`P!Y=~@tIN8) zhP!EqFa~T3X`O=Z4MLL<^$QsK<$qgiT-%00cc7KT50`^}3*EmRXgN}DqR>Z;M}mDf z@)C4n!ww-vVTPgC(YIMjVX9Oyv#YAV8pOln@6Emcw*C%~ek5PmI#*~wVDSti8X>RM z{;Z<74t1&$krF6CBIg^%10o<*)zmBj)c`9#mzU?9+FJ(SznGX94rW#boqGVarsn1y zKwH*G^+9BwR)#G6niQya z?@FK$8fi=cZA==rcs|;ttA>B8bYH)|u+Ta3YD%6gLO~%kF>%dp;3hlK&wseYFW@O> z1F{Pb6+TrP@SpUfbiWel@9XX!ZoJ|77Pb$i7?Lx{JQ9lq1=G7lz*xZ z*dI$SEZjmyMM&*MbbiR;z*R=KQo>aJUGAQcHLGGCP8Dd`8`C$V*o2W(M6S^C3RUOb zE?hI*+f=tv^405SX1=75Yy($GfAVzqTQXJ_sq&A!;HNR4_so~~@t%;rzpS*|A=W#?P5A0Y;rvbTwxbpMAjf(g~yRBhko0_voLKd=iafv~IssTx%8M3Mx zkb{V`3>|fO-4TJTjvie`r%I=nFVEY!yivMICh+VP8nca(2^J@mdB%AO?@WklROAGm z;2AHXmLuv+2ogiU2SJ>N!A95rbEd6Kt^Mb#g$Tp;loX|t%TYpNdXx&e4t?G`*7fUS zkUeW&yr3uJVwlkiY%zYal7V6WKpv=baq7;UbfhEzJ}p35MuyJn>oN9s2wSCD?@`SZ*4t}C(vUeZx8ot=(kN2FE& zsto>>@H9+xAN;%MH#^t+ohSSJ@#7lM))2M#HZQ~WXS~bJr3w5`U4zwTZg<`LU;JCk zpl=ry`I@vbFkBIg8caY^lIZk_BMhT+oetUz!_P=k63=C2WHd00T>!~pNzBKW_|de- zPVf&R`qwFx>nh%CXlaoVLelL3Q$a&I6s}&T)6%`uiI{MG!Zb&L-AqxoR0SeD3bRA>~p;_0V=Q?VP>%7u>w&r zfBzmy5;CB3L1AGvU||n_f+DxRC>nfS)OvM345U-)MsJ zc+veH8oc_Q|44jEafLpp6&Ur_(o>s&AGC}GA-xb+==+C*7oYwFY71e1`p5m(^m&&- z1sxoAM2`YNz8eZ3qHiI<4KgfH&!tWA?<0Pnis4h0KGwiZOqs&M%^kK*!I|V0(rhX` zLQCm}2|%c1r8Kk>vdz-{OizZVohm&W@qRTB_6bx`oSmjC$qlPLMn`sGTphav{lZ~u)lv@2{-ZqQef4w>y1 z05cpLY47_k%uR8tcuAwv)r5a8)`dH%8!x|LR6>H9CL`r@v$HhMo;+Cwnr#Odx#4f` zH<^{V(-J2^wZ*VJ8Ra*oU}l37BgQevBfcB(fry(!n0O;V&RSz|p3s}<46Xp~Xr92a z?X{_nkY;_^=~c}#{gqE zjG_8(w}9w~{-Hmx8d8D+3|;(F;ZCJ~)9nqpuJHBycdk_`kYpG8{gH=0{2c1GYQ%HE zCcF0HEok9x_jUiL5jYoO8ZJ>O;LpJz6S{Fnl!igU!L$URIXSJuj5Rin zhC&`8b|O4XEljhK4thPJr6Y|k2%*md*^%-zX`!XFqfYkJPyi)B^RVebhRpNLpOteY zmp-}jX0%EFVW-m#=Ju|8I@Df|>gmvhcA=M^d#-PN`CNYMqoWCmt}oxcnxnZOp?qcA z>V_t2?+4}NTLslRW$mj1R_;A@kh(c+cD}o=MBt{D?%u!1V4gixUOSe9eFWb#fw@!-u5A+RiR4cTJe+ z=7Rb}!Ey`ca*LSHpO2*WeQ;|g8KPyCSo;P=MD>@knWFnG-x&wH zV=rgz6Df}`r>`#*S9>2DGAnwcJn<37=juYpgN4TH#DW@sV_uu&CXxpxV_y=cqn{6Q8OPD zy#KV-N4aiWoa`44Q%&jIcC|s_^?EYszgjrv<@?npfacfrMchxGB%>Jv1ILOxoQb4* zdC(58>1@-xs~;O71_`8vRSAoP;e8=IOmz4g5)#tX+PdOVTQt^^+Ee(^smV_E$WM)Zs^ufJ#_UYkjB-OkNTef!m_$kbrpKFSS!5zid*Nvd`59{m*;U-lQ6 z-o;;-<_<^4P53x8BTJ*T1vlFthUW60GYD3ZSK=2I7S^`&(%!ifwbj{Y&$JQMH8KrX z4vo;0@p{(ghSt9G(usP@)0ZpNOYVp4^I1y3fGiEYL6L2LXtohzO1pDL2c~g(pJ}TvZw#)n^GUX?*KHz(_^l1eZ zOw`ypIB4wI!w6LrWT>oS^lo2 zrI(CG6*+J^$*)7}7b7T}{`m$?t?==si*glemaiEYmJ&}aWIxNi2 zqP1_c2J)t>@(uhY&x0)?HQ%>y4&1Aj_w=MY6q)`oByYb68;IJ|D3E2C)9tEgC7;9} zuiO0JSw$b0ywb*f;_?M0fuZ3!40aToN%APV643|l;`x}@^zOmGPi7Z; zsT0^$E#-CojdBZ@?R3X2roVjkQ0Cy|1hi!=_MMTzix|R)bO}KfGg{ivI3)Xy?m{VM z@Qp$H|JUb5;r7eJVqyZacO*Pg92LHL_b23(KY#wjHr0}*T6Ogf)P}Xrk7}Ld)s1S| zBkH#8lDt~`Wh~gquljl1%YMpmlTE{;ih82ef8G~ zpTP+q4lb_rM~}E5TglGJ!TgYto-jKC>*(0nTxr_kr^h!qxr=6Bii5FtfnG+@y^jcxv_;bpyDne`T$qaCse3dG~UtV?sRA~SOLU#l?`nM(Y%c8<@jefypp z2lvkoIAH<&_nsJDW$Pg3y0Q(AW$Vg#T59t4<8P~kf0NyTN}L`R^t@RAg>D%%r1hVI&?uY~kZm`ZvHCTr8|lEfD#C7%0FH zh$yzdk;v2vJD!Frki;%9$3%8BkDjQkoLp*J+7e=zuU={4oflUhkcZTg#zG1~$6+C$ zR|kLnTAf^b66yq#&8z=rS{QHPOX4hP6ze$6$PkPCP>cMXZf;vXwY4?l{UR@3=o%Rr ztzg^>W6yX)w_t)7HFRSXcN(Ra+s{vOQ86*S;I+LVH$c!r#mIhMkhor2BF;}s>^}_8 z#YO7cwQKwK?++Rsbx+U}#tQnre9=tZr}yUv+Fu67#-V`TdLPx$ki<+pqBs$j`CeFj ziHZ*VJ?$zeH5eJk>eXqLmFqDKmz|$q2XI*6@Ls&tNuHPw8f*w0(>>v50R21ykv>%MDBmk zO3M;_8?P@=yrEAz1)Q9m1s|PoSxVqg#mgISy7fx^4xht+(o#H5ouVzWAosskB^>&k zSv;PeDRe1G;!W@4WxrP}%)EYr#;GNfBu;8S*na75iV!%-rimY zHSG;*>wc8gD^c(C^78Q|Ut!h%vN*YYetUz^))57lTO~);yywY#*yEt#sWQCD(2$!W3 zg|hkZL#Jm^$h9_zqzngbHk<(a+Gw0l63UZj!l8Cdh%NBND^f#G^UN2{HBXE5jT$`f zPnS-df0Ad;e)`~H^kJg3d!tCFU#{WU{o&Gw4_B{_q=owl$E`%)hlT>+w{oH5F6c|5 z@o{&TA$kXlYT4VgCwZf`vQIqyrSVE4q`!DQ+RP1EY<}7Xn>bBbx_^{~kl-x|N@dP3 zGYk!)tE{RHvg}^JkR4RrM28`Ej5@yh9d#Y_sts^|&3B@uLQP51f`#A20W!K(^<*mG zSZT!QK$439dZnlUh<2^h=lfmzKkZ2%q4j&p>)RjSKmO9}{xL?ix$(E5+YXWA73ewX z9yXwp-fTrCQX$D{e*Zq0RD{01JOKEl5XDpoMA66Q%G!RyN4YFoK761L@Kog4m-~K- zcL7Cev1`u~MB))>4%2VmwECnrb*!^ISq@~0ZYCSf_Zhlqc#EBk<1LH)Iy43Nd=1I& zYph7(NehMFF1`P8^X6?yFS&Z5RtU++`1QEsex=lZ8OtNs=@5{QE7VIA}`MW)g7^YdbD zMA-tDEt~x02*5El=L<;cbLI?iOwqkYIlOa#opawV?z`RZK5|fJ*zof%i+-@lbGO(M_9bw+)pA z-Mc5FGSz1gz9m1tl`-GF7o!txGreE`8U=YHPM34+qaa+*gT$70s z`|lov0j$%|$GoEdpPvf8^D|$jUfn^M+bvbj(bTJca$ptocugH0(S%vLb!$1^&jP{e zcBq$_c$LoszWUDeUq$X?d$>DuHb90tZn^c9P>jmx^9Ln;cs1Jf-C?Ww=QG%8KjK`; zKv>U&-syc~KIQk-QnazvDBjD4xTpL-e4jW1rOC-gylzGS8m}{5g#*xT*%IwC%<$%W z2RHPT%H}59P^M^L@RGER5P)eYSRP)Bz}_?xE-KR?dll~`vW8L|_YE_44?DL7M$A+Os1N292y$mEgp4e0?Q%Y&m?LyUb>j>TZQ z*Gz*tRVy4CMkVhI6OGp`8?IrfdHCs*DYC+n1QUgPBXI*uOJ-OF^q_^hLTN0MH%pG9 z=ezjiu)(yOpr>jY{tvx_FVP}7nPmadKJP0 zt>UNZU)a)~2JK;Dr9EJ7&P%9B43DfCDxcy5BqA~ssN!mm6s~x5M^Z|v4s$+D@88o> z@cK8-LI(kQIh+ERnQQV_eJ4L2M@AsaStGARAd&AY2$6uL+wVAOS*d@I*bH^JP8ilBltCDyG=x>v$7hBss9|tCUMjE!h z*8Au=6K?00XfH`4eL}M2OvyF%L@LJ`uU;CGZv-Mlofcob6DFF5)JJ}j7RDwA z`RlK-nJ0NcVKuGb4rwSZWg{Wa<5>(8$)2ATI3UWgPn3hXz4`mZ@42U{i!nd)dRhHr zPSqdWJ)UKM%geq0!l&e)H6o}sNsRgTJJsOu$RB|h3p8c&Z$}%YKYz#DRw=u*^r?9o HR_Fc~FdJjO diff --git a/docs/images/chapters/curvature/7898e3a51a86afffd1a91ce0fcc99b26.png b/docs/images/chapters/curvature/2398b098e6ac9da9dc109239b49715ed.png similarity index 100% rename from docs/images/chapters/curvature/7898e3a51a86afffd1a91ce0fcc99b26.png rename to docs/images/chapters/curvature/2398b098e6ac9da9dc109239b49715ed.png diff --git a/docs/images/chapters/curvature/78581fc4b36f2e45c704a4fce7c8368a.png b/docs/images/chapters/curvature/595e2f3790ef8034631e1cbb0df9c6f6.png similarity index 100% rename from docs/images/chapters/curvature/78581fc4b36f2e45c704a4fce7c8368a.png rename to docs/images/chapters/curvature/595e2f3790ef8034631e1cbb0df9c6f6.png diff --git a/docs/images/chapters/curvature/6ed4fd2ead35c57984caddf9fe375a5f.svg b/docs/images/chapters/curvature/6ed4fd2ead35c57984caddf9fe375a5f.svg index e2033566..499a50f9 100644 --- a/docs/images/chapters/curvature/6ed4fd2ead35c57984caddf9fe375a5f.svg +++ b/docs/images/chapters/curvature/6ed4fd2ead35c57984caddf9fe375a5f.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvature/828333034b4fed8e248683760d6bc6f4.svg b/docs/images/chapters/curvature/828333034b4fed8e248683760d6bc6f4.svg index 0a147ccc..5bcd4e69 100644 --- a/docs/images/chapters/curvature/828333034b4fed8e248683760d6bc6f4.svg +++ b/docs/images/chapters/curvature/828333034b4fed8e248683760d6bc6f4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvature/d9c893051586eb8d9de51c0ae1ef8fae.svg b/docs/images/chapters/curvature/d9c893051586eb8d9de51c0ae1ef8fae.svg index b5e47ae7..818992fd 100644 --- a/docs/images/chapters/curvature/d9c893051586eb8d9de51c0ae1ef8fae.svg +++ b/docs/images/chapters/curvature/d9c893051586eb8d9de51c0ae1ef8fae.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/03ec73258d5c95eed39a2ea8665e0b07.svg b/docs/images/chapters/curvefitting/03ec73258d5c95eed39a2ea8665e0b07.svg index 98588d0c..4bcd6340 100644 --- a/docs/images/chapters/curvefitting/03ec73258d5c95eed39a2ea8665e0b07.svg +++ b/docs/images/chapters/curvefitting/03ec73258d5c95eed39a2ea8665e0b07.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/08f4beaebf83dca594ad125bdca7e436.svg b/docs/images/chapters/curvefitting/08f4beaebf83dca594ad125bdca7e436.svg index 09378509..0e4504c1 100644 --- a/docs/images/chapters/curvefitting/08f4beaebf83dca594ad125bdca7e436.svg +++ b/docs/images/chapters/curvefitting/08f4beaebf83dca594ad125bdca7e436.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/283bc9e8fe59a78d3c74860f62a66ecb.svg b/docs/images/chapters/curvefitting/283bc9e8fe59a78d3c74860f62a66ecb.svg index 0e380709..9c441a9f 100644 --- a/docs/images/chapters/curvefitting/283bc9e8fe59a78d3c74860f62a66ecb.svg +++ b/docs/images/chapters/curvefitting/283bc9e8fe59a78d3c74860f62a66ecb.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/2b8334727d3b004c6e87263fec6b32b7.svg b/docs/images/chapters/curvefitting/2b8334727d3b004c6e87263fec6b32b7.svg index e618c6a9..449b7523 100644 --- a/docs/images/chapters/curvefitting/2b8334727d3b004c6e87263fec6b32b7.svg +++ b/docs/images/chapters/curvefitting/2b8334727d3b004c6e87263fec6b32b7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/2bef3da3828d63d690460ce9947dbde2.svg b/docs/images/chapters/curvefitting/2bef3da3828d63d690460ce9947dbde2.svg index 10801872..5730a767 100644 --- a/docs/images/chapters/curvefitting/2bef3da3828d63d690460ce9947dbde2.svg +++ b/docs/images/chapters/curvefitting/2bef3da3828d63d690460ce9947dbde2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/2d42758fba3370f52191306752c2705c.svg b/docs/images/chapters/curvefitting/2d42758fba3370f52191306752c2705c.svg index 8837c467..5bdd5256 100644 --- a/docs/images/chapters/curvefitting/2d42758fba3370f52191306752c2705c.svg +++ b/docs/images/chapters/curvefitting/2d42758fba3370f52191306752c2705c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/4ffad56e281ee79d0688e93033429f0a.svg b/docs/images/chapters/curvefitting/4ffad56e281ee79d0688e93033429f0a.svg index 92462c72..e4293a60 100644 --- a/docs/images/chapters/curvefitting/4ffad56e281ee79d0688e93033429f0a.svg +++ b/docs/images/chapters/curvefitting/4ffad56e281ee79d0688e93033429f0a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/5f7fcb86ae1c19612b9fe02e23229e31.svg b/docs/images/chapters/curvefitting/5f7fcb86ae1c19612b9fe02e23229e31.svg index 158f3b2d..556e8dab 100644 --- a/docs/images/chapters/curvefitting/5f7fcb86ae1c19612b9fe02e23229e31.svg +++ b/docs/images/chapters/curvefitting/5f7fcb86ae1c19612b9fe02e23229e31.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/6202d7bd150c852b432d807c40fb1647.svg b/docs/images/chapters/curvefitting/6202d7bd150c852b432d807c40fb1647.svg index 309d4b6d..4a70871d 100644 --- a/docs/images/chapters/curvefitting/6202d7bd150c852b432d807c40fb1647.svg +++ b/docs/images/chapters/curvefitting/6202d7bd150c852b432d807c40fb1647.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/78b8ba1aba2e4c9ad3f7890299c90152.svg b/docs/images/chapters/curvefitting/78b8ba1aba2e4c9ad3f7890299c90152.svg index 88d9ca0d..08bd2b23 100644 --- a/docs/images/chapters/curvefitting/78b8ba1aba2e4c9ad3f7890299c90152.svg +++ b/docs/images/chapters/curvefitting/78b8ba1aba2e4c9ad3f7890299c90152.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/7e5d59272621baf942bc722208ce70c2.svg b/docs/images/chapters/curvefitting/7e5d59272621baf942bc722208ce70c2.svg index 3c9b7125..24fa6350 100644 --- a/docs/images/chapters/curvefitting/7e5d59272621baf942bc722208ce70c2.svg +++ b/docs/images/chapters/curvefitting/7e5d59272621baf942bc722208ce70c2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/7eada6f12045423de24d9a2ab8e293b1.svg b/docs/images/chapters/curvefitting/7eada6f12045423de24d9a2ab8e293b1.svg index 0e69dda5..13cd868e 100644 --- a/docs/images/chapters/curvefitting/7eada6f12045423de24d9a2ab8e293b1.svg +++ b/docs/images/chapters/curvefitting/7eada6f12045423de24d9a2ab8e293b1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/875ca8eea72e727ccb881b4c0b6a3224.svg b/docs/images/chapters/curvefitting/875ca8eea72e727ccb881b4c0b6a3224.svg index 87002d07..33df76b5 100644 --- a/docs/images/chapters/curvefitting/875ca8eea72e727ccb881b4c0b6a3224.svg +++ b/docs/images/chapters/curvefitting/875ca8eea72e727ccb881b4c0b6a3224.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/8d09f2be2c6db79ee966f170ffc25815.svg b/docs/images/chapters/curvefitting/8d09f2be2c6db79ee966f170ffc25815.svg index 6c6c2d37..fcde3a3d 100644 --- a/docs/images/chapters/curvefitting/8d09f2be2c6db79ee966f170ffc25815.svg +++ b/docs/images/chapters/curvefitting/8d09f2be2c6db79ee966f170ffc25815.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/9151c0fdf9689ee598a2d029ab2ffe34.svg b/docs/images/chapters/curvefitting/9151c0fdf9689ee598a2d029ab2ffe34.svg index 7397a05a..d5c6d91c 100644 --- a/docs/images/chapters/curvefitting/9151c0fdf9689ee598a2d029ab2ffe34.svg +++ b/docs/images/chapters/curvefitting/9151c0fdf9689ee598a2d029ab2ffe34.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/94acb5850778dcb16c2ba3cfa676f537.svg b/docs/images/chapters/curvefitting/94acb5850778dcb16c2ba3cfa676f537.svg index 6b97b0a5..f414d4c3 100644 --- a/docs/images/chapters/curvefitting/94acb5850778dcb16c2ba3cfa676f537.svg +++ b/docs/images/chapters/curvefitting/94acb5850778dcb16c2ba3cfa676f537.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/ab334858d3fa309cc1a5ba535a2ca168.svg b/docs/images/chapters/curvefitting/ab334858d3fa309cc1a5ba535a2ca168.svg index d5f7c27a..f18c9c48 100644 --- a/docs/images/chapters/curvefitting/ab334858d3fa309cc1a5ba535a2ca168.svg +++ b/docs/images/chapters/curvefitting/ab334858d3fa309cc1a5ba535a2ca168.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/bd8e8e294eec10d2bf6ef857c7c0c2c2.svg b/docs/images/chapters/curvefitting/bd8e8e294eec10d2bf6ef857c7c0c2c2.svg index 869937f0..52c27d84 100644 --- a/docs/images/chapters/curvefitting/bd8e8e294eec10d2bf6ef857c7c0c2c2.svg +++ b/docs/images/chapters/curvefitting/bd8e8e294eec10d2bf6ef857c7c0c2c2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/curvefitting/d84d1c71a3ce1918f53eaf8f9fe98ac4.svg b/docs/images/chapters/curvefitting/d84d1c71a3ce1918f53eaf8f9fe98ac4.svg index 3008ea83..ea714679 100644 --- a/docs/images/chapters/curvefitting/d84d1c71a3ce1918f53eaf8f9fe98ac4.svg +++ b/docs/images/chapters/curvefitting/d84d1c71a3ce1918f53eaf8f9fe98ac4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/066a910ae6aba69c40a338320759cdd1.svg b/docs/images/chapters/explanation/066a910ae6aba69c40a338320759cdd1.svg index 50713c42..6f802d03 100644 --- a/docs/images/chapters/explanation/066a910ae6aba69c40a338320759cdd1.svg +++ b/docs/images/chapters/explanation/066a910ae6aba69c40a338320759cdd1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/0f5cffd58e864fec6739a57664eb8cbd.svg b/docs/images/chapters/explanation/0f5cffd58e864fec6739a57664eb8cbd.svg index 9f81756b..69228905 100644 --- a/docs/images/chapters/explanation/0f5cffd58e864fec6739a57664eb8cbd.svg +++ b/docs/images/chapters/explanation/0f5cffd58e864fec6739a57664eb8cbd.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/1caef9931f954e32eae5067b732c1018.svg b/docs/images/chapters/explanation/1caef9931f954e32eae5067b732c1018.svg index 936e0755..0466c0f7 100644 --- a/docs/images/chapters/explanation/1caef9931f954e32eae5067b732c1018.svg +++ b/docs/images/chapters/explanation/1caef9931f954e32eae5067b732c1018.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/2adc12d0cff01d40d9e1702014a7dc19.svg b/docs/images/chapters/explanation/2adc12d0cff01d40d9e1702014a7dc19.svg index b20000a0..62b4da60 100644 --- a/docs/images/chapters/explanation/2adc12d0cff01d40d9e1702014a7dc19.svg +++ b/docs/images/chapters/explanation/2adc12d0cff01d40d9e1702014a7dc19.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/4cf6fb369841e2c5d36e5567a8db4306.svg b/docs/images/chapters/explanation/4cf6fb369841e2c5d36e5567a8db4306.svg index 1eccf6ad..6e2362be 100644 --- a/docs/images/chapters/explanation/4cf6fb369841e2c5d36e5567a8db4306.svg +++ b/docs/images/chapters/explanation/4cf6fb369841e2c5d36e5567a8db4306.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/9a6d17c362980775f1425d0d2ad9a36a.svg b/docs/images/chapters/explanation/9a6d17c362980775f1425d0d2ad9a36a.svg index d307f8b4..3b48115f 100644 --- a/docs/images/chapters/explanation/9a6d17c362980775f1425d0d2ad9a36a.svg +++ b/docs/images/chapters/explanation/9a6d17c362980775f1425d0d2ad9a36a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/9c18f76e76cf684ecd217ad8facc2e93.svg b/docs/images/chapters/explanation/9c18f76e76cf684ecd217ad8facc2e93.svg index dfbbde5a..412f4573 100644 --- a/docs/images/chapters/explanation/9c18f76e76cf684ecd217ad8facc2e93.svg +++ b/docs/images/chapters/explanation/9c18f76e76cf684ecd217ad8facc2e93.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/bb06cb82d372f822a7b35e661502bd72.svg b/docs/images/chapters/explanation/bb06cb82d372f822a7b35e661502bd72.svg index 965f18de..7ebe5497 100644 --- a/docs/images/chapters/explanation/bb06cb82d372f822a7b35e661502bd72.svg +++ b/docs/images/chapters/explanation/bb06cb82d372f822a7b35e661502bd72.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/explanation/e107caca1577e44293cd207388ac939c.svg b/docs/images/chapters/explanation/e107caca1577e44293cd207388ac939c.svg index 68a70358..a0290fb4 100644 --- a/docs/images/chapters/explanation/e107caca1577e44293cd207388ac939c.svg +++ b/docs/images/chapters/explanation/e107caca1577e44293cd207388ac939c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extended/b80a1cac1f9ec476d6f6646ce0e154e7.svg b/docs/images/chapters/extended/b80a1cac1f9ec476d6f6646ce0e154e7.svg index ac4c488f..bb85865d 100644 --- a/docs/images/chapters/extended/b80a1cac1f9ec476d6f6646ce0e154e7.svg +++ b/docs/images/chapters/extended/b80a1cac1f9ec476d6f6646ce0e154e7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extended/d930dea961b40f4810708bd6746221a2.svg b/docs/images/chapters/extended/d930dea961b40f4810708bd6746221a2.svg index 9f7786ca..2391cb17 100644 --- a/docs/images/chapters/extended/d930dea961b40f4810708bd6746221a2.svg +++ b/docs/images/chapters/extended/d930dea961b40f4810708bd6746221a2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/0ec5cc72a428d75defb480530b50d720.svg b/docs/images/chapters/extremities/0ec5cc72a428d75defb480530b50d720.svg index c810f40e..ae058401 100644 --- a/docs/images/chapters/extremities/0ec5cc72a428d75defb480530b50d720.svg +++ b/docs/images/chapters/extremities/0ec5cc72a428d75defb480530b50d720.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/1b70524bfb7d159a48f0b370d81ee2f6.png b/docs/images/chapters/extremities/1b70524bfb7d159a48f0b370d81ee2f6.png new file mode 100644 index 0000000000000000000000000000000000000000..8c7e30d1b3b9781dacbb53247d9c6bef3f7a58a4 GIT binary patch literal 20784 zcmcJ%c|6ta`Zm0zRD{S>8A66op^RmSWynmXB$3KcA`}@yB|{-egE3R4Ohr8^Orvq#^3ueg`~j?ypZ z?o2uNCZ&do@{7fY7P~3t zrR|9m*0&Fe2mi8+`c<5nR8gTs>Hd&+KxgBHP*219NFExBRunIL+=bAc$u>v58k?Fd zMyl`C``{lcesYY4g+oHgkM_F4m;3_cC-2$6epO5#&;9o|En+9!L$&*agoO{kye2d= z9xNBL9@zD~O&m6cu8;`mWuC!+N z4abl;`G2lbx6P0frYKl6^qr;STb9xPv4oO|)= z73Cu+4eRuV?Jm|WxlKE|^>mhDszejfkStl)1X}l#;UP(*J%3dlen$-1b zeD&&laBy%7-7zIxbu3%tM?_F!BG1Xr^3{|_XMY|W7AZOObb|A%(5up?M?HQv|9 zVHsmK`dVFA`H`<*gINSMvlKa4oVfny4vsiDggk#vW#i!JO%7OmI$BV*O_7zwY17|V zRFQkcCvDQZB}s#I4~dFuViYU^J*z;+bF6f$NffUVg|c_=-kJUw!{wR$0{XT8 z`SjfW*Q;5KPfu8?rTcngImnL_J3@*4q?>*0UrT-yZElBKB|lcd|M!d59FboCTU&36)mb6387tJHjHGC~SxJd!ZhBnHz`)@4 z7&GtgYUBa8v38l6KYyORdZlBeM%Ho++poQXo}RwYwM)5wU_d~si1+t*e+G;Eawdvn zbMH2vDS3vKAv?cyRq-wS`PC<Y19q z^&{Jm!os9SXCLsoySuyfJX_IxDhvz%H*2#$Iz7rkv2Dxu!mF3QG%+yzDmvb_ixT+! z`SZ9dn&gpx;Y?+#z7(Jh3;V$S-DC8|>D&I~{n`rTF9NN%6--r@M+=iv=YFb(Ce_(Q zlFa zS-O#^+rppI-#(WzXBsAJy1Pp!?LK>+j&VcxSZSAL>B$ZX#i1!lW4tp!fWPO$V19#? zq^KJHYZ+yO+)3;2@<^I9LupZk_VrBfEANPLN!n7*{TUW%mLiADCiLC=P#d)rqway% z@gEE?@sdHJV$VB6mD=C3$+pw0z!F>|(vt0A zs8Z@X{XL_}r8#xQ@A0mJ)~@YjRqs#6bEi6pve9oA7Va&mT71@=rgaKOr~m8MJt;AYWwf-qd|Fhh?XQvdZl0dce~*2Z@}96wPfs^}q$DZ1HqWZ$*`HsdEZp2z?%dgQ z&!*yWBbV+CiKjVcxf4H|RMO0H%`^5Vo%>#X_NPwr=aSx|>v%p3nXqj80CD`u6QaYr!EtC7&tP!8eIL{r$_8DqaQ5IvqV4jCJYx z@wGu)Pfy~YMxJ?|m19f#YO7*L8g=y=`s9F-)-5}oTeGGnJ1cy3m%jJ)U1%>kUgb77 zUbPhYF4M54u8z*W?#iC&?;Xh-1py6GQc@h>-PON6W~kEE)y0>Tltc*xYUr67eiysQ zL(*hewQz`Mq*{uqi3uy~x^<@(=g(S~d$VY0Xn4=hNFkmlKOAuFshIA(keMlRFHhWN z*<suS%Dvav*yvu5eXR|op)K?rZs9x`FwsqO;=~CG1#7BqW!3IcaXWpzbk4jLIik+2@!Tywh5`FL$bD3u z@TNTXy%VA+p@9eoC z>F|cz^ZS?C;LoG2*%xq@QtWCjY3u5Wm)hOOr{COmP%>cAk9)WG+CzSmE3U=FH0+j> zktvxfb8>PzdUqI0!jdhBeLJ1x;>^m*YU|__W>wkhSkKJ2jCHl`Q6a_EIP+X$%AEIK@<&+M z?Aw=Vz_Zh}lRILA%(K4ws8fHYoIZa3oQ7Y|48*%mv>z|XURZEaUYxP#R`guOqv%PY ztl?2)qrA<~z1iZA`fu9v`|8!Tet(8D3m-nb^yJB|bMup0l%w&tS1@qczPQToy|ggh zj3B&ssEU{JYIob`&l^WSdy8cVSDz$bheL_V(oDfn^V+R7CXJ8b9j^R6mi&m zXAkYn%uIK~_9`k8r1R$F`zQv7aYGrWckI}a{5dl#E9=>qu(0sQ$ES~%t=C=L601|> z^zQE9@9d$nrG@bTsbh_|q-7}AW%Z|688|2b^ECYf94g9wT&oyYBw1-hAxG!Fe_Qsp z`r}8gy1KgU9a7@ry4lHo4|qq-Zm6YH2QzT$aMFv;-mQE2a&={8rQ?Tt>&bydX%g7E zlkL}Nn-)1T?)};y+uL(?C+Cdp-@o4u0j85{ajig+aqr$FheHL52Gi>_gkySoYC>MT zc~b`ncQq!4w#=I8wjN!$31Oqyw}L5tE-D#W$vV*f>cpb z>OWV-$YeA>?eh70SHEb$a9$W+|q(qW0KNFb93{d z_7d^bv^27a&D(>DZ=uQ~ipkyg_a8~Wd$$)^VrDQI5&4uB5%aXAg|*~(+oiIyv$yLq zu&`g^gqoTf8q^I8m{1k3-o70+HRbu@tNX26x2oIQHy}Q<4pk|C`}WP&!C~dfl_B)w z4@faQiL79JD>^9dkwC0I(`t)m85vac4E>0tBwk>LtJkib&pS|hxU14%Qc_a2E&m|P z`t_@K?b_A6{X(&kv$NQ?LzP!9UR=I;^XBflh>aAAudnaUlV7+PH_Bd&iCK5T#l`OE zQ8S;YRQir5D;wjd$3-mf-p$(K%vQPhXOvTU>-O!;+1c6JIy!17k7#W|{O5l2Z`rc? z&!0bz?ZsOTly+pKaaBc&)s=moF}E z8J~apl+>qwqljF+eLtt9Ys<>YK0a_@CK&%f>B$uQ|CXF9Z$d)C@=E#^S@$yTfTabw zH%UsDA2>Ai_SRmOl#|mUdz51)PJ)ZvfS#V7jsMlXF@cXB1#EvfHAy3E;5YmZzwPes zreGBZ&)tZRKhSGtPMn=L(U-I;6&_4RG&@9cDU)>Y%3YDe#9e}E+ zLLpoB-BqQhEc`K>wYD@n;jaBPr@i(1?m_g2A1i$23=-sn5K;EnY&S2jkRY0+2SQ&- z;xtHBj(GG)o@DjN$Vij}M!Gdzfwy-!JZo&!E2GuPsQ%ue`jXKs)~$(u-@bj19zCkA ztHdBdvQ1Y$_yO z+IN06WD!X8ob1&gm>0{fj*TD>L$bo%yLVI5RyzPX*i`tWSQOZZii)b9I3aOntUb8Q zWAGXJTtG3+%N$#&^+4h>9GsjXLqm>a?P3g-gGx(Ft^AGZghOmb%<{9(Hp^`fSopsT!Bx-rK*!tZGdQ&G7K>41j2%@AOH_{rgi;T)AYN*)|SxUe(E% zn4AoXieg4jb?Vzkse9ICtSG1xzkX?;k+XGi*{TS1oJ~_^9f|d|Lm4EEDHh=Jjjad5 zBh9wSDoiCD_iPtIr{(VQCZRQlFgu~AU-N+8Ic#h=Mb)g2uN^OQ3L1;DphT84H7 zEb(lVJ4ppeA_=7AZZU5va>6~!3X8AjY{LtUT6f=!^S31O}W)(t~=t~>DX#M5WN43o)A^DA+zdsebhsfwFaRQR5p z8GDAuBPZ6j=UMOuk9VhK6%?}`GpsPh36LW@ov`~XE2>Utc(_`cX2kU=`p_hcs&oFb z@?v)~GefY6DR?vhk6Lo3XlUu~=-%8$I%4_Qh)`{YuLA?UxQnMi>u*6I;cz>BIjnTT z-81k$2YuERL_MkJBxTVtafb#5Qd)D&bXOOg52ZdRDXE>A?341Far^eAY#j=gX1uJ+ z#3zU3N%b`X0$Yt*zL15)0nqgHEUuH06Z+Wi$bWP@+k`ZdAlU+Br0Dqg%TF(?#5%5@ zzj#wy_jX*|;kS48kfY7Sqj=G^YJua-nKN9nC%8Z>Y1Cs6#9lQt)L==-qkE2b@@$kn zQH|b0Skb(s@MZI|981wV(qO}i(E3rew9*{L<Gh3 zf|rT)y^In02vP-wa}rxDC@EPu^=5>c?hAlfUQy8lJ_86#P*il)@87?v5#V!jdDsDgt=itfx_ii zw&wF}WDsSm9W1t~2+Yt8I^IU{UuelJd}&N8Q(>ffl%0d)F#4m=$Vg2T?;^)$0a-b! zjNK>c?kD4cI~)SbJaRt_&37%a%Wa8{4vc0gJkBY3(t5J#N<`3wl|hQ918YKp_CK&G z50F{U#bw)F9W>POM2;+^q4Ml2U|cmLDRT|_4wC+kA*<>lq~`;$YH|7lAb4zsT@C_a8OlBnDv zXw2+>fBS@vZ!g%_>j8ZCEEfKuQ%~FES=A1T1?AwZz-fs7B;r!r9TF! z^o{jCBm1M0Ux|MjOy-o^ksQGEv3>E$!9z>4>*^nHhKsSOzN}&nOP`s1@bCo9?{8Zc zTaVXA-W)I3EGsK}OC>R>th|cES)#Rp1uY+*SdUgs^4z@lqbE<= zzI4Zka0bNhIP3mtOjENdxk^u8{7`AR$L9xwxemM@kK^dG8q{daz;j>3Vci6PK++%9 zW2P=vJN?Io$W(z%f@$9#IvBE^IaB>QzBZuh?9VR4G97MtieADhZYBC#w=4Vt*xful zYLLe#L7((IXi}~L+1x!kn)?IHQt|$iC%2uO=~)Sin@j!Dny28CQ!+Cxe(u?Pt=Dyb z67MdRrP-erCr^GouI!ud?k1`%A}q||s;lSs-N!^$LFdj%1h2-iW5NQ0f~RIC?AGup za|7lE6I8c}HUHc~?`)&)jd@>vgQJx%CnqS^t_2#Wg%3(3E1K=rKz6CFqnnwi=`Cx> zHD_1h-SvBR;dmgR3LP`=m2C$fZ`!W3TZ@;0`2fBToqdu_8y7!qdk;9d|$BlAOG3 zLV}jI`$cr`QP~hi@x>#fuVQ=GU5RFq^#4;e_aVn@aZ%<4YA#rm=V-7d-&-8ALzy8& z*Nnb2i?Pu2+FHBG-dckA%?oTI&}oN8E}#Fw;P&IlCzrefoJ(g}_Py&3ULM%{lYL^m zB%6+|mSNy}Laxq@%bg{;-p1#*?0c28okp82w*0W=yL=X-V-=h-GH>3ziG6%mGttIX zPjAh$ni|q(=_SaspmLk%`rXSs`|I11S7F)d(HkvwS>d39XegRjxcHCwnMB^ZCm~_| zXzlcPS3SbOth9Vfb{?|#GD;+`lGqVHUR~{dUml-k0F|`o+&N`oy<646)~}wry1z>K z4`Lqi(bqrvrOabxPfrinpy$uS*7XbzZvlyJyoG^*p)pQ|fj~`C!@*chjl9>zvI>+$ z$HoR{Wr-#zcn~5e=;qCvL)y-l^_g~hqy*-8|L9*$63y#)InpMOkV-en9NfAJA)88F1EfPerS^#xYN+0V`W!OL<+aECMC zL$DpRC%!z2ey0+uEqE(F-hQC*_Do-tillR^=oOw_9G#t=srD=^?;oLUIt(b}cIHeS z07Tihb3((^m^4P5b~ALLKn9mkd}}~e9enJ`!h^E%ig0@6vjg$KEB{v$v`m6lvk{$zkpjE8N(#4Y1k#+6F?VkC|M*z1z>g^YQ8!oJMfRjEe z2i?-e;9$bektgo%?G?agM4M=DX7yW~9VC6#UA^1q!K2!v)a;&I7j3Qp%}-5D?QQ(HG^`u;wF zMm#i9gKE0<_U+r2_m8YT+3`3S?NAz6+EhWO-4TxNo=(`;SD?JluV8QkXLj-8#p+L= z_Im>A$AYEg;MiszitX;ZyuGp-hvIFq)4t}S(9j$`u)yGXH4vF#moI|d1h5K=%wW&y z=x6)i`FytIKtLco?++ba_R(H7nu1>JI@u0@p-F7=v({Eqd|>JZ{%CDUs5-?bKC#l! z(9DeF7Q6)~N+keta00UbSY;b1+?!C%?!KjgDR>OO{ezz8hpkH@f3n z(nskFQp}?*PP+e>tT4G(;J0%7W${@H3T5jRt2-fQndSTCZ9x_fwG|w??dtgm+cXFE zgz(_E;^KPouLI*@p`J-7((+ORhio7&o{}-|E(8b zbem%2S(=ydJoaB6otmjynp3&LCAIA7)2EJ~?q`sorGz`EY_%!pf|8=Dt-Xq1Y^@fb zf-n6fw@?a4oAad^4Z_se4!5Npyk+F@SBwBLw2f^d99WHHO7s@|Ai2QSe0X{MDingc zni^VCY?b{LHKTYLw{PFx9384%zW|_YS>Yp7IsZd<>f5In-LAH)SWO*{_1Y5J_uP^X z7@njNwF%v{dv|$b(~NM1d&|3bQfORB^1zO7uc!Z^~H>;tbSsH4d$mecc+pM8#jR z=5w0`a>Rnwf*{b6JG7oP-b8C}->1_dFAeFSaY`CFHa#=5X3t1q?yN_^& zc3oN*t+_0r21=BDcbK&~bvNDwiY zAB{E&)#3S>Nv_@Al1RrjbXtYjGl(&SE`HklmWAdtZTE@(HG*L*S2k<9NuAlF+Ch=m z;jue*jLyMf(Ea%QkB04Tr%!M7FZUX^DgX810NDHUmoGC!aw{ym<85I7FDVBHUXVyR zR)kxm3Y`7E?&~#|rjrF($3Qw1LV~tfC^6MVBXZXuF`VRo+rNWm}P%Dyp_^`l-fROl=?9yV zwa`ldkxp6X5$&QX$XJx^E4kT!c*UbsLCZPIViilvGUsyo3-=Fw#`@K(D#)9Bt9=HF> z6#&bL@>oyUkL^|S*V^RPvSe$=2Tr=bDuGNBzQgO z7FwwergO5nAl}ej9=)5`QGRwEwnuD1_^tqo3q*l)Cw;-q5^4~cbQy(rw>M?u#*LJ~ zyu7U~EiE}4pFE2riViFxC8HJ}zBb(K!Lx%^ONC`dMs^!ZbpHLKqCH2BY+kl(+0~?^ z$Q1PucrK_L`b)dcspBqylryh0ckY$3Is3T%vb>_Anpms=KYvf~-24248v&KJKiDcP zOgHwqwEp7ib#Fm>Q&bZbPrHHAq0}-OosBRyGc(<>b!%ST-SFDl+NVuT%s?sj7u2by z7o6Yc1mlh%tmdv_W*(FtqE4A025;?jVkIQO`&^3$PmMjqoZKm(gBCJ8l3+SGbSxtt zfE4&_qw*1^`gkF<{mp3vYfg7?7(N^BSu`qs(j9HA-(*EnvKy?r;$&4J^Z5o&M zhK4Q&>qRgWk!Vqs)wkWej0bie8EQ@=ya7b6E8~@O2HB-YH@!F7AJaEBMr1JLM6*Xt zX!Wmv9*kAy1;0TgEWq;X`Jp#rVlF_Zv3}%6^WnpXNA6$g2bz+Z?|iFJ&@s0V|Fn3& z%EI*L+Z1)KosL&o1J*U+IrvD4uf5Ef20l!T2W_m_T`)%=Ich-n;~_L)T|li&hnVcX z7D6T#*#7IQ*z%%GI^+E@_AV}r2M!!~USDtVs0kUy?faLqmUBn<0xYH*7Na2L9yKO)55q8OnlLaPtt_=LlY>r5l$&F zR}h)reGzgKujRV#+_|Ib$qhz>NIwqA{+9?zf^IwOKxzJvw&@D7cx{h^WS zfUMvRW`BGoa06wLh+_GExk0Aw{odZ*-KYZS)N{Bs1&IWhYf+$yBm0-);TK4CpBnqj z30XEUIhk)Gj{uJ+Y*9otB~-y@<_7P$`j|6&KY~@?R|h;Xg!~O z{(RuQdUnRGTU-|}T@u*5IlVE$5Czj86!2>BKNCNH*0f~k8t0mCCDmBN-NQr5wR1Nt zHiDpokZe)~qgk`2;<+iLBSqHt{PC{v=U|f{umrjX$1jhHhUBSK(-la(H9#?u(9f+z zn(U~LyKz}Uuz|ZT@}4{_D{n>psvnt>!r%VTwr#s})U>mo5_t1wo387c9DQUF z(xK1H&DFeqt&gK1kV6NG&Tpz&i%aF)Zcf2XEz6L=p5KzPpP1-TCzsQY+leN?^p0j6 zH=I>RjvUz}B$Oe1X`PO6j2+xhglGg4Cyau}vgIibXjG;D++n1AXe#89r^12Bh;&Cj z!`fQ4;k|Z@V6-;kXC-*o`?%0un6;2U&*$cfqc|2V|D~B z{C-5PAzTA#Nt&azYyaCr^g*1t^{)O#oJ~ScW_a-C?km`xItm?~UqoajLVfFWS?W)C zYO-^Z#7;Kqrbqhx8d(8WlaTmOkS>77K$uPu*8G;N%Z5(BpZfRUzoMfPJ7j&UHSqs* z=-8ay#L3CYwQ*w~It~(JIR_0t&E_0%C5%}_L@n0k)j?-dPh}YB%s%wh#--~j&vers zId)6{#s&yFel^teI)kL$VaOddcvN@;Qu~Y;bE1cxg}!ujl(^HJC$iaaO9oNE#xqo@ z>9km*HTYD$q}}WBU|5;v9YB(hFAGn05F1Y6)8;)gh%;YbL0MVzT!U2#3JOG^mOT23 zOQ?=c2+um&RU?Qolvz|73d4|@AQqqjBLw@=EcWplG}Xz}^%>@CXk z6YBH7+71yh7vQem?4EWWY+vxy34$&HO|q6JWU>DF^W^}6b%4)CMn)8zWnNv+YNRzO z7!1%Vrg#j#N$tC8E7RHOgUpked@g4y{N#ujKR*phz0!yLgAInOL$5#o@`ZcPo;?Id zqP>X#oT{m<)$o)^v@(@1r`Q`eOkfBW`R$l9!>N6LxN#9=6b#87eC*h6$;3El;raDA$G!M2JE)ar{`Ag2;?LcH+bp zVm$z)c;q*Ge@I@j2?9OBB>2ID9e>pVes+1cZVGu?U^iL$DQs*Mwo2lt84JUDcq)Mo%2$h|qN;^N}yh;4zzp@im>Pr+jUMQT^Cf%78t z!7i`w&vEF8z5~4CtgRhm@94M+ryS5Nlxs0o>Fkf?{QUeA)6-h$G;!4yoyEmP(*9DZ z%L%0Y^2HiyIVT-9lUuvIwh8OUT?}F73y)M!H$w@KI`fT`e7jHgkNT--va`1IQ&eFO zl{pz(0`jrCvonb^mi6y?lKlRcN$7Yi1F9wKRQ+lJ3bFs76N}gzBfLjACM+`Tfla`| z>0-xbHP1CB*DiBzKRh$hGxX_!2oPgRLBV!K)@&)ehVvzk&C9^rsO#v^Z`kR$NlY^X zxt{@Op&r#qRFOXVgFEa_pj&kKLM~mR*HbrDLi}qR8rG-pjVT1vUdg{Mu_(0|;1^zSuh5z|jGvVD`Fz@_A~b39I$N{#)HYq1?XdZC?& zkH(4>E69p~iY`3%dV{RIsnfGKZpy@uAJ4+piQF*~rPg_8L%B)2bB6-mj0Gpf0Uqe! zeebo!ukfkxl45XIKc1@9ycb^Oe7L3v{RUiw%3kwVHDYyIo1z~HNfzA!2w+@~wEYrR z#jApXg5JJc_h(d~Ws8VGLidPsI{Vbrlq7sdL_%E2#J!eBYY@)f+k`iU2sZV-x1bT8FqlGD01aPqEy9nNB&4apOp%s*ZM?Y)+LvY$LwC;zaW3m zfRo@?WQuMfUJ95!kx!_5_5=;dTSe8gz9v!~7F__f2nHvF2rC{lp-?D2c>o|}orpm< z%zCUm8Ld$K+=kxr1GuRps1o;?nqHikaD(x#b10%X62>7CfZ(5qQc?avHJCWb2?Muk zl`1-qwx1-Wn+DUwh7iRsQjbj$yU-_WUoc3 z1_X&U!887v2BAf6i|{>PzI>t9^KU&2$Nw7i^*6uYij7@?o<4(d-ct#GB7&A-4TDQd zy-G&S+5n1KAdG_#fu2R(B4ai?2RHjVl+41=NXC6Wx0{XJSG_O=0n+hwYD)6J%!OE0ePMc|Wio>>xCs0q}k5zWORl zpJcgEC@BKM!kUhe$>;tM^V58CBs_Q*FI=G2jN}djsgm_|j4kxKkdV-dnoEr8$XldH z{-xNcR(dY~1T(9Ty%G2s(pP{6ekQ$^CHgy10|R^!MQ%N62piL0aCcn0&PZHh=8J?) z0XRTWHSfPLoyLn9cnLI+Xow`sus%67)U$1(r)Cm35c2dsoWu-8RD;Te-vrf^bI3!e!jMl=Oh?C@V6hQpe z4hJUqWrIoLuB+4Z+}tAN+}8h}RyIYmz60JNAGk%*>|u{lYCs7jodBu?eVO$(MJD4| zb~d(6z+XN-K7=>is-V59g!DZf9Tl3Kn}`(%3c)Le9%P!W@WsImM1$rOnK4U;P-lR_(WRCDV#ic^3kb2Iuv{}6BSum4zMheGBRd+{jruurR3!5!9z=d zNRBo9Dx4FlCtQR5F@AE!1;1Wtk`4Mi)jj+4f5)WIFME6Yp6}oDuMzkCs}CUVi8B%~ zA~o$Q(8;PS6Cj+pV)+f z0-*qUY6Lf}oAkjD#Lgm!zDCY20y&m1e<_g6fF8=$)fMQ&sSGXk;XhNugeW0B3?Qah zEzFmXOd3SsQhNIAnVJ)=MMhFc$jaWnK4Lk|Xr&E=?Cp@?yH(U z07Hivog+Ah_9%ws+s>N~pu4=K;2}KlCh;HVkh-apv&uon8LwAy(kfe(y}on9Zk1N- zgGH0ch7Vz4Vxl^nT^yap*3+nKq~L;sw!NUfK}#@>TT4qzJHrG{MA5us*n6a`SaVoL zv+nxOe!WRH6bAlniu6vm5i`JdjKs)G02K*kCu$5WF?;JA2<(On<^_zD#KL2O_iHal z^bm;-xyE~<8$~!>2ws+8bPECqDD?F>PD8PddjCxdJ^6r6j2H=Rv{cb%HzALck;bfUZa*~e#RS6^8z8rVUSxrva5HW`3u~^I ztjt5?$ba&G-Md@DD=9eXvC>D!pu@rR3Lr$B&mo}5Az#tXpqtjv;%5}R*&qc&HPm1` ztm|7S{D_$LojDMlC#vBu!%$t0nFv3B5Sg%XVu#}%MglvKNU)(HJa=By6TSeOA2&BQ zkx_<*omvm5r_wvM2E6=F(0&nb!_0<;xjDy3TS39|BiOm#3K%$XzE@&206WKcH9ns7 zZDbl@1{s|cHL(b1_rMXu{knR37cp$2lD!GTc&&gRKwCZ74@AiZ->D%MbOIsBM0U_S zk#M#o)>XXo`iCWf-*r}}$xufJ!zzi__K~Mw8Ad&iZUfA^fRfTdPi_-+Bo8uJKzxV@ zpvwUDtQ*?;(a)p;8Ha|2oy{2RD)S&SSu9Q^=;-YLoXF9?8GBcn5FVhV{BV@u)XhZ= z5=%R!&qVP)d$!`o^%685-Doi_+>s&#ezgG0wB}kcV_FU^Q!5q7o!mO|Z4KxluqClA zFNEtqeZmc`*WSA~`-ca-nq@;27M5YqrNZ6B1_m>lpd$V18wm+(R8&;_=Eh1v2(9A@ z(f+#g{(sfV{a*(=pLj7t=MmG^fS=c<@%3w#wQB?a&0(sa-z+3#*ZVvSvZ@+tGU=pP zHXzk68SKv;vF-!#xq~GY)A{@6&U14v=4#HhliC64}yp z7MlWs&+hQy)MsR`M~=eFL0Ua%LK<2r8%P^RZk@0WRu4~XL8wKve8h1DDUn-D*`ujR zckkXk(_5%9+6y?B{3xeT6*P^Fqle^8X^~W3Wig{+k1Sj6LN`pN8~@Rr5@KUBTA$_~Fcgb@24}RCloY07 z&N@|qXMi+l?qhx0w*rFGh*i{d&!(0&=woXEUqIo%9M-iOA)_C#QIfuDTQODf^?$tR z#-F;*i{>W5{sl`h11IOrn;-UxvK1B=-)ns|@`t3_)}kb;fU%W}fC-PkzrWsX=@lRq zYNxvbm}zNg!9j%qFN6~pi-5rScR%+II!$@XP)N>0Y>NGIF@+6P#(wrd_%xcC!P@(FN;#Au7{Wkpv* zxK+!?o?Gtak&|J;!Rv z)Xs9|P0jm?Q(vA!EP_8FvG{BO&OcBNmg?E~uiVm*C*HSrgn3vsukRfk`qM^2vF z1WCUB?c256wrwL3*mDkC6f#pm%HKU5BT_ezMvkYwiwSdm6kk0Qd%{d3x(pFVC28!4 zLBOcR3^_V8Q8w!p;h~{J0mP?-7{KoTHJ?CdmfyS`I(9n$qMsxnm9|=*pEf z>FMdAk!lDWDV)#MASO?Amhbmu%ehFqlBpYcQwxl;g|VOyc?*1Vik?G(P`S(>MO9WR zZ!d&0?^B1|Rs^_(VW#j%we4#$%S#-3Jv}|}lY>mr&U4a7aj~(nkw4W-4fZ-Dw{z!n zT*FzO9n0zihKBSwkOmI*C|rLIdn6Z9Na5jHdgw}8EE&q( z1{vpz=u>d_O~f_*Dps7h>M(^s*b0{7oR>5dFRy8O&P|xa)x@VWir~5}YruDqaWODc zB8v12O@{&&f(r{JJBMPj!i)1?PX7L_iGiQ8woWile`g(Y0zsjHwVD7^92TiYA+~3z za>S!!EgbjvO+}bOfwF{XO`f}rSCirCR8C@C4+~oj_q~K-xWN;@S!n{d@L3oZCE`Iu z+G&zMeSB{0I{F$A{nMvU%l;0}MS>sU7Zalg-LLaX9PbXP4c6by+f5)o?V_h(l~NlX};0RGt-XD+Lt zI=k-!8IDLyWJD_;u; z)iHv%y>W7fq$F|6){VL&K*XSdumE;`EOv?+61Ccj9u50MT9kjXX0*BFzb%PxFtVb< zWBvXYQu3+(7c8D5t=XOjh`9E1K!2xG3)P#j#4g$OyVBP=6~HyvO=1YVX9xzX!Xwj8 zV{nR4xXYI>zk_{59d%-aT5b>axyrL1xX}`~@6sKY)doC@U|0{dw6)`yy*={h@0KE& z$zS(*N5gVNqP4G^$A`9FHWjM{{4GLOkT~#A&yzdv$56B2% zDtHejdZBS>5wqHLkWq9|SVT~e7FGBXkMx9$&-=LS16dD8Xkr< zrW|AunKvVbfbO0i!i#)p9ud|Oh`xi|EDuaM{1CXO53|WEw-Eo@KlOh6R3CeKA;ry& z@@*^#hEx$lYJH0~p|B8YgbzmcB=tYG_%Xr+&In9rq)x@rKt20Ad2D97ON>5`Px)eh zvtT#=nXucm)6`QUVxN&wAPO`wMW<%jS7@gWNUY_Cb1cvz174r_ z>Mt?zh!K+SUD&@nL{Tv@HE>omcN!Nw@G(O|i$D3QTc^6}@7}G};tOj?vm^Kt4tug{ z;AMuFCpx+#!`mG{ei^8f5(rKJnN%i+dc=< zmgxUvstF$apARo<%O}oOz5Y*QShLZ!JP2Y0kyokdXC<~?UV5v`1NjcrUNt(XPu*+Z zOD4{$yn$i~?U9W6fN#^aI6#K8O&)?`>_Z8wBg_m^Ggk0T^KIdkXc?@~w~**Ukm3w5 z)YjLNK7+7K=s;22TJ|cw?|)QQMg}$ztddevPciwg0eKx3d3U^#V0^OXM8lM)D(Ys& zajUDV7vqZ-01?P28R??H4&&;&098Hlu9bVBNg@xE+c0>Sjg5qQNh}3~kphC};2~cz zQLGA>Luf_fq5rFbg=h~BTgUW$`*sBth*;iXWk99CYj;|oIU|c3TnWrq{`1W)geQw< z;lJ@7(Uz;07B{+=Srb#3K#P%K((b3I6H>O-6bRb}NUMMN5|6tF_HH>IusAD%*dl|q z|11eDNOEX1v^Y97kj2pVuqbJW{QLA`1W`~~*#=j@bycDLT|i3ztE17gDAlM6$MCDD zRGI8T+qV$lJI%N6bVdEC`Lq3l@~>Fd>{-Wh(BlJj+iI!i_rhXl24C=T9#a``E@^Mg zKIoNUdD*P-#9sa8k5&&Bn_u6(aa)Ec%Mxqj%} zY%u6h369H#Uo&x)YrUtJ7DGe%6uj4dJ7Zb2%*4cp*GnF;udREb%p>CA1BaBCZT$VcqXE(lS|i&=uBrq!!QP+qzvI`lvuj{r2X@UK6y#%>IJAfJ6B2?dwn?mk z?pisQKPZ*Cj$_-!5ogPXYn+cqq>Ai#=Xl`J+V;;YV}HBtI@P;8BO~KP$KzPEE)U+Z zL@Up@MAMQXSD03dK93#C#P%FcO5pzZ(8V^`K$C8>@b7c?QkNaJPsv(!|3S(lE+(Gy z?{gy_zKlt^@9tK{oQ67hAK#jx{AWn;o_X%4;m{YfGrtViLYah;L1s@;4;l?HH~pNO zg(WE}@!J`DMJtOfTk2Yi7qfCN%y{>mMK4`JKmC2r;A`n!pIch!lIA355#}!&8qx|2 zuOc7bN{kGhUtPufay@v#u&^*xW`pSlWQe7bqn8KmGq0{qn;3o^9Q;cqzhOmU+qeA^ zb?2sobu_D=2~{op-iSFpjDAZYk&`DrH!&)(64O_S@G-(japVjs>jOoWSB!7uTOH^b z&~M7i$XJrfGzgB{(05j!@p=Gn#moy+3d)#SMYD=D%-1jVc^)ztb?{b&z~k)RfEhJ=tW6q2i8L;bijxG;GFS~ zUdP7v97f7F==MILod4^?md?qae)YiR4Y$4T)j~;oej3Sefxrp3RjUH4RYkYU-MES| zt+@sbPR@;&S^N9B7W}R@d=*epN!H>$OKlqqzoL5XP(KBJjBD^1w7h*=jhg$K?Ano; zj10yTG=W#v*pE8Dj+<-h>$9t&YwCOXvTnd$Ek1s@T+I=ToTUT@%)$=N1_IKOV(x)3 zv##akHQ2j%_4dk{)W5g*!p-^k1$J@EgEma63zh!Xi=Vq@vI>plc5$pvnLpPkD^|yDJu# zln^+(VdKVGkOZg7tUsQR1@)?y7V7|}F$|^KJ+wM~cpL9u1I0avmlo^w4W+pK=p)UNP)ot(% zPfkuwqk#okOYP&9TzPhO$MDrCHr>-21{krUysWKVE}y6rxl%rHv)8@CUN`wmJ7lnq zEG+9ORomUsw69QYrKP`>6{(i>pa3@$8ak6-4LY->y}iBQjlRCVjlajC&_VaIOY=(Q zlUB9+b{~qIwy64B@YJ_R?%a9(?c291V;@^v`)&LiH~I-BVINR?tfQhFelV*{wGaL& zcA`MMJ6EkR_iE5=ckRY-Z;s2g$BW4R(>07|=IW1%+P*n4Dcf^^)H}uD-40d!|4NUm9TuZo#+faFO?kb;5d-JC&75Lb^BB^6Tla9eiFq1Cj^GY3P3nWg$;4}PuRAuD?W-&C?@XdKNV4*Rw2 z7sIfN>5-*u|8%I#Xbz-GQ(0pU$M zVjkTdC+hnGYQzM-HfWh9%ew=1%Z-eU_rRWr8AUL29UaQx)j)B3Pj`4J1T4n6Ml zL?(?Ijs=@seX`U8kjd*aOgFnL?F9tVdad1mOPHFf9uxMwH#0KeR^3x`^#+~C;NsZ; zmQ(MvBRTP1B60WcOGiC~JMyzV+sf_>%*uCia>C*3&B@I@i*I9~Y4W{NKGmX&ZZr|& zsAU!=Pdo-A=Vtp~#+2b}05DtXW7~*JB>DgTlrsNOfYu#jw_thH4<6)cxVe2Wx1dr$ zLgEVK4lD>65FZ;GBckh0Ik_jFX?^$i9;D9SG)&ZWcc=TU7*Zo@o|9|Wqvq&Z70@`m zvmO8ONjfXf-z|V;^3KxniSuZvQ1y4WgKuh2JA`TWg0X|YPP@i`A4~L#9~U10t^ted z-|ZWA3q5iqaO({eW9$)jeKWc!!rz3{JVmhu9HX&)9VgQ`Hvh|nn$D1{aI?R^`k_nR z&q%%vb7OD$Eh{!WbPZX-aOZvtR|$=Mv9K&hc=)EBY~hz9QtuWl3iR&Lh~z{s>IR~k zrs|yN$##WXe$-1Xa8gnFs^)(DaEG;KRN36bL=7k!lL!<-!G0V&g9q>)N(s?>X+iai zX-d#lEC?7o$8)cPX(hAI!;Ez31k=-_BX{~d*77l16m)L48X39rFu(qL$LN!)Q17>% zGAvRWAk=X9!5fx+*3r@N#uzvaMm^scJu8DzQ`49 z*tS)o@qytqpTd*xPpsc6Bz7E@`pwsRh`QTxvljKzK^#K}Up=VL-;cN8m?~fz9eU`B zE5kyGcMX#xYkF*9;J({0E>QW>;f)Z-WvN%vcN<*m^YY#PVe!GX$KswN?p5l?Tc zssPbtm1q0cVKU~=mF%xA8uL;3wBO?)`!aWb9%z($xH2qCj{a6Sy*f@=XR84kvVukzP dKIH4tFJ+cf-xuER!B-$s_G%bV^VMw6|1Tr>)^z{? literal 0 HcmV?d00001 diff --git a/docs/images/chapters/extremities/1c0367fad2a0d6946db1f55a8520793a.svg b/docs/images/chapters/extremities/1c0367fad2a0d6946db1f55a8520793a.svg index e134bbd6..3282e1f1 100644 --- a/docs/images/chapters/extremities/1c0367fad2a0d6946db1f55a8520793a.svg +++ b/docs/images/chapters/extremities/1c0367fad2a0d6946db1f55a8520793a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/6db78123d4b676ffdf85d53670c77468.svg b/docs/images/chapters/extremities/6db78123d4b676ffdf85d53670c77468.svg index 38a6dd1e..a69d2227 100644 --- a/docs/images/chapters/extremities/6db78123d4b676ffdf85d53670c77468.svg +++ b/docs/images/chapters/extremities/6db78123d4b676ffdf85d53670c77468.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/890406c7bc96904224f8f14940bf3e56.png b/docs/images/chapters/extremities/890406c7bc96904224f8f14940bf3e56.png deleted file mode 100644 index 1a2edfd6b3f7aa5a3c746d0af18a3cb58d7b2e85..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25175 zcmZs@2RxU5-!}d=viC}6nOQ~IJ0n75%N|A9GkcXSB%vaElMzMsmSkp>y@_nHdETe% zzVGLLJ^#P!_j~ob#Q8nX&*wdk<9HvRGyH+70wEp^9twpbyr(FqfkI)3pipS!I9Tu< z%Ia^X@CTN;vVt7y9Qj{bU2Yr-brp3_?v9p6^4|$}J`fstTe;Zut7-AiBf=u6 zg!JX>dPG;M?C7fsh6C}1qN~4a(_ONjFy0{MDYh;v=F~C#Ohw79qh1>J94AZ~ouxtQ z`gJ@S#c7uLQ!fUFd(J&ewQ6rl4jtQdmD%DtuZGsviigQDc~ZsWua+^a4kddjCvbD@ z?K65Yk$6{!E3Cy5ZA*6L&8x=^;BpG_raQcrnf&1a}OobRc`fMdf?rQ}MLwpIPaK+C$4;};*8`Ut~ zxIyH5wA=Ion>Z+1ZUHXe7|*2}6nzKpXsvR}`cYgBGO1kdg*AHcE3F*H--?W`FwhDGm-!BYZ5TqQbWI?@z2pyMLHn zUvf5;$w^#X%;G;6Ai6wM zc=^`t+m{p--$z@7drj-fY!7sIb;WsS&_6!6Fhdsey?TiUf%+rbcq1WpcI?B$!*4%+ z$l2Q$YkYbWyhpLqufW*U-A%~Az~JcW%AMcvsPnZ(S9VTLhQn07u=Bj)=S2&N!-d5~ z8K&4b1?fdTGG`|V0ts&_Q#en3pXk>Kb-bSSil5q>?qj2jt84& zataE_=9pPog-+DCXUa!XZEkO)qkg=*ojbpmmUi{++qYMlm}K(8b{X0(xpHA62q<}&BB2rzPott${ zd|6!yyog;~Tz({rl>Zp{@#6=t&2W*msvM=ZCT+4go$_GIszql~!{Dr5219`b_sqml znBrr4v1bGZUu3D!2ai>(`tT32)?w&Lxom(U6cw5-^@6u2aeP{Aliz>vA93 zTzeG8gYrdECXZuZXD{(6v&qpA;m7E%1{g43a)!q|A45l0(7Q#3;TWB6S3mI-Sqf~TqGTq?EB$QgOMV{_WBGl&oRB@GG zoluITo6Ms}ELemzt<0iGu|uEc$qMJZ%EpEzA|g`yr9MW|cetr(hRxL#FD+9Og&mr- z{L_klWw_L0=kP(y~Qfq&R;;Djk)eT0Z3s9=J>uFGVuEq-_T-Q*$2&vo?uWF`P9Hv;s zVnV10y4K7P9Rk@YU%!eB{QMdFeg#vkM(pv8xc4hKsM6BXJXcHY-zJ``SE#8`0j9?` zPoC&mAFup7gNv6Llm4eJG;P<3BwW{5W4H)efjy6E8ud%UqN3=iV&k>Y=H^NVRXx4D z$U@y?G!za0lLwYj&!3|cQ1hmJzopaOmoCfY^Ckk>H*I9!kgcSqrJd^}x1y6+iD_-M z{MIWZ?N^URMn2)RnY>uI zv$ePPs^7e!*j?_&7#<#8{$0+lp`kH3+TNe3&|mAh^ZNZ#Z>s-Nb#ZZV*vpq%-@TFb zXW>WIKdq!BCPl)#xwUmZ_0W;c;`pDb?G(eyZ{Kci?dFrK+`m7wx@xdaCvyC6O?H2M zLYcwg_oqu!zWem+6E&eF^+$Nj3elJkTu;>=D(Ir4qxWUqBX4bOZG<|8fBA-w&ASg` z?o8t1bou%DdbJ*W?NPM*J#IDb8_};`kpxdMBD<~K*eM;(`E6i;>;)E~jIAv<85x;U zbjYt?ztYTFLLA-Pf>TnAzpk28yW;-)_m4FuhF(l(+c#JBgQ=O>R?k|huoHUXO_Pw% zp9L&`ybXkk)A0F6AO<#yLO^MBbhNah!e^-(ezD5u@Kf>z3eq&z+5*Y1qobqE&CP(& zP;55UWE^M#D#^m?#csE6-7baQxc`}9@d>i51<|>Mq#Svrr6i)FqRuxR%*+A@2M0BJjcPqe z?Z&>e?f&`M|Iwh*z1XDYnVq=jHm0>MXw_?YzOO^~47=(qoUMJR1)gd@Tk6471A)U@geeF*we8j}W74{P}&`$O0 zyabw?nx~_%KE-;l+P9hQX*{vS#>nE=G#i|IFv>HaTorz9_^hUcvGoYgp8SnNY?z zDYCJh;)P7a@R#aeQzS4dDgyl1QH8eRMp24)DD5tA8-Icv`pK$EKpgq>GS2QA{`?Y` z?`?o|6j~1+G(uB>L}Vz`#jxr{ziCY2`$3Yh$f$6)8;Y^UD}a|v^Qp+n@5Y4TTxDMx znoFij!&6PNij&PsgQSN0fiKP=WLrE~F0Q4T>Vr;AQ}1Q_2$O)J=sy>F;O8f~ySEn{ zeFuIz>&UYAu2Q+>D{30_#YO2#`^F#dl%@!v(O+6vTG~-0LV{C#cdu;lC;2-edlW8i z<4lV*rBC#%I6OT7+5j!i1!&0dHNUys&%C_6+*sf=$2k#gZ*0uaYF=iDf4TR4G13HA zjBheCV_;!nDHZOEx)tb(hg|Cjc4iByg$){vH0NT_7+F49V^>i{ymPG!{op=-1kL0k9TUbf#Ssm~bUwOe2pKTtf9~7aYoNU_CjgJ+u{9fP z*uVmah-tu8x7hGbxn=jfwIf9vTc{%1P2<|@A`!^C$t{Ta9Pl3Pt?KfOnZx>{kjBfz zvgO(G zckgB>#4rqfkwAjV^a9!M+C%<4|L}nxvRd12>=E)?P&0MA=w*=Q9vlL=-rwMVZau+< zY!{?^vcg4-ec#$%PzKnR?zTESRBeP@aXJ>E2pQV|h0rIe-CiUl4A)$K8HQTyxm0Y( zal99VY1)D{J^ER<*Qic^cl-sm15Xd~z_k}4xh&wal;GvDyR3e=*v@wgy(i_8{kX^R z=jZ5YHo8}D5H0`A&C9>1h&tNi@+!8`O)D)O_kLGMdej$>P^=R zo^mHVfg5eOj$w6)RrA^=}`uWvz3G&e`LvtuA(g-3h+P>;fQr`Krk-^NtTHQ5k~56`Jc z)xFGa-ZY(-KEz{ZMN?IkpAr*63l9&_!sEBqJNi2Ep3YB{xgcwBP)qOO!~fa|*09|B zTt}8YbhSQ*WU&6t3XHy()YKFLk|qAy^RE8y2(H)XC@2>$m#O^wcdKM3mM%jH_8$Ub z7mJ5SnzKz!>J-z&WGaJ}D6FkEkcuTWB}Z(v_PD!=nW zqYyIt;tmEs8t5)lBY{=WGEDXM)+L4V@-pZ(8A}l{^R?^U%p#*I{HXsDW9t4 z988xbDxQ5B2&MQp$;mGP)HB_@skVIm;)c_W#C*KBS+Mrj49fO=d?V|PnXd>Ege)$~ z6DKDJl+<(9sjd#on>?P5!Vcs71I(cG^Jhv?ETpo0S5#9|FgIrc_;9H^Jt;8}8?tny z`Q5vBN)y7XWhtT~$HyBDW zbEMlS6&m~&{l9SQGUE*mbf^Yy#q9A)u_-ChK$2&neE_KAj4!EPy>jBRZu_`0{fVTk zY>UR2ZsmRq!sQ}>hvJB))c+6263Cw{x9W9V9~b#M{#CR1Y}S{ev*YJb80R$s0ZJ+= zs=l8;$wl#yr&9`xjt)soOw^#ElSg(VsNwvK_Sv&%G95^H(YPXYcEF59Kz-Gf00k|8 zb77_>)X~wAHU%F^IqVrK5Iad$}1e1qiJ^Ve~4>V-Ny7j-HasZ$RC;>aWk+5t)6c720>BG*p~3c~!ai`!3BUs6_9{xv#^N58;>Jni*s*B~cV z|FafkgY~}0THF75pyrDQip^2Jckhmd1{uUgaI^*+T!`|4o?h7T{zfJwhKvGIZ^?cD z=HoMO#Ywk#6L|sgeGW*V>;S+Tk&FVzAxZgMOXw{%J^3oYM&EUF%1-Tm_g!+S=Qx7Y;*H~=jiEi5R=-!0LJrzw32S|?Y{0ZN^V7(DRvrm z3=lM>C|-V2vrL-1!}RuJX=VJmY=efsq26;v;1wAZ+}@a-CoiJtxbT|)J(H}oLUq|{;L29!!{K|w*NPr-oQ zD?T53vqPTpxUY}jxpN22(9jU#;~H%LyyILu;qJzi30&12vIK6E5GV%nXo~ml1qKIS zvbD7}wX-9{$H)KnUHFLo=a9Ua*|qiYuP>IDpCAZ3hEWP3QZ$0LVRxfwnudlbA!c}? zfSC3|&_?{7sJWc#`|lk*1)%JHZ^dkl@oG2x$jdjWMDcJ{IOAvcr~Esr^FNXmdkmjah78RvoS4(MK87iDvTZ@8n)7;dQKKl+Z+S3O&!kvyCyPq%m=5UZ4pq(2Cy(|`ZIymH$z&F}O`=|j`kPmoA`UtO$R z*T=7zmr=u7wCCJU+B`XQ@j3dFyScZwK#vL!Q{?z!Hx|NY(T+o(IRLe-P8JaO*})uf zk>OX3BhGAe}fReVn6kV%z8EF3Q$`F2?*Pe`u3V~{} za9}L6LIwb0gbD%!431Wmle1m{H0ZHCk6T+?3qkr6f^>3b_@e>zlYsE>@ILiCJivYU z5XPltWlcg;J}u@QxrL*(ivIj5(%P+RS zpF=R<)5{{UKRMGJjDN7483XdLHVfnt^aF%`S$4m_1oS_hnM2ORgb})e!c@I4>6I(t zo;!<8zkgrx^YgQP20i4)*4Eayo}RmrR6Ie^86-X83cE!8{ryiyia+%6<>49DJR=0j zI3zQZ`PtuJ>Hi3OR-p;@7wX>pJ61^yF&NU&Acc;B5&QlVW(Pl#q~%iwnYYa2adK z4OBpCaSz_J}FG*VhkE9BeyYMGB3ALNr8U^CzvkNJd5m2rt;_ z7O!5@N%_&aEdFSMuCevoD)s539qT7g!T=*Nv#?;ovQXc)B!IHP?8*&~igx*?vD`=f z&(kX_oURnv)1YTQhSpT&ynwgZ3-FpkPQJQFE0sFC$jFvUG#8RKr&!(ZIx4g2AMfO`an^Cp~szIWA?b05@g5Rg1wB)%>F!e zX2tA*ef!FTC4~?By8T|?J%}kD3JD4Af20AZ_N}`cx&#+e9Jo#D>2AF%8W>a0Z6Nj( zu>D0sD`ejangAcr@0W~H_49XW3tq+S@t36h?`FpCT9=o19YibSj%SVvJ~aSrQ!K`R zaQpV{c+oi_K!ThjHIR|j&(=6c1PKWUu2Mw~dHGX*v;ty>ik}S0I3yq>RJN14eVZIa zO2}o{Aqigd)-a_Jox76SB|>J+m>_dtcO~9b(9)u4k6|QMP*8~P?C^T8skXee+g&Et z@3jrWD|vMa)MZ2@25CIlrf}fQdh*^MxeaxI9y?3DnHC+=q&=t73sc{qL0D#g6 zpTO9s{$Lj0u-Y|$))SIpAviSDV!APq_tq^k(TIVqb!)kjSVb0L_jS7ZlWi!!4=zCx zo1dK=>XlnYc`-PhDjxkHh{DF+USd#c;>V;QlQ=*!Ys*$nEVb%o zfQpX`&86h4*B)nbaxxOe$X(1YF3tiTz`@161G;>?pH-su%sgg=^`)>jdH;H#xs5HE zyDkX{*^H|z=)u7OUj)-Kch<46uZxbl9PvNMC30NR`Wh)BENlvL7+fVVHI)%~Qx0ET z9vSJ-qo$@NB)47NY%Ikd+}@AKdmT+L76OtyKK%>MZ+(3vfGUF{BP09NDKbAA4d&JU z+5J-)GY@*J&JTG79;(V6V@%X4{aB!9_zuL&7YNl>Fi77>3lTmh1hV z*6@;)#3e=ev+-N3eAK{vXJbofW6pi~kpqgm9+A-!TvLM>f|toFJzxGeW-vdUP4o zfuLxa_uo6Pf7KnYVYPQGovudHVpmmD8AbjqV+M@px?#LKx_V#3X-!R%L$uBAXHLeV zk}43HU!`Uk_2*~aP+AxOO9VwlMUAhLlg5@pn?!>iT2)n*xAbQMfu_4La~&}jP?~{p z+|SA0E8xq2Nknh#>tKdPF~wS1#P+l=P08V|fdMUaswblr97s4G93RhR#z+>pO28v9 z0M7XJ#g6ui{RAgGLWhAOIa*juOb4{9zL`DZaJgMoM&DghL5IngrKP+m;8b?QZRka0;xP80Ok7k7bz4bc^R4KeK3SsCWMe{ zf#4Nbyj*STtT^{U%AW!7<%&okODx_MpgJInPj76*Krz9k2chuHX=RWDMwsbCNjs%O zrpT|H0*P+Bdg(?pTZZoV!~`iB*>h;Vvo#y_FI3pbMaf8G?{+~KfAZvdj_LO|H3{VV*GD8Btg`n-LS5f9=ddNf3*o=L#Tb^o=;+{%QNeclfjK&Ud0`;v& zH~_aZrL$B3{2{m$PzayPqKdfpKWJg_drLhZ#KOYEn@Y`EU>|`2U2|Q)a3rd(+ShEA!%5VXu0UT^1I%&Wveb5BcGjU{uK=)YR$wnGe zwG*fb=_`+|tmdGdAFS7GP!t=S>|}mFHW=D_v&C@z6Ri2VfxzIO)1N_JIyyRfHP3hw zZWu*WRS5?#J$#}w z#^T~){3s6e!GfW&N(aW#&o-eTUvL_BH8vtko4sFIa4{v4&i>y5hMMNeyQCxws9$=e zrf8qa%lSOFA3b^cG+#w>n7kfZ@Sh}$@Ql5Aq}BiRf(+eR>~8t{yL?Ja;_m%lQ`?)a z0t3R(PqB#^T7fSFN6Tb6$uW@*7d?Cd1G^tdLNV^f%uE`eAOo7)+p#W63n@hs-GDH# z^o~$QKO9|MT`(a$WdV)?183|TH*UNYc4C5AS8y~$ICEBRu0?N(#9KkT_kHS^9S}lF zAR7aa5AKyZHw0`P0+@Xo1b^0;x!GCA{dFTWa&>JQ0c#4xb^tJG4m1;)j&vFpR@O@Z z(l|VQmU`%;S+(YXiF4~$;GCVE)#j7^ntv4{0^JXSD&Cogh$A&NmK0Jb0Hj}fXjGe9 zTO40W-dg7{NO+k-=Xon&LuGDZ5gaWm5R{&N4OHGxSOMU!jUyw87Pvzm;`cxD8>M5A zXeW-38~*)Oh5_i3L=-Q+WpI!JW=wL@(kP%a!N?G6V!~)yPpeH_T)fn>o90J~1Z^DK zeHn;mSODvu@$n1v2Y4I3k$(8tl~QT7m_6o z+1>{C<@9HO6`D08EP?eba2+0lFQ%gvPeE1FJ)rt2N6w}q4KeL>wEOe~h9?lv1-D?A z;ae@p#NOJP)0Hm1>F1Cl^CL@3^YgRQ&7B?4uIfTlQW$_pm|9r8fDgf^4=qstAnHa! zLlXhW#SAhSt|Y)t7S8Ln`-K1L0A^1QfD*X2_rJe)py_Xc)dH7ZJ{vTks7(;VTRI>X z-VZgdja52<088yCmy%2HtI<>iG#KoFFW zK(*NO0Y6-h$(4nPDV{l2vDEdC2Df2V=_3t$ui*PcLmmK&s3Dp_VrO-w@QQ)3ZTazo zAl3g&Ewr>gwt;9ZYCXY;0PlrWm7Wh1%b6Xl{bSp3WRgQ=nVIa3Kra(P9O* z6$-R6<3h7gzgN438hQc7u@Y=J+#Ke>~F)>*d zmeaZi(DFI3Yv`>ZK){=R{ko{N&pl5L_<%$O!eA5D4rZ&?;B7%>=fDWRegFPkh3y3l zp6Tf5rq|bdh_@d9`fPJ~e0*G(BjJ5SWTY$%7)4!|uL7+=gWFM98~w}&paKbD;2>n8 zWclF;u`(}v3o(lW^cUeVzzxmp?QcL>wc9ukN_%;U6440DqSMNbjUDT5i zxC;|WA0MCT#YHw(iuevTg|>SvWC)XjmC8$cg_^pb#JkvalMnu#sd-Ai!p3q{OpF$U zqgsr9DbNiNM0m6Q03GJiNR4N;9?T;hE;fpUwVMHwfPAk&up@?1K}iWu^7!vgE6S%f}+0 zHYur<1VDY8DwcCZlZatFCz1)%SgS z8e6(u{R0pWth*7iTBcVtypfu5A;C)LpP#{i`qkUF*GE)(+Cn!XZSuyBJG>%>ytk)u zUq-!zL0;hv1-AHWVv@AO6I1>>q;6wV?+r^h+kXN(h3wI_=H`gxZ16AAEnfj*g@HOb zIRWoQw)3G@9m7ri2kO14QXK#mNI@n{t1slxz=^r{@w$5-pmMpsJ`b<1H?094U) zKWXnhqyGshGJpiMx?mg{W=&;hWar~`p!rsaH#9E+r+v76Q*S-6#L_<)W_;;$u{8ZZ zf69VGgBKv)-_g(b(EA%V8qROHat~YuwYeQUH>Kunco)+^Ve2S&U2;8eWFZwg@r|h%?J@tUGT_pRp!9B;D$*(x9-Hjfd?im7B@G+ z-Me=wCvP$ph}cTl@vSxSD}G|_6XG}uR;%OM<9+;{0>S``h=>TCoyBc-eLWh%3eab9 z2ni8A9ng^ON)Zmz}rS4_E_uj$;qiv@&*^MepX>+rDr<&Du_zo!5E%yll|0)KD3($?-D z%_6-rbnq6n0!jP+@!@|gHYas%<)1!*W0CvE2eHf1=i?rMVR=Vl*13aF^666L6+MuVi(($%HB zEG&SordxP7I5-#)M=X0&qQb&(c2`G;fmJ{(Hp24rJsrrpMN23DP*3l=>-W3Rp_Om6 zs@%Jm@7R*{@gpI)Shx+o5a^Z|`&xAa*{vLt_TmYyEvy}{2Hq5>;AIvQD!6z~uMk>qsETJRnHVi%c} z#R5uKgT|`+>M$XoF~Dtd4<3+!(5F8`1AdD}P!^S<<>Ga3b8z6=jaGPCeRKfn2`b22 zUNf0C_mD9DXwZtm5`|#Fm$X7efK(B1!U0C0B7;gIaEQq|I`Tqi>KCsU(dfy(Dka3I zW-ob1!<8(jT`f4p=`c5zoRSMntAHT;tKDn}X!sRj_3>inwbDT$LvZn1anDN6zN(_l^ zmn%T5aNdZv1P%a_QoReUL$QIln4P@M8Sss_QvQDLR_P?XC=hB0;|(P?TV|%$i7@#> z1a}xHT!TCUT1W*uAu@thENu0R=;n^`eK{^qjyvrw1ZbMEqSx&m0iy6hmZ#4RDxPRp zkwNFW1`i0l9vO}yfLcBCZoHxC%~(am)yr=;N&$p!=oyQQf&#YG$>xiJRUOv>RZnDs z+t=Ukxq66{bRe<6s+^duM~Xl0u93xBg4EayG=>yry08`h5oHG7hDYH(x_;`PuB8?s zn@BVR6&gL8NgJ#IWsf?^z?*3SJPMT7vS0Jp?`+Wtfkp=P?Jh(T7BPe2%DNTsC>Y1x zg{jIRarN_yagP3Hyh7cQMLW}QMKdUodS9JcD=I2Tpx&RH_yAp~9zd_Yv5FV_6-R$m zzfWi=)J4o{_rt(t1m%Kl(s6@9%_viMduInxToIfI+d?9$8rA-Dh~j~G$9=9|RCP)Oqz zuuq!!9cK4AS&IvbQ0^|$2_gDwLxcajTs_KTz>g#h4AG!A*0~I*a<0MNA@U!{&EK#> z!wOo#Qf>xZFPxm6>H77s+!l@OUtXil!$1FhTmn5K1{nV}PEI^HG=a>N0mKM5Bw>Ar zX(eJ!gi(plR@-Hnj(!|l=Xvn$g#pK&?qKu}s;`&CBBH}lQ|r}mr{;=OVQYc$9v?_R zzeejNP#V9D9UMjBNt~H6n3x{#Ktl$h4V;x>0Q9#i^fWkmcz6)$j9%2W5oW1~J6c#+ zcslZC{dCbknpvp+AWYD}e!oP+z`~(duqf^HjDf8LYakh@aGITTLWnthd{seS{u&%P zknsLj)ci)E3)*h9h|A&|eqlK|?Tzn2XqCs8#W>&^LvwBkN9)b=SX7Tf305Nq#G4!toCf{`0MMt-_+iM3)=CP{W`=ynH!UMPNl7pQVsjaP* z7_Px(@$*%Y?OWS@>_x;G4dHjUdpiNO1jFz$W!xLxNY_JtM*|lNM;0`PCu3iDZWvVufubV~$P7qaaBgmHUw__n7;4s^9ofv!&tK)|ryvWL zTUMk|23e9Abim@^c;Br`&Ov2W)w|#~1Q832y+TMlz&wrP(0;rM4U*-xXhCU1fes=j zgH1{vNV=fyFK~aAJCA4%o${O=st@@LsROABWcuGEsx~Ds3T;e{)0o19pYbrS`*zcNojjDR zu6067RqyzpYUGR9zlq&|#CCLY3jF%@>-2G9#2#RLOn-lW$V>t-N9>6?lzjYtZ1W$k z_UW)7(|D^__5bmOQIsr6_R*Ksn9m&D)E#utZ#1e-WET9O6N>oO*%???<`h4u;|@f>18_Q0+`;fHhx7;xs6)Wt z>9!(&M2Oq zN)&4FS$@=Ll#PXMrIF*GRSkJ>x%cZYh$RushG-E84FQQ&0;!-NPh4nv9zhwIF$l|o z?g8qA{-4#Vdx!iPo%w&^ULlyjb#)aE*ySaGpBX6-h~W(2;0BAVoRWp5LrCQ6jf@1% zkFRZPv)0as?CFGd z{4qAs$JP5zGokq34n#0|XH#e7xA7~eCo)F=#qw)H&m)CC4O9xT8OVkZ1cE^TkvcAH z5^5G;d@}$2=`oPHHt4b*>_(KDnMri=OI7M`z@bY#MQBI4OSdHMH?SGC{Jr>1n%qxU$@vbblacB8eA9G8AF>eS@zXS~FIx z9z6<@1jhO38_5X}-vgNW#R6IYNxlUVLU<8dJe6nDscWy_hY^8i~x)NFyCOrPj69e_?89QP9s_%?Q zLS;^I9(XPgLf(a1%33{#$*%%j#^tWk&zp;Va$euE@Jl0{Hg-nZ zW3+bTE0KJcJERR1Xrp{Y_#Vr{fwWow^J7LNl7THl{LtGv4hHEnc6#nElM>O32Ej(S zu8mScX=SbS*P=vJ1JJj@5|+(3l9mi}!zrH~LYTH=z*q?T%a>%9m@sPwz)hf8rvo^r zmhuxv4wr)a2bVr_urd4!`&CblCisJQb6L9a)AC{MlBb8?xo7@k`Ok8B3x~BrVIH%nlvRUY>nDviow+ z)Y=rvpw3kZ33{>64Y^u=24osjVqDh;R=KzD-|H;c7kmT=brlHD-pWu56y^)7FG~UD z=cmq-LLE_@Qw5%Ih!Yu@Aq^h{f33rhg@t1P5)oY&lG*gfTRvo%3X{F51}0KtuOF{FQ6lvm9fB08_G+pgUszz_Pb$m+cMBf0(yL9i)dSE1(ZYsW~?|EdLmxEkrI;*IB-}B9)Zcn zL1Fv}`S~1YJE`ZUFgJS3|CCIp#F!A0I^7~RVu13`tl6NfUZua=X{oq^Go6?ilaHgY z;ZgPUS?BTQ!^Ic7HGg=&2!_}x8)S9l&Xs&?a1=WctUawmqqy&!lo*R$GyE(s*N7NN zMvx#JVOW+7^Au1S5Ojr15dQpm$Sj%pjSIj#GFC?p4`KT+_=<#;WK`C>0 zf4_YB5;5-}>O9y35Npb`(A_)&Fi?Y`6MW$0ot>T3BF-!b;aLm`!;xD*?yq3Sz(`M+%HBF8&+&DFa?dg~k879{sE%Cbpwjn~;5f5)~W)NLq z;Dk5}0C|Jy_coH*AU2eII=!q97Cpa{Ed|8y0ieAF9@Fgc<6!VxrDw*z&NGb5@Xy)N6mbD!{hh$Mwsi80*q zw3V_r^^KHSHq0D>tc3x{$$$|7a%x>QRWb_pE*+rvlc{ zmj>X$bI^j3B!BudXKQePra(zDU5SMZQP|*EIShAE0Bmmqt;=wp+5K-XK;y(j-H(e;`r{5ERa9y!p4Xg+%`R`2#jo zpVj7_iVFTLkV-(WuCK3W6(ab5cnj<=jZ-1`60E?4G6VB7c^H@p+K-0;jZK5cfs>^q z+`6E6!s%zk)He4$o(rtLl)$CKKqQC~RY(j|yz(+Cs?2(b^JMD$lo52@7eFk1Hk+{F zAzvH79>dHq8Yz`i<%@rOW7Y?5zd>ru!tpLg0GR*q&W^^7#TF7t@4*V*9 zQ)?`{+(E(~je)A7smiE)>LC1B>>60f*4NhoNC=smoA<#1hWO;U98pAihStzBRH*9& z$KY+@kSLVKyP&7_gOiuDf!!O34=|!Y$l&pMUs|;kaWGNYA%Os4oLZR(_yXE86*9mB zNreudin|fw`Z>(x3dj4sGxj0Z0)bz`XrI@9TzGzIX%6wIfMgB^Lqs)&31TJ~g^?}< zzOrc;&qMW02dQJhKPM~_1H5vVZ${LkOs5+&mb$>u7z^HXI57(+w`M>C4uc6SY!P@J zf}kr|w1$x)rX>G6g-x&|NO(hN?(b~OB~>^)2zdT_#6H4-NtG`2-Dj(2k+Caag-3Q2 zloXGC(Ew0mGC}h|gm70^eweQ!wG7Vvr$N#nOeijn9DKkiTH2)j%RaJ}mTcf@kA3?# z49;(i*SHfSj@_;*jK!@isFv>s*QoC1zv-g$I!Wz@-e%2rM}F1;;^P{)G;sA65V7RO$tAGA9fu9hb2o4?x#m7^^Ef$K2 zl9I+}`k$X2oc~*wDku=0IzQM!g}N*UFcF}0vi@SRKG~%6qj$UE8>jI#j*a=dx@12kX_c0jxW0Wl zN1#BWMKZrRx2G4mAaeZobTqXtKBo3}>gjI?s*|IUhD8vxtR`zc-*zu1Ib0v;JUlqy zXNVnWkUH6laXhN9iOu)-KbunXAFYpyyV14^?;R1Qi?;meQ~s35#>OV8&f-N=-=a&b zdu}bHnt=BN7<`3nrsxkn#GH*M_SF>ZOuXkmw~0LI{^BO@clxr&_3X`v#16cO;3259 z8+H2(Fp`-|Y&c_dX@*S64iIs|u!rHNv zksSB8BN7!Z$y36$@2PQ@f-ldVw4?QK;P!qH>wuw==i)o7UlmWuVG?9m@AD2!RF#j* z_3dE7$y2QaXDJ8BVCrrAs}wD=tr?22h{tAHO%lt%nYcu{0d^fj#huX7l>S0u?FLqESQcy zfBp=_M8m+K3kq?m{zs@N;N$Ct978QRRvww$|2nyp>UYGUQy32-=xvZIMpWooSy^Aw z2t-Uzo3g3AmA-cmcRHDr9W*N*wRmv1Vx**`h#$_!fz*{eV(cAt+1Mj6A_C7{NLemR z)A}b<$JkgB42Ym;C_^>QMNcue`=&n}QuNrqE|*@3j^~%~h5b&10TS?Q=BPNWm3;X!yf^e_)mIQ0h2Qbm zl!m_kcR=2HpB~|&dL{PhKuwqd{d?SZf1-E+tP@wE@Hlj7B1@gccz)0UYaIxT23{3# z$I>$AE_qm3#e<}tVk{UOGy*j|SSc*I&dKTAT{WDkKn%9EMtGA4FHO|_Nx4V7)NllQ zTFw8690ZKas;akO%ac4magjV)W=25KZ(FFX?eR~`^r$6$gdsN^{=Kbx|DI-Ki2g-W zBVy2N1ff&JaT)~#P<(Gt6PeTn09^&wPTz_PGu$E_yf6oh#DUP60GoG%(u4$1u^3-q zSQ!7{qCAms$?~8CX=OGiCnpXb9=c<9IqXFbI0;}thYni^6>_^~>NFZ0U0`xW((blZ z&!dgWy6({q7#sA!fctQy;j9gCk5S7IU_E&lvY_g`_j4*L2KSEOCZBAT!N9WuIr-5m zdCZM4QZAjMG^k#1H=$tvtf~QvF};4McST)8Lqp+mUb+9d-@w2CLO=WuyG%U(WGBKE zrooG51@B=3`Sx{EQWt3MNuOf?;yMGag}aCMnz-J7OF~Wk4f+b&bsio!N&}ckd2xOY z3#*D6vVII460AyFktQe4p&tM7qbH4}U3QdLg+q#MZEeN-4h^S*#8M}`Fh+Nrh#{w= zQ-NRyqY)FB8O6aU0lv~(AZ6$j8+KZy`VLReyd80w|Awd*jqvbjhArp-AUXi?Axr`V zmxNQCUj>&20B_6%f0D!gIt>kL2;^L5A3gzY3+A~=2;-o8NWX&+h8Na>( zvLf={sG$xvh&df@DttA`LzWoHqw7gR4wm2FaE$w(pNbzXXTsi9*LX59*$>S`(5b1Z z!R+x_*VqUpFVHd;cJ{dBWEE{~N@#r00!ux2EOndW-n@~MmTtU%+u$by9LgQ*1QRC= zD7S!gCd0gHYxk$x&k_?U5W!Ro4U=n<*qLUj=!?I7rRS!KESz={rlX*sc=h2!H-IQy zLc%u7a^$?}>7ufnoG4HE?;pK>|87I50Zy<0ECduH0_sc^gDVfyfRSq?Q?6uOXHd6g zi)FdGkNULQT;3GM0qNerG0hbFGrs^A^8=>^e51wCUAfYr2VbXQB+uccpFW zrLtOY`c;p(mlr#$tGfE9qi7!QN~ZE(YE z|H)0=2I0+upXQ#53JV`!EYv69%k~U9MubnFKG;{OK3>NlTuKNulI(Dbmzq!_v`s|+&^{uSEwab-o7+lr&ZYFX~fTGBV z4Zz_dR7k{xkl7ywt7Tt#+i_ZYgxd~|ntp&A!~{Hx6d}+{Hrp<3>TZ@;O{cy!aQg%V&SW z-SDe(Fk}_fz%6Kw?X(V?nMb|zBL0(}tP1kc6#{B%%l&gJse5a`(0>0euCxrrVDQYE zDJ>^wzbZ~AE}mv0b^V6D-h7b}erKodlu0elMm;_sU*(^GR(h@Z@t`KttG8~w2JaPv z_g_A+Z-O8(^RaRgp_2skq7*d~sroW2l6;Y5U8N)Cnhr7v8qkH;pml@@GUxqN~8PwyeJ7`*<%h*?lr_ zrUe*a6p^$jI;98?#2Dhu1fp8}+zNmdxZ_Me>z9qK0biM3$kyb7-AsfrR^b7f>5(f` z<-(Ss^(u^kpA*B9e`X1=s+_a8ws)4`Wh%wRi;e*;{f-~RHiFJiO{fKbcv9w?G!&-V zjbcttmikNioC^H1-IO}Vkd$?qrGoBfeZ<6W0kT_UOxP>#;^yg6Jg<^U zBz6AP<;mFTzF24hk1<%M?atcHYG*> z*>^2=glZ{GV9XedVd{6SME$>O8s~N%|4il8(n390-PquCtXA?L)iN1)U%RMbOs>LK zd$x%!UVomlavsUgx*>r$?@xm6l8?j&t?v5JyPjG{;~8MTw!xK%1q zC}PrJO)isUMl91LocC9I&g*r~^E$8B@n1Fbo9TP`T;8Ae`|VA)U(ePff18`Hu1A?K zN4ft_V%HcgJ@(+>;miD;?r$YI$^#MUjRQVYJ?_rV9lVI~iaj3SYJ>dtkM--5Mn{k|MLwT{F|`-xP{-iig>( z=@OkB?v*Y5+C}#L?p(&+_jX0YHZCmwl7@<(KlaWkd-;us->6}>*z#;OZ}|Mmjh_xn zh4C5z`ca{Llb9}=9lzI~3jhKZQbcisiwUX<*xm%j`c_df%>ltqXrO6A^bn4K`GDf><{z80_`E?&pc zF5X3ODvlaxV7!6}>#N!Gf@|a8&=*WumHI8KF|N@khsVnR69CPdGv*E;hj5lNpx6qT z4X4NqG*#oJXG%*;**)dKg9}k=Lr(TP$meLt-LeM1JBw;0!KxKcJn%mPAs_=SQ&Sc( zHX0nX20t&f;tE##VA;fAH9`!P+I1l@(-!6rvAF1{Qq#e)0AdBe>>Mi8BS(&4b+mMJ zl7Uh5;ueYrh_x4r7rg1|0lh#(A%y+#4|nTU>*%b~(uyzbjy#RzyaCKkWTU%x@2-L3 z7n)zeo|M*kh^I=p(1>sBo(?n&>gwwI3Z3ve5S79s28&$DOL?28UI`w*(hY}#*&4i2 zusM8zKf!d+v)Bd6U($lKd{2`&5_8edGG?^j8? zZBR#Hg!bvvr?QG$r~<6j!^FRwnrmf)ruNBN71almlG+jB_i7@y(2;+9_(QSxiTTX* z@EZ@MK}}j`7v=CW>|kzQ-ss!Yx}yziiw7Cxf zhpumKx7RJ$JOx6L^vN=hYPl6V9^UmFd9i)uY>d(AtH*jXpIIjVl9AC~>`Kr5mUq5Y ze%}1~F!9@lt{us;AG|_L3eN&jTBxZhj{KC5!n1<4hDsg&Nw{rad5bLaapEFIr18pm zn?L6dDoQ2scl7qvXg>FOeYe*6)vkt)WOH+QDRQz%Bql zOkuGw#8*J|6RJuBYJwhVc2$@a5QC32o9sV6M^eQPbl!F<=#Wd0irV(@vayhGBgo$N za_*m;BcFEbsZxqT9(9KsDhT8P)JDC5M(7qmg=dj(jR``d4}q0tD=Ms$1IF40$;(-cduYNm^W-#7B|hxrUi*{r|ZIx$FNf*Ti0@IquI7G3tq5 zwwMz(eSAz`QmI@$)h_!i2)MG>|HzR{Y5&Qw<_hr<_X-PoMmBYae}h0Ea2x?l{Tn#t zAbUH55{KH3(~RTZ)#ZRo>v-*&UVx^Tmz#V0nYG4Gu9yn%&k^0>zTPJaEcs)q$vBts zT2FMY*f=Ot+UwkCUMVclqIM-EE;+1}^U?}99n>AWSO!TLlBS}> z1M?S+)$5}MIONNhFBkh4pzU~6A$eFGEuZ%Ikx`9*c6(i&aSFxgH1(vW+5J{!K+>sp znf6v&WPNRe*TX&p+U~p)crC~bYwuGQDBM<9D+~-X%}r$&7WT6Os)ZJ`aq8v@ z&48t-Mr(!d?hN~#rM1??L`8iCA2biSroHTF${M|Jlcp6Wy~&?gS=i{O(64P5QL1HE z+tybCk0(XsEUKB=mA7vXl4$zx5g{v^M4Nl-r+(2cbw?clnd!-oQfb)N;GG+5pR!_UGN`X#uZ_KdjUcfe`HbiYv$C>=xJU$H zhK?k_zDZA9GWh2i%N01(bPEe2)(gy5-s zg*<*cbH)pkuj9~H;fz8qWB$Vr@_^|8NFTOhk?*ZWUcC!FZSn%P3X~4j>8;s7%bmpG`P2&*5X3p zVps}5GS0wc3*9vTfDAp25qP#pt-gSGB9muxFAK-QU)RX!GC*DQ)!OKnA%yqx_J--! zd~uc31EC(ip!e(Q;(=RDPn6ai0|_oMF_P<-cG0sgQ!15P{HNXY*cL@4O^=;Gr!m}p zp-LQAl?->MtoYGx_wIA-9&KG+5o8aX$#9&_ZQS<%_9t z=xyER%@wH$2{5@DyW4TppSBo}NfFoAcFBJ~n2%W=;{Q(=>7ty*F{Y!Eq?m?2GF%<_ z-mUsWee%+e6cts~V!tRfO7ut87Rgrn7=n{&LcQ1A?EKa5ctg{@%bJ=&1#Q(~5bwg2 zxY<&*R(Pnr;o`-M3|v;E#qa{ z#vA1kKa8&|toPF)f5pfWc^j};ndSwzmj3ynW9(Asby|PO#Y!M~OlS@t);?Rk?n7&z z$<$=p98kn#o-xF$>ja&ZytQs(6A$pu=TAxqRg-{Tm#q_jfr?(Py+r zL?nn11!yG>C&O~G%m5?Es-z7=A`jglOh_RLDiP-rjmSNHRb%RUfc}k_|K$l7bS16w z!p*AKe_ezX z*bN~n4rUL#sQP+-egbee+%FrX459%i9mt`L9$}LRpP0h9Ny0FhioAkjQ&Te|FRcO7 z3@G4MfN{;VF*y{&hwe2Mr;pchCt&FcY#0aI8JbP_hL`*MAlgGHT_&?8H(+opmcMf@ zrqUoFy4NIl<(RV=900!Dj$Z>6H`0X{-!QmZ6CL{kV+DznDMd zy+}^)Sg58}XLn*$nb2r(#oe=R-naoe(EgFGus_N#nE`g?1g)aZ zO`1GkGd*4;ANM*B{|+~pJsuunm%M6vZq$p5OHx7&4!8UhQXDslFOXtnNk!VoNxyb( zK|#TM{p_}wDNwLdv$7C*zDKO}1hVD%b+Oy}jE3tPsO>aw0cv+Vn-J7?WL4&`{j@%%&z)DTST!-bP&3 zn`{|fZz`$G!57qM3FBFrvcOb1OB+oXiniC!cXV>{kjgfqj3Ra-hMjfA0!ZNB4h;$3 zJ_n)&0?1npG5ZFtu?|73k+$$sFhtS_bdLddVq)Sxi15%5P)LOa1&u*hO+v6d!VgIH zKJc@84+w5Alm3PUlMg^|eq)`2k1v|QorT3zM_&5h=F8nbw2@31Ftu&zIdKhO-@hPO z=5L;M8D`n)j3->SBap4(OEQI!Fgp)qV?xp*aZ z=palE2%j-fLH8CSu=$=nN>E@1+eBI9dLFUezX4mzSDC>_^Ar(2S~#$}Pu~)=8Qk%H z!y1`9V04hJKGthx0Z(zacPc{4lT=S8U%yVJe3nWiPn=F$?Pzt_Kl*gV*^TdQy2E?r z8=gIDOG^mWU&Ey5y8jv%H`-#OTi)%uZqa=iB!V_+yi1cZ8Sz!Z`V*! zmj_(vCMB2tTnRP(p8eF8#(eY!o#ZD)$HF3+R0IjZ+HnBzUYRUW2rJ!AH@ORX6y*+z zWW!Q)%=+Ui0sK}z_tE#^%JSCYtQbr_sT$aQb@T#1Wc0nyT3%apa7nKt{u~xH`d=^u z$sHb|`qscrv!6BiBiT6oSfyR3!pjLiybCjmla$E=RcSxZ;5S83tSxNmoNWhA{U=wQ BOGE$w diff --git a/docs/images/chapters/extremities/9850eec01924deae7fda4400ce44270d.png b/docs/images/chapters/extremities/9850eec01924deae7fda4400ce44270d.png deleted file mode 100644 index e5c98aad0acab978d3042c3111c00110496a0d9b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22295 zcmcG$d0dWb+ctb9k_IYGlBiTP(L5>=QW~g~Xi$m8(J&ht3-W8b%Z+qV4-)YCb@NXJD-p->nP zYN#KfP^c9s6sq;KH24Wy{yPi&AC0Bf0d>kB^1p{~lfo#JEtG@mdkj2cM?ZTS8w@Pa zOk6a!p;>vDb&o!)=sw1B(R*)8S4l;DXl{NlntSB%R(;koF*c@(ReQ9%?lyLneGtpt zJ(84{c%NQaGvK{oDMRUp@pXlFwhb45aI(3+;A(1C?Nqy@BK7H_hfS?#h(?NmaKehH zLo_J{sqdc(pX8a2JT32;kdQF2oaPvpA6cb5IC9$T%$aRBZ{FN_x|Tb*pDKUpQWSn{ zyQ5B{g>k^eGl#|kpTbWhLOeg{8#+5@?VomAnv=wTHR;5?*Ivs^{)DPngzZ%)e`x&w z{m}+iS%tqpIi>fhpDDCk>)^pX1_rFlbfoAfF>!I-{QSn9-t^{CCvo1? z4KflDnbo{}Z;u)ntW;H1J(2IW=B?My(%_A9*Te&bv(9$PZWR)uH>F7#X-?6nY43Lu zZ`d5G#o+g9hy`Evq>W|$`i5u6q{_?7EqaQte9Ci8suwuC>eboK>&IT&^v0YkOqqxX zTlh83FE7uTd+rPSL&YP8Rkt@aq#5lo4bs==@$@7(Z!k?SJ{t5=Xj8&XF{BT%zF5RJooQGQ$PMw zLN})%X^7?gbezqR^tS;4Zr5(ySbaoaU&3qV%xG8M`hy1#szs=WpJ{xuM%Lkz@7hg@ z#UDR1QYL=3nMZi5N=mY@v$KDCbv8y%pppKb*|ymG_pf73Ha7oMh}D{@3UfX9y)~T* z`!DxjF=JzCdDUuMg*?aQ|=y|yMZGc$QYdA_Ub1S!HY^nMC4GkbV})X zOZssRbMK#qj7I8)*2#=I+Yv0i)p`9Rayjx5!#AQMwO;3QF^@dEc5S8lfdkWF8~BdU z53xMzxIrT634VGgR-XCB+D)aIC(Evh-w2p#&L~=bpLZ>p{p*OG`jfD)eSOS04OG-L z4-Y@y@9}$rS5!<)H;2F0`QaqC zDW9zsaBvCG5DM>(tSc{HsU0o7$Hc^>U06}~c%F-Z_=(q)bLY-c1nkFSqM~e{v6Cy! zi^$02bhsYe=e9IdqCB|aNSq=$sX9l5!v~g^``g$iXJ;$lh4NEzwtBBb3NWo}I{)p1 z09(V)_|-@x8lK;JWN_-jM#siN@7}%o=n>!I!g!I#NMZy|Yru@&OPi1K5lk&=i(795 zxHa~a_(?c_Rd?uo#aLKaShwp&TtKqq(!#H*nUN+1{F>z7+y6P*zMkSVJ*dsFK~lZP zECk^-GpGpa@>W4tXJ=1CRZr{^O7~x92{5*b~Lz?X^U*UU+@^i6hL0{~RlQ zHj)WH4n=7s9>G81H2-}}q#_klM(9bH^? zeNr11&&q6#HUi_YOva-;^#{s^q*gRtiu)%C8QM}rMAGaSOY!J+nbTWY)=&&CGMxX8 zR3ai*Soqe5WF}3Gtt{^bTuQ!O^b$WTr^`lumK|2r)bf9Cog0<<^=FxxOhdH~%F>VL z-ie8!rz9WG6-OBMe*L;4%UIOOpA??!IC`P?PubX5j(5L(S5qVM>o>y9`OmU9(u3;6 zuU|KEa&mUFv7mfy5JdSf(K9v<*mZGsi>m78?c0Oz+?n7KH}zUWsek%$)6A$R*V?rk zKD}|@G5>44PS=gxmUKW{Ka*`qp6k$^`1p|TZD*O88|a7XIv*#$R*y zrzJ1`{(*ts#kpy<2rb;#-+E|Uf}%#DD7hD2dBoRuy3pLLG z3Bmod-xHU-bJtRTL{`r6)4k67f4|p{{KYm_y6{}KKy{O6*YLyS+1^rWbvqng`OC}7 zw|REm)KAjk-L-2Iipc(@`JcT#PU|9e$fYqV56G%Sw4F}#Z^hip1xQJ2a z={lZRWlxrrloXG}-xAT%wpZKCFKEHpL>0n<;=+RYRW^; z=|Q&J`UVEq)~WoabmpFG`>{Ut>J{qMUvF&oLH@+?do)Dy+m43@!p=+c=N-CUGsjD&6+hHV>xXWXU{TnaBy%dx((-r zBqb$1zWD1$W=_t&Kg&y@adFEZIO+UXVAs!l&X*~-bZ$>^)&0@=_&~@D@6K#nKP;Ht z%ufN_dZV<@-MurciAMtO-D6#x8;X~|^n2&>+|Xv!?%gQ{kGvOVIh8Jmc6)snYtAq) za)^(Ojdj^znZ>!wYo@sS?Zw`nJ6E!-;?FW5lQ-b9n&YACH*XH<>FIfq@%ZuMEV~wA zc|}Fb&R1tS72UQqHZ}@-D+8E}b>x)I|NKs>!JRuy&rEVsyEqRYK5UFM?z1>~Alts} z`Lp{%zaGe)GixvWoPWOT>MHu4-rmDwZ4uZ~jm}T~dg(?T&9SPNc`h$buC9Hcv^wv^ zZPY($$1YC9w|a!QX-|LuN`C$p)y3>rul8eEoF~8TL*(5{e{?k0(KOqko#kvt_LYH*3ST1N)je90}+I=Cda9u^LN?Kv%Yxfu^0n6?*^ z-#U8qXm~t5qTsN$W!PSt@oHT=tkew=qvypapPGp*?mxP&Xl%Wjk+GxT?c3hLL7G5y zKDTO$uh-9Sz1Z9{9oe?+R)K+moXQ?M2R}sliJRst|C*#>NvDHyCQ0v_H0_867V2 z@oom*Shrb4-OEeyTT9xF+-@&=Ed80Lr@=biX-{2;YBjXA#q3?ae*H=ylU37G?E$XX z_dMf`iS&H@{1W!9qN2xNG5GlS)CG~)dod)=5{N?>-!3O9`NH8#bF+clx8{TPb$PFt ztZi0QRQTrP)F(1AGq33@q29f0ERL=Vq@Z#~ocYy;0OuWMmKx6P)KKRmnVY;1sRIAt9;yFG_CWjlW6`rekY+Sg@a{`YSS1U1E%di7e1iJlS@ zpFx^unM}iN>+T=8eecldxxzILpXro`Iz+K(ep5wOytjG8=1jDz)DG|2bLEJ5guV1V zjhK6y0*;^a{k0;*!%dsdojn^IVeYd5koQjYDf#o?SZ{Auy)CF6eec1|*5t$d30fI< zzkao3*eHvC9O}!ZsHZLmF6qz3>D>@B? z!p0J~5`{l=J}yqH`J?`-=}4pRQ?sLU86{M{i|Bg4gu7e94&mX(wwG%kqZV2?x-%x`U-AoyIvI&AONw9#lTA)%xfPb=TO zqs8&p(9$Z?Rb9G{yto%d>fmZNKzzu37ukPj(r=2B4(1kdwTF= zL$i9Z+fti9zbP*8-0kC2-8MLQW~Y}l@=ndrkE42ezB4m!T?L-& zQB>t!2N`BZ+x<|jNE6~2d~not3TQM{6yZ>-@iT3=koWr z81>!{rD|B8l-BFFPFh7UhC9_cRa!<@Tt60o1BJN{p!&6QA5Fgd_-&NplIrS%#i#dN z-=Cn@gHu*H(v;*pKVwUt;r{*mq{-yov}qD`w|5}ITwLivqKTj`&E2pBWtS(X43*5y zcl*2E`S{@j3KV7a>KmsEBk(O!r)#$WMxaY3tAh-%^7QG`uk-UC?Y*(q$;qj{nr&rZ zz&oeytaRK;7Z_BRfAb^GfRRGB>p$JiKv`P&lRM#iv#K-|S=Pj;<>^zmcp#IL=+fjb zjBqt_O52&mS@6^T=Vx|MPZD4 zDaua$=0b1p#~1?p9$vY)HYz6OG1hQmVq)9HXXunU#7`6hPXOZ3lEp_w^^1wwsObLV z#E)(Q!J_ZQ#M~O|%tgFza=LJ#^7mw4ytkECoA|?-!LKIye|Rn*-x{p{w?NtW)2}jU zZNB%uwzd*sn&rK4A)vx?W~`Ir%9Sfjf$EAy{Zb<;{%Ti{l6%oC{a*U@<)n?xbrch; zVqdDrT^D5!*`L{d+WM`RFZ-We=)QV`<+_VEo-3fDY!enP^{3~!6B`?3+w?R6Hy#%k zH!(GJH7)JCRN4Sy*wE0C#*-&oXNDW7v$C@4%-fIF$Z?zw+iRzPKEd}ra9}J- z^qUJ~rPX0VlY=qm_@t#-#l^*~JNx_lo6Gfish{X=b3z;d57AbIY`*dMF@Lwu!r4nR z4F_@tJJ{B*UyuDPZE0cSKX6;!#zv52$IX`)nWbz#_`Z3gpBeEx7$%tFZkKyKvpPXI?Y$aRohuG8@BlTi+yOrt#`-tz=MKfIyd7ob zAul>b2eb5kYqMA!oVyu7^n#5J`Y9b5#h0uvqv62}u0o&d}0kG%t6e6O+! zDL+-i#YGZTPYU>G<9d)#c**V#hO`desX4EH4aq=I;3Na0_4Rs(u%R3qQI7#g4z~A#sa%{WE>j4z5 zAr~(G?hE0RciIAYa1+}%VIa%LM|}@@2IwdLEUVR(K^y!KragTjs)I3{XrCTt z=e6h9bL6{?Tz&mo{;j>EW>&St?r5`ZJ^QeOWCwnJZ{tU^hfG!>_vKQVyGJ0yy}UdH znsq!ud;Dm6i?2{eDxMccMVJKmFKcKxJUoS-=_VZ=U8Z#nI|*_UJ=YmG>LuxHN~k$P zAHz-kFxY>E!C~wY=_FC~5G558y=CNFPDRr`GATvzA*BWh(0TNe#I@_!AK~nCN?2a2 zHNT^&t}f8lMVcg32EU>rRUG}*T3T8OHI1~g3SJs9^sAD;PWDx4XlU#{ae~{-YeZn> z>ebV6Tws0AXNC`7yLRm%P#UL#%T`j*#6toC;`kzJvd(`$N_GGNzZwX} z-YJ43v$}y=CQHv(7-{>$=%*`;8)XUHi~73FXZNs<^n~?->z)%)Asc zt?BEtx7R1Fvp6-gIF`11D@#dR8;6RD%5MO6CRWy!Mn*=+*LwVIi{OR5z$|AXXF7b! zq&inPCwO1nG*#)`{wJnHS+#7wObHAWsCvmR_Wo?G;DOaG{n+_! zqN3$kfh<5tbcHm%y}b^O0oi9q8t(=!Cq|^cGC#~bG26NO*N@`Gx#Ga}sLcXjw6w(( zm^?00H#8KFG!@HzQGVn7*2^v&=oi0wt_Fj4^qw?|Do$Dyje(<30kz+20 zzJK0m{9@(rq0PmgUORBeDkwgDinC#O_%JhBQ3M~sx5z=3u6qsE-xpt1xWq1ho-R@; z*DknryeL9iMnb|@eZ^?knxM_*Q@c`FKNW30Q%{liV2YGU`#PpNr_Qfi284oaT6+B4 zTmJ`2?w0TF@RH3%;jg`D&CJ|#2k8>LBhU{OdPS4Bb-^eC#s#nYZ>7pAE-x3)j$zN|E*Q2)JR(i{)ziya&(l581EGs5 zP1K5T`lmZAMuJA>lteO`n5^3TxLbex$x(w_ufFMTW0m)q*h12U!L2ur$lPQ{LK6=Z3jELK#gmBDXcFJggjjQLRwIIX9tJ8vuwc| zsUPnTABb9Bk~?JPwPuxq!X0TxhK6vFJK?tl*dx}iwN+cu^W*kcx>s#8)8U$lB$tq4 z_RKhI1%Op0&``5UpmzM_!VhV&f`fN&CPy1JoOq-YmkRFcY`Re z_^DC(`%%-mx>$5)Z|5;D464c~GBcDsR@~w!0|Mmb<#kFMj@6+0ZWZS^cyKEVC3%+fTdR>5oq_Fj@M3kGySR+s za(!jy-{RQvt*DBgj-vEtsq`b&kSMjVfQ4ZFpc!n^KoU!A*b zb8$oJpO?=xMy7LKyeLJ=4h6zkMbG{a#gFQQBCTcnV{AP&kT3lB4c<@`yPO8RwJ&mF{nt}XVG>mb(d}JJGm3O@|W{8X` z86D~KTva8zjrGr2dpkOPke{G8wdvig6MRz%&Oe%A77Uypv_Xmn7;Ru=tGXIXpk}R{ z&k<*dJK=`Q60Xxz=AE6?Z5a`Zpon@d$Cuu3&s`TOy+-~LXJ)3ywx;!a*3Dk@ImUS{!cD*FRL;Z zFSSU;s~lC3zsJ2^|A;1!*1@^)`KCW7!yZ%RztY=nNO}rEK^k%mRK)rWbJfVmiTG8a zJzR3)3h@fU--_&Af`YFkec9qUug|2b+cWs_uCCvOAEI;FHl45Twlq7Oz4EJDM8Vy2 z;Qif*=*kf2(-N%)w}^mLt8cYD5DNVIoBufsXzINqIR&j z)}ce{r%r7p{3E!K$LMPm+paOUc!?c9+Et%iT0%uj`+NMmknXCqZPO!Tt9pipZlKrP z1YBBvu4w7{1}U3|$lO<30oBqRyIx;OPTmG)`9rM2`iz39oAm-qRZTCugii}k|Jrf6 zV1?fA-W%3!Lk1qty!wLgsh6r8DB5GBnig&(a?A1N$Tkn9KSe$9n zC4!xV$Ara78k#AtZyd?t8Mjq-u<99}u8l3p{o->ADb1pKy4Pc}3ViRRvGyzOD?)YMd_+sF~_ zU0$r{Z-zT^(&`1!hP0Eq1HOk1+Ofu=L*>`jtS1^z^8PO9lqfjprT1!R(1OO8S^m`& zed><(?F2F0*?|zAea6O|z|>hlOvc8>2o2`LIqjc5S+u{fHZJnn1@v@1qi~*XlhOrN zvUur)d&b(3M(fgS`|08KmqJFd&uIM4xGpW0AS$3WA(qj`wul9b@p4K+@)-C$`JIrrm*U28fJY9DkxVj#7Hbp>5X(OJOG~G6Jalr`q zHKupFn{Ejv$&%-to0~Jvw4fqPVrJ$}c_k%!Ja6dHV)jlbtTZVT7)%Iv!e?gJ-suC(ysjT^yrr;zWL|B zmv(paU;$c8QeVr8v+8X^9PELZuXtfJfRJp1gM(yk4EWXgm(J{OXS{MIo1$=T-ye zXTEyn(xd1>;zXh9LvzHPz_-JWxv_}0=VG+{lF zLjlu6b&o-eo!GWp8#FI1BVz^1%LGv4#19)XKSbMl?g^_gUr^}^3}h7i3OEincK`v2 zPCXN{0BL-IcF%k%^iD6J2@DwCr@U*|NqhTSNNyH*w29eSb|j(H0iWf$(@+TL;=N}# zfS9gG9JklViHU98M{|TuU-|@aUCVc$M`Ksfjc-C5`Ux>ipK%Ty z^_ZE@oVBQVA@`m=do&InEWvt;ViOJM6Tz{!K0CHkN~#Ra>J1!KI@2TR|1F;WuC7#v zu|zpQV{2+=N`u>Dt23SvJIpK5OZkD^>uu6i^#{S7$B^)yD170yyx)QnY71AbT2*&y zxC!#;$Ds`yHk@2uoWuQq?A5ll!qNw$;Zt{K5o&Hni>0P6*oJDgK+~* zuI0Dp6a-Y-M3d8AufqAbf87uNjhyN-rwE^^;5ta;dy?4H`9gJCjAEuzy>k=T#Y`xa zdE?nD2Uneb8&$m0TXca!iH3l4azC1c?u+AZzukYx2FCkYW0FDiQv+e7#DXW>rE^uBff8WwUYUF4zE7#oAnG>(-u}HZwn*pc5xf zI3X=k1csz9Kze`m>J{l0L5Idyry6DOsPi>Qakz%7%+BE3_&)Wk?_Q3AILT-Btgq4!y!;kO4GJpmg9od25yR>%F z3jYXazTo({4{h4n>Lq&rlUNDM8-d?1mLr^Yp7%vT1CkcmwN6n*rLb#L>c0}&i8mM0 zpRK3y1-61Twic@JURXnzSy-kH9VJRpeDSvM_jH>xL|?+r6A&1f(rW+c_OoZAK|H&- zo<4mVaQpV)-41niuGTE81E>Wg>4Ftpk6UeYMabbp`z$QB><{9+g1TaCVgeYo6k_7O z<;DL}&R);{p0omqGc*2WGp-x{Fh76a`@^sA8AV_FtHX#K ziOUug6f|#N$csYiEdzVkQk!uT$b)ao7Rq?xg1E}UsFb*vhWZl$&@bgT*+h22K%wk0 zL4oqfhV$RJ7w5;its6vD3ApazyTjY`rjB{1dCg$uIK zU*bHGNH!tR%I^wjQ7FI0zuW+{qZEV6#-+a9H?_5a+Hfa4Jn=$dDygx>#k+$x%B=;N z@hrC&U4UKNlW>qu(a|K}+3>MsShMe8pt{IC~ z0>#C@F@>n&1ZvMEL_kpR5m>!Qd1pRwGb<=(>K{`5=zdH8@Cj9FvP5d?dr2utNxM;l ztp5H}haz`UH6`hu_S>s&;PAGRs z(X5gNXA@f&3fh)F{~=|BT3(l?91a8_w9tr{{?LC2p>7NGKomBloon&&@f|-6??**P z-vmHNdGLo1EL0hq6*L}}%erdnTPaz_L37hXkCT&W2@+6CU?NL@_{O@;#2nL*sKs$< zVJw%+R4^)guf6tdkT7@e-qph~8j;=X^P3k$liuu4P(aS(-Mb*?xHBrvY!b_J~YA!}41IKNuHyNPucgYsmr)}zvmAYC z`}=lqZD4V5?W4ue8|?c?da4ZGc*Drda}^v?Yyc|$FgUpt19$!92|y*x$DH@t9acgo7PdWcg<`GXLv?%*H_0U$?`2B@J9 zE7&_W7Mx{O#kXUJ?l8PgTR^iKzjD|BR+!+sb*hVZM816EO_x;wjZV~-Q<71#HyY>( zt&?h)#yO zhF($^8`qhfb@Anhe_=BWb0RYj&uu7fE^;dH7knN-=K>DY0wy(UxqLysGQxu*$#5%s zFhRNWhs0ek5K43AZMCzjYZ;1=-N2iZB)2=qJm%@?0e>iYema78cpv{S@EaT=#TEYcYO) zYAPx!S_TGi%`x~4b0`-wHR%wyY}w*_i;%Fgc>%6U(q)l#;$!ss_1V24_nbM&DnKD> z5qs4QaZrPXhtD9VS&TF$dVEjMMPrlw;a@H++Zm#9&gyUV3DlNWRt>Nly>R7esZI;1 z_XM1Usi+J=BhqCwJWuGQf&YRyiA7E-Q3<*ko2O@l>cEb=wn>!q|XHiQ!C^vNc@b@!%kXSPIY#y?bQ$0 z(jpW8{+5=p)A~ItWL2`g;4@(&C_`0(K*E&I%IBp9U8?f-CVIpN5)Z*xXl+&`Hwaci z!$Fys2koQ1Hq8+2u2@%BSAF_%xdbiV#*6Ob-4!UTHHC$4BP_UEK8t*+d#`(Tb8bSzEgTs107v<*E-K7`*3ah~*0&Guq3S zFXPL0U%GUuJ;w#M6y|(x7USUDTx2bf5t|Ln8nlg2F4?|#|JsDZQs%xUK)SrKkp+Aq z?b@}KKoIbEc@>GX&5LW|10bdun^W+LxU>Z{Ng%Y$crCilQJc@ z5!)8~4zr;3LOPtyDe0#^!6rvX^45#); zl!0&s3{IIoOI{}mJPr@L*zHO&xQXZ>g0GXC8*4sy<5l3HlUOONj*Z{mI;JOo6DC$0 zE)KEs2|ER}nm%&_9Kd0;rgWiuP~nOuI?olAfY1hl#w8vJX93P3uM#JklKT%@Q=RnF zwzg~N>FE<{wlIR=Mg=Pc$jCg?z*jK;Ee+A9sBuTIs=1j+t)N6$Eq~ix1a$#y&BVzW zfMyJV9J+^&fk7RYef0P-=~nxPhCm1$4wtrVTnPwN0U$WpQ$mgBl-$5&HITXBxHObIYl>zH^TS%X8OHN5_w?Ah7QSG_Rwa*$XbfCU~P^q%)79v*QE8TD_IQ&Z$j3hKrMp_Q8C zkffR!Z4YzLmtz8At{}b&Z21J2$dN#c`2GNOzSnQw^g(7<3x6mHdJWAA>0=A*#lfjO z!y$#0z@kjYKpP(SNF{f1)XFTcpLVkHPb5pCxhd#(D^d92U-B32^Cz)|ZUY*;5e5nD zf>A3c4P+!~QG-Z*f$q80ZF^4Rm&<=X=Beur3=Ud?w*%1H1KtR29KYMaCkIxZbpf>C zWxqvuZr&P?=RiK9AV=Z%-zmv5Gr*T>h~2JiX?eE=Z1PFuWg^?oj&%yTDdgxN&knKd za>GZ1I3-q)qYWg;%MysvF%#5NlylL;V|YeMG)DF;qN%PqpZqTi zHJ*m^gfLB4{ro~hLwRviD=>WU2=swNyQD+=i&X?a;rq!QMdF(O4gZcMXn9tGnIXEo zxa@9&GN1Vop{_#jjaYf(!b^E5xweN;>m^Q>u7tMuI5Sgk*oC2+Y-o12bgh6FvB!o9 zYOBFigs6tSM-1yZwDP#x{6UlmV(KuvI3|;zwcT}L_AK#)!3cm5dSsIH`ZXu+RZlp) zU{ZVo_quiKx?Vd|LoP0bO~^C-3OgJ8`CtVp#d+#C5)%`7(PQ9XSNKvM)|* z3=b!_!UAsUy)+{+jtUL~<8HLvc*q>P;6&ZJ2v3=a(|qBYyy2RLT*dF-r<(W`Y^!_! zo{k(UP*J^oeUC51|uq|;_HxCkj_?ibs^MmT=tCEuo;lTZh5_zU2wT1rI zj-@}@|5WRi+5$Lf$YFsFz8|Xb`R6LUQ!r8YyX5Wvek&*ljt!d}2wlTd-;>UH5{3lS zSO|)8ad)@b&^N0%pP`ZR5xd>h+wIY^Jiie3_#om!4M{+{wTJ0&OWvC|WuHHr4oe1P z?-ym~hkKLQKo9|j^8&G{wI4rfKQ3|$orj~&($dnYw{+FB6L~Cv^k_gOcVFG1toI&s z8@R8%7cRVdc%Im;;U_Ja6atU>0CWPN3^PbTummI@wz9FaTf#X><{R#d9xJ7}k-h(P z^nbw8tF4n|>r{)se2M?l1h+{r@?P!_=>!QkmPKh=3~b7I2D z%>JOv{-kK`P>q%D?(T3xoVYWY>(EYY&~%crz%q^i1ZZNb;IRk*RycrOLD~|o526C# z2qD6@xhWXj8a4={UUYvSeI(^sgY%!oX{33N`!|v%c5ijO4t?=5iMLI zH60D9>)?kH;N?u@O89UAsaqr!+xp=uRug6KL%$-U_yeXT%r|9lZ3+tr7`C0Ao&607 zXD5mgE|0>K3V~1!2fYk1;^fJb1p=$rs11>nJ28>mu!@#gK5-_d)#TxaUIPaz*$`aV zU)(=g6D%7U=Rt+qfV_EPPw>jeVgHrB>>Rce_a~T$a5;LQ%m)&-jay@t+}8rZvtb3p z(Mzm`SW$L|cQ4V~5^54mbcABKH*VbcslB}yDM3ckOigWt*X-yqek)j^QiyW`K*#va z1u>*!em4d6y7SA6p2PxzdI#eO;cPxTp!u(F=Zv_vJrHe$ccu&k6}r?9?}kwDnZb_<5to{xn)qy+Y~BPj-HXmyzl zZ@hddg}eYpSr7@ij<{`z>_yt)l9D~R!uw%|FsqX%sf2`t050v%$C71eYcoo-!pBpH zg$4aiDWU^KftG@rM#w%;GFxP2*=1#Afh-Je*UBpR&gveksjI7Me|frhU?4F^0*}xv zz!FGi=D@TdWs}IgF9Hu4FdgyDsqfpD01g8em|=L}=mHq*G}a*lY13Xnb^G=;Ao_O7 z$+c;!z?Sh8M3yDmzDU`#(XF}zf~i6996dQ02AXsiL5P-F#vl`fpEPOThEz@jh4OOs z^nM`$0j$Mdk#^#tn+4|&6?QYqFE%vQ|HX?JJ8eF2{+^pViH;W5IPxUhaU+!C&d%fZ zNzXw1lp@po{dC99Gxb}#-d^NDW5|k6?}J-Iq4CiOXwr%qe+#8QxMwik^7Qgv$J^@jP?>;w6EQ~T*JVFk$8ycCP zwvOxVA6Xo+E54lc44#5u>o^5h8W`;BjWJzvSevw_;PkRC&AFiAp+4VJOocc&IX5-H zW$P4Rch^i>;r8v@Ot>d;LtUltihche0QJ0AJIRU8l0Zfb3WXJsk&{;X~Z6i_kb| zM2#~k#H>qjF{G{46gWPlUr|Z`S3r>X0wddQg-WSGi$;QIph#lGx{GW=o#is1xpnK- zEfCXzP|#r;h

r+v}}CPi}YG6etudSYP7}$acSAk0%t01x_^AuJjnYB%Grj9DW4* zwm16&H8ziEhatyP!|N5h>*CR|XSXSQjTON5qu=58Qi_L`GPxDjA3%sdZoU zq~BgI-E$<5O-(hv+iq|4{KOs@Kcw~W+@X$SYy(*CM$w<;W~Ua)Wh_QJpEUw z5@1fz&WPsL)zyu~a!W=XN{>YneL<$o{P@^!NqEn@eR!b60nmhJ^imTHB$&xz->&B?j5LkJ?=>@LhUcI zLa=(Eb)Kviil;@r+&^L%MxA{5y@{qK9gJLaI;$|O^aMh{7H}>g3;?VePs0CL4rmRV zzdK}T15#de#(kRH{~?Y3I@y=bbr-BbC&y^C539ZrR0)zG^ZNCE(1WmTo9=~&`vYKG z!m&EsloUchpntcF0(flF%mIz3<@|wRvb`VN&K~>bWM)G6L5y-bW-Ba&TY=17aXQ}n zI#ABvGCyn@MosDN?ru@B9>YSDnLz0if0y2K`lDO}O!p373Qe)}2c9G*o&;rs6Y3ih z^7o6w&1CPt*blqh#ESk2pORyCLe5@h}-t9nQ)a5W&(awFKvVDNhqS|5% zK_1B@{1+s7adgEwdTeCdv$C_*_4Jq^+%o#B0W)vCgR7C|fOgHAJ)nI-TPE)xw*Fg& zO$_T~3L)TO#5XxH72)VsgRXHck~-{phjHf=_%`<8YHEA;_KuEsHP_+j$f_ zXLqlg@C_K}NnAyXjEYgF^opD0>qFG}_Bc81B&sv)04SGSAajoqTLW=E!07q+7IZRV zxHoU!yj4ITMfv1Ve?I`JW{n|Mek2a^FVgQOv_)_06Yt!A0GBl+PU7|P>|{vIIRpbB zFs0^3eCmvw)A?!i_fQP(L`Kqba71tnLJTZ}$S~l1evD+g{AeS^8_81F6&L;wl#Vpg z_atsr&;|j(x^TUj@JIO$erx*A8Om_M>1BW$qBjz6uYquj#w&4EbEIlXWLs8}aH*u{ zwg)_&f@^@-*D(N4uu~WFRuE%_gVWN0xIZ*iCyR1ob1V^l<=FR%Vde^Ojf|e*SMBG6aiL5Xp?MEb`&d!Yx_WS^^Cl>I` z@R>OOlMXu(>2M-k#oZctF$kR8q~Nj=1_gA(3K4;VN3QIV`L~3Io9(V9{sTCxoKE%ka zLopnbY*05m<@6sNe*5Xd(~gd{ypTBY`*$D2{_{CHZzN>Pi)o%KT!%*jERS5?LUlQqZVGk;Nj)<6_pcY z(*RFyc6K?S?y6LzD-Bgl-Ss^VQ7Qdeam!yku{F>0q@rjhQrh}=SK%d}K8ykxVn$0JO^q(9F zhBs9vK+h8+e()6?DDqi)&+{@T$N!Mv#okZzzsXxX5(rQ5e+^s5Js;AJQ{F%#9A3Zu zQ^NfJxIix!>edN-8+`i?n@GsYO8{mQGc(N^PsJB6;?*H;ymc13M%0=r)z$y#HSJa) z-ZgY}IWmP&+?J*=v{?e08ZS9m!J|x(l=2rpI1cvhD{50Y9D_2T8yYS%wdI!$b0;t_W{=9Pqzad6ky;Hrn= zVi)0DjcLC8N3TqwAh2Pt(&{1Qe&)lgvpdB_7stOZUb6UpwD()XUidB0Z|^}8X#jaf zE^r1Hp!nXnaiD#dYqadyo1nVrPc;0=bsyhzxb-4;)fbV70d@|y3YJyrAGkvIUfudF zO6rlNP*wTetQvWl&w?`PqT8P~NLJQxD%gGdB;8`5*q(f{p@;TDgP!x$R_?xJ{xnPL z+A`d=?xF2%~cmqcz26ZSna!+2r{?z{rA3gEz)(+C#v7T}W44hb;wmCh(qVl_kx;AcC z4V(s<#-cV!{9oC-9=)Ri#(rk?-UOU0EFrQA{Kz>RU&k1g+^>GLafpiQ8L+-^^mF%t z&EDncK8|5H_pMjn$IEZj4-LtFc?JHZ@Xzu^VPWCd1NV>1JAb{_z8%wCujB48S%np4 zU;O1b`{Q#B##vHV9C&go@1vYJgvL(CH^Hddj)ikJRd)7>C%#Q$a&i%%T_RyYu*xy{ zsB@rv?6r0%HKTqjbgK6dhVUaime)gYUYWK{g2X-s7}`D(@LC{Om`vBodroa-zqQKT z+}sDl*Dv)^a6)Xg?w#+pX0Zw@!p$2U|TZY zf!nkrzg;(WGnScuztc#g0L@x%4UD?t9`Wban@e+&b;{EW5XwLxw2r!|uapyY5oM=$ z|9qZfs4jj8voX!Bt4UJv7A}+;|FD}6I1MLE^`Sm|n zrcX^zw}y)iKAGr?Kk}+@nT^b4tT_&0Zh+7 zYn*|14$k?hcqWg-KQPDOLWALhJAI}w);D;tKN5N)0P z*@K^3zP`5qjn1AuRO1EHYtLc!2F^{KPQJF@)}pJxOT;QX`lTp7O6oKT;D7)HHMQ8w z9RovUvtzYqot-P2vs<@qzw%C_&-v8WSOw~w9E+l3Pv461CXD5|ha!~{Bnu&bf4qwK z2OOj2tH^RhkYmE$P5@6!;Y!C?3T>Aq}&`PSt-b_Nz8TiHYS`||w<<@n3r6qjy5lqUmukH7Mi;`RU%ps*)w`HHcOgFVZWV=zSGV;Z2vwr1I z`GsE_Pdl=(JS^b$nP2m@?@iCg9PRVxWo&J2yI|l0Hmby7=s)MQ@ZWg=zUG_gipil= zSO1W8USza$s7u!6NtWq>2N@YzcPO0un0H%j@$m3X66zo1($Y|!H7;{$h>EIwv@#`S zf01MI^XEjPcFY@KH_a9KdbO+Y9aW@+6%APar`g%}knN+$&S|u1X`E?7I}{kW)9Siw z-)K8y2tWVHiVMf}|w z4Wr{(D+(7`GH%ip2n!D{#sA5ie;NbYMN&zM*_NM8;U~|fi9HUo8wUmk{su6gsqMmr zB*VUfw6w_&AEYICnQeFAw;YR>E?m8OmAv!m?{)E5O2g5yUWSH-==(#_N zfTkOYC!eq|9bRelQlAw!UAxnYhFi7UNw%tP-H)O#U3flIJRhvbA~;VgSFNJjUqVe# zGhT#LjP~K6rsg9caGR&waiSjdR&emD#;3+|Qwr9v@0}ac*3ne&C>y&Ko0=+I`1>n8 zd;@B#F~O0~L>+~NSM*f%mMJWbU)JZ^a1gFKC{FRU!-&xt>F(}KSE1uaGiWSkudWgl z+R8UJFx%FTw}m(jyl0!|;E+1sB22@^{`IhF@PYF(esuIv`F3neH*d|MOT?_3w2~<{ zU}S5!kB`CpT-1Z>0dADs9WJ1BSM7GN5#(uU(T@9-{9N#rk3U!_iM(%#LkeNMxvfZqzYIiX5Gc!{FGIAA$eoXnW=}s#0$Fcq{5C$+*_-v58R>v;h{~>^R(Kcr)spWlC@-~&@ukSSS z?gh6*hD1MB60RPw_qO+~im%x}N19gqf`O3moH|9`>4O(L$fKtZGlmERHxSWBA3b{X z>E&tNml9(pHx=MHMz^3e>PlW1#O%!GXxc^~%&EGl zy|$;e%5^zW<1J@m-TbG)AmA-x)mi37Mnj+AI`^Ea7NYWiTPv^cw$iq3+blp86imGr z(Y8!CFN(t`M+`^+Nq7QLP!nwWI&xTD!BU}Z%-X9$fD|*c(briy>Q%#^-^d~UHmfd9 zP|L=U9!dY7^MQ86`u9XHY<4-n=bK+F*i5V{3kwVIz0kI8$rX|Cqr;e%sU82%`?W;$L-p%AJ7eJJ zsmgv?WPxXToOjeR!Eg9mZ$3i-`1L{ES#)eE|es2o_%aF574Z#Elg15^j-{b(y9fOcxwL2o98^RI7 zy#U?47w`3;3gUa3S4z8O$Bq!l!ExTR$G}%^8iU`IPgFDr3Xls{;(H~UTY;@xpICK2 zB&Q~Tz9A}hEz{=Bx(5%g!411*BRw59GtUGZ_}gXZXiW z10BM<|4!G%ozMP=1U#Z7$mcR<`~suXNhuw8*#YrO!Qax*(E7QOC8X>|!b8eaZNGUo z^Gy!2pYqnTuvj#2dpuUp`>w{muqZ%&_>j(O!n|YJQ0FXIfD4MZs53#m!+W`gkuecB z0p*!mKK=eIx&arcWT51RjSr3i3p*(nPF8MI@S53n?(NUk^HziX{S(F1>)ZxA*=@t% z;voZcnwpxJK2nVLncoh{51Jzr3ri`wTD--g7ZOEMK|xo;kM<8N<9uHWqc>_{I6pc_ z;P@+tk;Sa7GC5~6UbatM?xETye09zGhfkmO=6$n!oDNP($6r4w=+Wtp?7@Xw0qd7C z5~wj$wbOO*P|_>B%tCI2gPpzA;i8q;=gz^73k#pkkKgpf7(QN%^!%bIvlNkr$jHx* z9XkLOeq*4T_+hbjpB!YnJ^B~{)+yw53y(*O-m)^=KFQ14%FpiyjPE{Xd^eg- z2;p$>&bsuE8RJ1Q7hVZ%4y~1jp|JS(#rT+*8i)hjb%3~`_wE7st)`F>BmgyVEMcTC zxSJ8+ru*4OG|T*t*Vy^Yxw%a5H?GG|aBmfo8;!W9XJ6FdL7-KWUiQ6voM(gM)6)It ze|>&}4Q_CgVV3wyfGjT`dZ5_Sa381>oCqW5^x)Fc5}uk@MI{dP>E#i&P{+}X%DX~w z9*b9<7onO&87iY zbVp8$>#Zw~iR8R~@6^LnqR;<2Hopi3w#K&IJWv<5{Ga8U^P=Lw#!^;RPuyC z&UD$9Udd#i$m&;`kE`bV{oQM9&dC`Ncke>H%dDkJ?k>Bo0N0ZMR}Ifhz7L$cGuAx_{>)f}*2u?@T^zf3cwA~)_qj7BVyYXyi%(2jc|vfao+)ri zpyf=C=F=E_k4-vu`D&E#W?vzpTYDHBe0_NSypHGP z?LEHlgvSi~`#)JXZak)@bbVhfz5jdX?1h!pWGN1xd@MWM5u=})jHLzZ_ z<`*nXJpKCpr@6CcWfiF@JvwDFt;56pBc%R*u5S%YM_Yd#+ItPyhYH>^Px$=4sKDs{ zhgt8#KLV>~D|KL \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/a77025630019ef3d90ffa279879a205a.png b/docs/images/chapters/extremities/a77025630019ef3d90ffa279879a205a.png new file mode 100644 index 0000000000000000000000000000000000000000..5311becd5e31ae4daa91ee85f15374da4a84a438 GIT binary patch literal 23872 zcmZ_$bzD|kyFCuyh%|yUlF|x@beDu6rIa8oC?y@z-5?+$g3={jf&xk-EfP}Fok}Aq zyw`G{bN+e1Kc8oR+*@JYbIp0hxW*WhhzDv4S8%CtQ7F`vdx~-zC=|K~3WY|3jR}83 z_PNspe#10XR**woApgs#&x=Q)uA}bB-O+MS`8DOHt7&n8xh?js{K*Yj(#us3w63ZT z%(s`6RmOC~D zINUVMr40(_zaK_Gi$dk8r4sXF5fwSFOr`;`;IJ?zVPVR>t;-k~b91d>mvWfo1)h!I*Lxk3i{8zht(BA5HqemJYO4)aB_JyJczU?iIxs+l znq6EB_B!0eNeQ2B>+ipMa&jW?*HG}VL@!^vh}`qfFPsQDMroNr7xBb=tTbgsb!C^ctIqw>ty8w$ zi^?-#$%0n?KXmiGiGoP0bk;{4Yd}})TcyGmQd$zg!!-tl=mA=QOrW*5q zdfwbBYH^W!_xm8ZPMfxmMXs=jw~qxvS&@Z|>swxSHoCsPJ~InTb6eX|>V(~R6^@Yo zwA{oe+ah5Wq5{!0<#2uyh;og4WqlEhi9O1O4pp`jpSJh*ihk+J<(Rv3F$}8IvBCOY z)z?c9laRzECWa}*(q*cpipnT3G75bCx5NbG3Ghy>@TNp`bTNN^Pc*vWOAx8w`}cr< z%Q;vd#zQ%5O-ta@OB&4b%jJ~*-`_nYYY<_8BSuz3m`s!9)Y;W_M@0pHbEYvC_P=w< zDe2w2mg#A_&CSjJA3sP$86kJ$+D+qSweDJ3S%pVN%9xv*SFC7iYR0{L7kPB#?y@ya zOHNLHiG>*wc+dtG(0!ea4J(Y0{_ewv>jcsjeg13$W6@;o%c@j9jMANd~i={eo6-}V`9TM6YKl%&ng zS?wlk7+egHS`qz~H7p;0bGjZ6WjVljX?)zn-p5#9jPRD890WQENf9pZ(4(fNea}1GNXF8 zkzE<+aohy<9TSd%o0nI{=>rJ??QX~4Q@hUIVFkNV$;}zJ zj!fBe_ua2J?d|Oj&dy#I(Gp&Nnp#`4R~;e7#U&&jKYonn=H`|n?08AKc{r}6Y*fPc zjB@I;YtYA!0-pP;0UfdQjjk`CtY+SeXO$PYpDy`#+Q-n)kcf;d_jNk5e{ua#krM*a z(&*sp(ag*i{6<^fhSU2Q1R?+A=ilC0j9^kxQR#=`NIcs4v))VS^Yh<&`|c2=N9U(o zjw|13y$^?>DFw)?_hHx$VncphZ&ekd<*Y6?InqNa}e`t@s85rd$hV7_sq zq=BJfW>Jy;{5b`efq!bM;lM&?XJ=MpwfzhoMC_Ktc^s31!_K_CuD-t6c$JmqkN3U$ z6Tc>^38n93=j7&M;Ne9bZa%ZH2#cb)&3;639U@G_7K!FN_wN(Z(a~*hZ#Nz7EIc+b z@!whK;Ha|q^c3a1b!*1+9R8D%_X+k$@uR)zzmOP@ZEde)WK?+WE_R7kbI>fC+u6my zxzxECb8v8od;L+#JVSb3VNC0AIQtDLDf;p8aa?h7EMoc6twA&#o z0=vf-tE`7{3F*Xdc%Ci9N@W>0`i|9kI1l_4-uhANY!MtBe4USvgn@x!b*SKn{)9@J zc&#O6ssYz+J-nhEA9`_j|2Mbv+0UquJkh!ag#x#`rza>TW}Zn3I(?*BM+}+7pMwK= zB_-U?E^8Y6$>XqXk-f!#PG%Bs8^=%!*)V9^y8W0Q-7Z>l(lEFI>GZna6>Mz$1_kj`NL$dE7p9`h^W z(UOXaispfAg&8k=V`Jl^lN0iy!v>#=qXoim?*x?pcT*wTF%n#B-hKKc=zFrpmb;SQ zX_}T0heS}m-2L=Rj6~a8_~qU0bJlWXS|iX8AhOJs7Eu?+gtM#I!onz@6I5-jk`(^` zytLUrh>{cjw8uZ5EnuY&uOWsW>tXSOlgE%3+7Hy!zI#zzAhj>cFC+~8(W5dti>GJ_ z+%{>*LY9`6D*mA!4F(7$_Hdnlz=w2yr^7#>xu_#Fv?=4x|9(_&Z%A5NT0hUfEuR@R zUZ_Z>cEZO;X=-LTTbP`<lP~Ctn zEdSE(?(X&YF5xdo{foOqC+UrCYip}3DyFmU=<=bmk|9BfY`n%{*ySleIn6`QwY9bW z(NP_}`q2W-`bbVWB?!)UOziBq5}y0{`wOe#ZKmOE^BO|06`8pO1hmHk9>pFM%1T7Y zY3!e7M;;dzrYSOO=-I*+6s9dYiKwLr2hjT-We&!+dBHo+LNCSjQIv*<=B#lUe!eUu zBt%&!`9+TffS49qU%J$7s?xhiLa;=IhfB{i_!KSbBAey^-)1Q#rlrOBogZUep%yHD zwE){$h%)-Or|gE>s=^P#kxj|T%WLiLf3Ql4Jcs=jtQ~4x(TD%OT2KV}(=E5XW!16q z@s`QSy6%`R$dXHG5?&8k_=1rdUr_Y-^e`K;MB7sZzMgFR*H6Cx`IKge?5h+MVdS^; zwALJd!l9$e7Lo5s_|+N5v^rVqyoMJR7KR=W(3GpZb?$4*Snes{u+&|&!ez|mzPUM7 zEogzfDbm}+!&e0Y0@~>4L|qgsK04xG34oZ|7@au>4BKBoa+LyWf77skh?(`0&ndb1 zXaUK~bYmNeRNT7DjM1#|UC62^si~QSgmhMgk(X-0#lQUK7RS-)U~Y}isi2Cgs(Ph) z@8IF@Y1*;Ii>VngKf3ZtbQxK+3d->C8*I z5NBz%6L;KDD<>v zNqSB~f>FKMtoH1;tx+onECQN2vO8B8iLS@bB^vwQIozDWW2Jei6kyR8X`h&o>#pkM zb)6w|b_)jwL&t7+4{x&v4fniQr)-Q1snR!DSTG(wd??fLuW-|Te1;y+I`_bw^<^N)<(5#P+`C^}BJ?UM`w{OL>wXCYR4bvU{fOA$wohVs2qXI{axR`hib8FTbf14Weo)Z{x5K@M^XpifqbJ>;hQq{jjoxL zxnS67{=oortnKuRGlf;k{{PqLP~a@_RwWc3KU8K+FJw3A4-YQz);7GaC0xP;Yqlz` zs}rXYak>l$mqZj70XPcK4FLXR6cur}kRm~l;Bc~U1=GS!7qr|D$YzEitNHZl)BhaP zwYj;u)tSb|ejZdg{B0u4PR-NPM*ow>bAWC82L}V=9>sOCN9vTM2S+?EO=l?#EcoLbXs_l&v-q|L= zQC#bK!V8%FzakyY7T%wO300;(2*}YJ3CWSQQ^{tz_uwq=!l_}g;C%! z04$f+rU*7tmyrqV{zfAMpU=#!o$Qct6&A#+q@wcV-1Be zMUBbxUt<91J6-PuBTHaFKtR7bJSF^c9Mn$bM6OKdmG3eNH;IsS9c`2~ z&d$#>{+FiBXZt_y!x2bTeT2nnFd~b)N>3k4D0w9P-!TNfRLVtQKY&wMy%F*`{xI}H z0DNFlh{;e*7G#%lNmnI^3xwJa`y2u-{lC4+?}p9&HU1GV-S?!RUtK9T9yo*ot-}6x z;t06{EDLBpd7gyylEDE1Xz=k-zx9t!nOr0pHvSF4tVj`Y-d()MZ#zy30|u-=Ax4)o zRF{*>RW?HI5&*4S+N6Jw9YIWXc6Ro^^UBHy3$)nX;TbS#=MMjSMwRo58mCd6?kXkj zoPz)(Mq7KkQ$Erft#V*%n!kT1Kmt-h9m0qaqoOMlHzF3x)YQLDJTo3rEaB((R52dY zuh^MpH&hf>QF80ZbOWd|w5X`4UtMu(aRt5J6OH0F01Fe_D=89qL&Y~;cwzA&08gcj zjp@IChrL&)gr0G8womFJI6IpO|H_q+7@2kRzn-&`BG)Bo-T&a%IAbLVtFLN75aCXI zcI9Y)agE941@9cpdl&{^o?ih33K1;uGA=G4Cx=d>8BzPq9pD=;sZs3uYay&6XW#5-- zTOG)rDNKhQ08)n6YrS%L53 z$;`|=nvc329HWjjC?$l;sE$?L z$AVwN!onudeUaRYiD?JWTVeB)*WJr28zwZE^f+_?Ze_hX`+GR!ezJe_oxn3zm)A}R zpo-+sDV+txPcDk7O#}rzKmUf!OarZ&np%>eEfwq(vkNE6zo9`=)MeElm>OyJgn1Zi zbgS)Xd3kxcE&H#-K%dHoA|{H{u=)7`Bi--37EUl)m0-YYad~+@R_eUz6^n9kj7)+G zSKc?bv8+S8-FdSeOZmQ@J|5FFsD0OR1%hOiIxCJPY(!$eI@?S1;YI$tv{ zra!LxD==+*=HH~%)CdUZC0}&Kv$aC(K`nyJ%I@ER;@N96R*pt8?5!#Uk(T0LbTj_CjROy}t6$ONh{Fh#PEbK5^H((iDRs(NwdZ$cuuy=(7XE9la=HZwx)gf@PXUw zkBzRLo+(tN{(-p_(Xze${jUHpDxf>Opyat^>~lZ{r*++h6UG=*AhH81EBSu?`V}0L z#V=}Fp_@tlfQ1+b0CvK26Xe56-5{S`)`#w8nyqha$g(FC9&D6YO2jGVRE>APdi5%B z?MGg=ezhH?q<2lfqt+WBKj9TaU;r{1$dVU!TEsU0mV}0fhnJZR#e%G}udjnp>dgP; z%d45$HxibwD6z52`}#_%rAtObQbEP+zIpQ|jmOD6HwOhwR2xeqzPj`+6|YzqZE-mZYRp*qV|2YLOEegmfdtC3-XkH3yAH1%_Q`gl zWqe$3^@dU#B;FN@+eUIQGN~iTGW&rD3^iEsZ1>y0z2zIWUmfm>Z)%TTns95rG`nwg zUG#HCfrnw9TGPQs(~rEew2c}1mx}%hvAFMONe$wtxlK?I;?Oz+M4XqeGcjeS+zy3M zHG~}cvo#ajCwZy@pW1=8E@v<7xqk!b1HdBeVNw@oB$XC@?elF>!}c*3Fc+0I`VNP` zcEyEJBp@7H`hHnP!J~@#;X`k4|91jW_Vgs^a(6F%{_LNu-%OU__Xv0$AU=g1W>LsS zmo=VKK|N+)!D9ka!g|e=$u4enjzoEAq&oowVXx)YFO%ixU z{^qtZfrW)d=ECdLAoTt$42O+}&FN*y0!2p;_)xlalt;5cI|3)G1)DHo$5;&wuG!K6{q9bpSYD$zyjB=X;t&6fnPt zkO2VIvlm*x-0Et$-bZWXm}lWXg@GB7k(C{;1c^mKA;ZI2n*G+%o@=To8Xa9*x|g#l zik9}e6n+2TrK*oJGqb3s2A`?dvKrV29_J9B&cSV$=*etuFYVr?xUcmn1`+KgH2 zHoflzj&^%)7ybU0J-nw)l%NTT<$18q0{hQ|j*h;+_5+KHi%UkKfbv#J;N2zFj@U*Y zmX6l!qpSQ_Sl0zVnbf??He2i9<-hEC$dy!_@wDgAt}r`0D1wA-zB_>_^?s!S4h|ONoJ9SVoO( z3UM4F3mxc8cS-q`NZ2kNZlZ0BkWD6Q3QyXOa9-!HGD(`~&y;>h?yyPYa8xd{^G?V< zro5aRVGI$82v~hwL&GWD21`g{C8t^%;Gw?0zNr};qfr1z{qF{Jy6xRvfGrgO-87Gn zP-4&Prkak9UN@Ab)6cH!IowwJ@?6?e6v}S%p^^P7+-H7gj?GuAT{m#wabP^s)ir?- zJDLll-)^HYHtBlBQeIJ^?(PSrX$0s+WG*|P|N8(J;_E`x`-mH$Fslpx;1kAyqV^o| z@lQSnZhU+h4sV*=1n!|@y*cI9)6=6Ad(KHEWcLE%kof%k{Ae{hw%ZVDd*NM3m`^r8 z1K}v~XmbZ0Q)w7cJ3Bk>N81eJ4d<+J;nN%0v63xNLlG{}2J{Brw<@cOa&r50Qs+lZ zPzZye-DAVI!gO=VVSDxtoNw5V1>%Ib=;$kuqA!8KhbqOy$EW%4+X(L6yI13V%!`Rn zdEMnTdoybozY!4RzQ;=x`&%={t2gAV??J1)bLWobXeliK)S$0lU zKDPL>{SW1(fDvtP(o*pAaJ;NoSWP|+tJb!ni*w0D}fH4@Ln=LldGBUEn_bep|+0(thpH2YPBXa>ev~^fGG6?Heu1DaQCVzF*B@=S63(r!!%`WefszmL z_ea&#)R>$d?IKV4U z_{5;jy<*i7ppo57!z~lWLKWal+FvrrB1wzP$TA(7){B60YJj;OSb!$IV<0n}X28_} zZEtRCtM6Vy6U4p>Ocx+3BskqBxS5`r$#8PG6$^p{0}~Uvq@<+#@osK^MLsd0$t!?p zT3%e^yGl*X;X+f$ijR-q4-CU(y%&Xuh{)=6y;vWM)^EooJx4@eEo8rK-0&5kUWMm@ zHS}5>&`v-Cp#iBm6GjyP)L4^KQz0?(3Ex^<(R&hacZ?eQMdOgLW`IfqLZEK$FYplWytFEqY_SdiC{k7Nk zJdo_wE_yfz@plB%LU4?%_E!+}sReDCpk5-ojE0VhO&c*ZS>w3S4@zu`s4K!$L9iC` zLt(|E;6e(kiK!{03r#}voOKQnGcnGe&8esgvkn;ll|YNZyM6mM9CF4#@+Fg9tLWh^ z2+}!N3XBX<{f>&g5pAYG*`bSq3Tp76fyk5i0(o0PO2Z(BG5diOT) z9j5RW(Dy}bobty{Pq!M0u3hUQ@qdR*M2M>ZN|gzyH=sTeixO+|fcyoiDa%aE08kfB z5K&(>;CB(-auc-WZ*S2dMKTxiX#_>Ieuo4Ho9wR+a0>|mCzHSk^bC?LzzYxL+#~Vc z?P7!B_Cg+Te|$U%?5_U4ds`&grS}Zl+~(gXfz3AkHCCbf(VDEdxHvdQ&N@e@ z%t%JzdLgMo49y+rACl)sW|`UfoJL)l)*QfFK;@Bz%DBJ34<|0SG*oGEA4DWH&G#yI zG&ElII|5~NusXm5lMERe8X9bwRo$y>RwpN?t0W{rK%~KDqr>Tg23lTS9ropm*v!|) zR)CYp0KyfS`+k0Y9_cDjwjl}}0AAoqJ@|G8)xw#ohZz!zRfh)v?YEYbsu3q&A zh}Z-^i&bIvXdR~^X;4!UaEicx0Rb}D^3L8~d24I-Qlt7vpVL1Kw{EGfCb2I;=^m@J zAZ$2U=RnYEs)%!FWsy2hX=$nMhbK78-&3QYY-cXKd^cMgTo@0|4Tv8^KOhy2>|RKq zAxn&p4{8k~Wa8k!dl(V1{o;jOYK<_eNvgE8X1s_ZO<0r>6a;iEf<-b~6z^Mn1j)hp zZ(?hE3ktkO7PM9qP&bkAfvOV$a0iDrB0OJ-M$(%SdMKPTg=nPSEPN0JY+G?Lr!E_F z#$k6td7~rxxQ9po_nx4?(bTK;PAtX5#4q2zjR2T}O{>H5Yo?JN;^b&C{yxmtORp0X z55G5(pkYLXmg;@Pg)yuZKn5Hf`wQ4Xu2SR17+??{0}AOMoS$%$-_FaK|4$AlB0~G^ zmXh&tZ?~V3@e=A~Qj%`MfYuutp-oNFX_tqfW}a?u&&eX?8Zr*DkL=0g#{qz* z(ir7FA0zr(tLU&UWisNB%6HFKt&v*5n zY<&+k;0iO~Qi#=-m_0A}(ob~HL_G23=boOPR`?p8$1RtIMMQ9D6-rj0SXjWk#a>k* z$Ed#E{HV;uskUw~HuHs#cBYZLyRcD%cLa3%n=Up_mpIP;svo8s%daOK%vf0=P9HLk zhe!)ZVT_+v26C?F4QDHH4~z72(Mqg}L?EH34+L7AzC4)edtq2 zsxc!s8>8;0Mbx=Z8o$w_J{B055|Tm{c~-us%4%tmLg6giCnOfYxFF0h)zH+e0MQ?x zS`Z)PVVVE<@!%(HY&5%v9X>)ri|ZRqI>z*eQ&WzeGxYaUQcP@Y@P&k`-9{!Mk3k%c zq>GZv$|@U8*gpd}HBh221Ufy$E1f%ZfBlXJIm;U}90l(|S;)%D>fYzmZ}1k8JlmE9 zNSmi}N~C`9;72ZN)j?I1MB)K2o`7UA!vjVQo!Z)3=<&p7XJ^|`_3>!K__e&f#lepi z0z;N8%*3n0)={c4kqD+n$QQr_Oyc4+FgLaUQ~QF5>23xr0qjX!x`Y<S9}dB zG1ZNIBiLeMxOsRGl}g!w$pU^`1;%w?p@rIcMr&{n!N^1TM5d;uK(z-#k-Jg1wK3!M z_mpKA2yqUW?Pe}oJ$sQ4Nfxqa#`~3BkE?eIIM<~ z6ONpm9BkUyq43gDF3-cwXqdN50WeYu+0m35eqnXt9J~(9Pz#bv?mMRc)GA@?=*l7- zPDx2RDBB$XnXV@&Wx}X7T%^-F^>?^f8Yp#2VTbFcW@d3oN#XzJ{mFvV0n#RQVyPJh!rHG7TDdl?>`V$*>4$ z5ML0CI>9r(r&lhH`}}5CR?!fpW$4Jxw44Emt9Pv$Aa6=*UDMTG8 zVmP#UdM5FjAqb@o{N&l$ULV-45C@PWu;SpSGiwgSumq+kmuB?aH+&!`@&TvT{waG@ z$@(fjUcK7RP~7*d=G&F{H*d(HZj?LBwPbN9u?%~IVp33nq=eer+q?VV zUAQ72zs=ZHz>^Bn(ujF)c5UsZ3$unSxQh^y2tA`ZjO)kI@FsQCVBvnk{<%0yK6)-tzKqKW#1KWwPNIS8*e! zk-mxSDv%wxhE_LKiyoE$ryb-ZBm(hx7uo?d3E+1F5x$_d9gKDmz4KWd>hKoZvuJvs zY>ub(;7o75c=3W8d|w|LDH#Wa2?z*uE6uOGS53y0l9DPFy0f%AHx~d)p9jMz@;3uTG!0c&L{>i=ADa&8gXLm(>*4f#rM* zF#^fc0W(8LjOOocB{dfJKfkUK&qE|xe zvZ46Ra2io`jnByW!OSuL%Mz?qK*_Co#qKOO5J%*EHLEXMruRDw0Ij;-IUVMY#}J?h z-;a-96DdNJ5dHS;HKcA{<1@bwc&(wK0U1zM^!msehmWq@{$PAdE_sg;Ywd6lLq&c) zqrABS%v(A4;)7!}Z|!6|uqdgjw!uMeAB-Bej*U?Q3jPZ35@lE32jm>$f2wgbg9Ow0 znSeN05UEnBOn*dPjBMw}eW^S8`llr;w+%lB!{CY}UH+rW_k*#@a_^eKdke891GWAQ zmm%(36;=pzvv$Gum)S=bcuzm`($qMhKtCeCK~^9N8VNX5T8D;60RpYEI}e6{PDR=`aPd=Wca^)dGR2i`Ch z^nZ4JmLlSe31J$Rno8RqL)&vO#sA>$T};H73wdDr&zL)aZR13`zf2{Bj)@OSxJAXa z_Gx)I2C$G(N_g^HkNTcoR^0mI8T13%U{(Zvc=+oQ5Xg{t2STR8X-SD7iX|7+W`wXB z|7075bO<1eLcw7RBypSeZ-K8+ptzrQlj2kHV}k{VLNulw>T)Df&?G!b8_#x?2dIP) zJ5$SPIxP6nqel>-3M}u7jo>3g{r&y3FvG(0KYRq6AuB8E(RxwYRT>(AHbR+9>HK5)!%;ErIkJ9;dD47g=JzdKiXPE10Eu8( zg_0^*)Vod0Y}etEp`IH*zR zJQ`!>cGIhV7DUJV?CI9ld+{ZLi{mp2<#NR(?)V1D7thVWQMubGNv@ZsbX*mFo72Ro zJViFP!N&{PSg?Ca!z#a;@&L@6ottBD5iiVu{xT1=NgK4|p1+c>*h5vnHv&dQ4Aam7 zvw_Azh%10L>{@%s+srgbxVRjd`OtK*{zqYq$L3c&s;Hznc#;zfV_nyK2oH6zbLg`ejqBTX6}5 zNZoo*ASCkD=Y0!LJn{Vev;>T`hl*Z=JdWsY$!fs(YCfMOg;y^!iSI73Slqwom)82N z86Rb`Y!VtqLErNA>t)!gw!mw68HuG~3zf00Ri!t@?|L>BR*=yddIkSY|E1j59%fP^+~8%&7dK>uZd(>7m5ut7>VlG@za!e@hCxE#1sF3N20UvG z2yXoj^ty4dzt4SNP!+U{?0he!9+)OwgR79`+ z@@3)6RzvIWiRud1jfcUZp{9TuR)1Eq{bNxSwjAca;uJrs#Dw!$A`>RdRA0#Nu54G8 zfAaKcb7y$^c6|@bC>3B)hjNVx?VVhdfJhsiF>bY_DDt@W*d0uirhRLpHySJ}YqLet zrhRcc1F9yhxSjbqPSQ#hx=rn_V2rBqNG(5-{r3vkW7f#LorWO@|4e6 zlRTP5=QOIL1m+tNHFtnALsVW$(BfW1M~B2H+@S2OupVZIOCZ-dIbR&k1B4maO z@3U-dZ4p;TL)?W95RV8I2UjkBP1b4_wC06}i(#j{sbSFA33NQjuo?R zUiXu^WTJuqBnX8xe!}QmM-1fJ60)+g`+wFD!D0dW`dE!46R>AIHe=jK?XG=gK&eY9 zox{=s*~_%&Xg<)u>Z)R5)0%0wLgara<^jxx zj%76U)77yGCWOa=FvWXw#}Zs;(hd&XK-B;MWmc@bCzqoF!y*{*+X6B0keTOOnnbct zkmg&7hI7ghyOFC_iMFeCocBWwC7#cv_grN7j-F6fSzLv|1DL09AW!CIzXp|iT4La_ z;k}R$B6pl~tZDcyin@OAkR9d>F{BpK0 zwKo5P@t;Z?ab@?1Hu@E{l*?+%^0Dz|uhh$YBmnM}+uO!2COsMZRE~klIeQy8uKLVu zwmiVWb1s;=aatN=U_|$($D*g4xR!l)ic0%XW;h815h&S+y90Dggb_plHfSFBLm#?4 z01v{MFp7!kFHzB;9G*YF3(oBd(>B~3+V)E9WT5%Ga^YTjaHZ` z3>E1R@>zWU3MgTq%vdUuDK3)Q!<6~WBhJ=N5~e6stF(PD;us7%j!z|;7Hlp?j&?W=|UW;8F%-vKZ%Fw>~|_sP)bOsNIMeI&9LDvEwxLwZJg zAap*t$5!{Z9*vaKDLFOm$^`kR{A_J37{=RyA_7VR12G80EfdS(LNX`^z&Sj+HJyEf z9l^P0yLd2fh5L^%@_l9Rh}^xzpl2Vuwg%K!t*VXXOwJ9Tpc_0+5*W&-_!WU<1s z7@n!6rp~&xZPlOt-8YT>)mCV=L@> z23$x*cpZd96Ls5s0UB`2;GhP)r5yX{VtzN3Py+b4%s|gU=wXD-MF0Y*4q8#CE@_fJ zk)552Km@_PhO2Ob3NY|xWM?~FfO-4!%EAIV7|!6@3m$y^*A99=PMC0cY|TI2Nq%eF z{juy2-`>4%o6B?ZnQU2Bquha(#zf<(lD*U5;2`+_4o0F^3JMAoRaNDIKltpnWyJqj8YHNe)>g;k-KQ?U$H{=F z7z!_VlbVu((3>e@ZUji%LHOTBKR-ad=wO)*TvED!zXO;BN3g&nwl}bGbois8UnM5a zQa5vn2!Gw&*@+Esxb5QnPzv$RVG|IvW6^sf4zv(ZzM8>?pz~!niOGhNwWW z9>XfbAV0H!1b^BmZ>?OQ3exL8BPARJ^D-;rt_Smcjw1@CYo|*!` z#xJCW0V9$7>e-}L2vognP`?q!2)LcgAGczHz4a2UsEhQ*NC}6J+8?+(fS8KGE^!3a z6X7o4PFWVf0mNsOm&nXmcs))r_`c-vWz~25&A)zD?!ZBt0c>S=J4nmthg)%Q=gvPY z3=1;)WpZ*9yeM4uBL_?3zYznu8w*$xT2Cmv7Yz-~gFH3bAwc4bhop{<(hl6)XCBQI zD16EX+h>UP5N!T)5aWt)wHz!I(U6_s`^W}v2e2JZC?S0eAh$hqy({mBSlL)vkx5^% zQ?;qOV1|*h`qsbmM*B1(?5um-qh~qfj(c z$j=1;OEn!_;sY~;I5<|ohzW@s3Tz#i4G`(&u+n0HOMs~w6YJgr zc+We1X%Yz@N7l{2+&6_vee0)K1aYQaI zE|JlD-{BH6L@O|1JNs*zAa+RW>r;a(AGx6q-;J1H5iTVE@he4UDjt=W;fjhNJRn*x zaGfZiED(AgN^y|X|x zB=K7je>HVPj!*DQa2Qe;Ca1guK&spMVQEAu%Q0WjYBPWMBufZYa#xc{Ag~$c|(JGN^(qwS92V z2D*@l7mL+<%q#v|4d|?DoHbcyPceSY+;(BtaQ^Y6JcqBhhNFo3A{6KHRm#$A=}aDZdh^y^}hT`KgC+B;V*&o{_XXMU;UbS5`FltOd z+JM*rSKylwdlQH~GGJ+ky7sbX2^6tl;NamrXE!%vKq5umI9fb9D092Hb_&!4@^|35 z*uMBZ<)<~|+R(AX)~JBBI4UpQc6s7*H2wE&v%9u=*-yIbt!iIAeP=H9tJw4NglAd7 zMk(89{D`_3rukESuRluT?~l!<9Ar6SyYe$`k}gVgv2Jn&vW6#_bpAEtV!ClI9f#&E z@qLba#&~P%RIIHtxvz}JtX3MA zAt7O!$MQ8G@4hA5H*{_J9*P0#GE99Fu9!FUUOom66mdn3jwULWDVk&UK6yH(^f0vK z$=z9e#(Kt`y*)EvjoklUD18Ef2r$>)kmh~FvBYIiBP}C?lsd?{AgF;nfWTsCL|X7} z*CEt?%HcChO9$VNi`E^i_tU;TE33cj;UNMJDN~r2QDD@Jg^KG4R`Sh;Q@a)9QuYTp z{ZHOSaPdWNzcT&r3z!pnCkBO{|*1cA?;owLi!UrPO5yAQf>7=W!`&&3eSwBPB(%<7LkLd>9mlM_!1 zmF$5|m^~iVx$j(w70E9vbNjRj)pQ50lcCCePM-rTRR;AAMwBPe%~7zja;SOwzV`5M zcER9!0WicSAdmpMAXp1qU@+^18|j9rAhPB4FUu1M>$y%oQFK@KN%jDrY`02hUw=T3&>qGYCltT}xINbq z1Iz+lk^20Fj8SAEtV2LPECNw__mzXZj_8kCatc zCrU_2fJ!XPrUJlZ`D+9T3j8QyQ6;d15~W*=j9g~CZ{1{6U#dA<*OVw26a$46MCUin!3nekHKgD~lU=T!% zvLIb712kO8O*Cq;tLF1L**E7a`nZ1rF5hJkGA&^7sJfH&B2rRP0BGE1$db?e<=7R^w2>!4rp}V`gs2v{{|QGbCMcCnsky zJ!QgczOkh@4Pf96$&j zkN{K)z7C}VOOY|dNw{u22EymcbiO!9`#+={QWpl-CF#}gjXao zwec+Xc<02kV+Yb(BW^F&Px#O8@m$8dsG97kl=mR%ghxlS2nxQrsreo;Y{UJgZ;@mi zFpIU=2%3G=yT)ze@BBs(0`5CF)FL5&(|k{?AZW&_?dbs?Ki!#c14W4#$|n@0+Lbgf zxC9F9-xm-6T;;jSz6{6iby~66kE15jb$|RQ*T!Ly=iXzVhbyMWWmbX+VQfwkzvlTT zxLXMuyT--4hg|r1@v(q?!`cnsoSp}9KQ4hs11a3!%=uv0U7E0OWPw8lV=~-KA zx4q)vTJbzw>s@z|hl0)mWHa>c62SX8rOD%8z{Fyk@ z{~_S5Ya|=JWg#X%x}28etFe>{pMIL$$QmjzQtaL z935jvNBlDlbsefdez%6vE_A;m7oqn?$%e@|?v$)>(S}B*JcIzc&d3}8><{U4K&m8$g@sifp_!~}xi2LsPYr)|3)^=|Tw*g!Nu~x1^U}HV z%IyBy@~QQ+Wc$P4co(OQ+)u)@$v~`A?ieY>u(uzp#Dd%W-^`EFF9PhQXl}us^*d!o zREa+@R)u!-`>SR}fDVB&3wHw|pjQDU#QjzU%BKl8r9o<8cz9>Y@zzDC&ncIxxJji5 zrd`w|L1yMQTq*SysXLm_{VO#1iqDl@{5U83*~Io-OsO^KGHJg}#FbJ-R*AOr}!#c(l&|s%M zR%n4U;7;y^DWyggFRgU{+;!PKT1tvmpz%-mXbpB*xXa_|=@_($Xg_&-D?OvQPlJ_g z-upx}Qq$fSP{SKa+svJ-zLQdjy?=?Rkh!q@e9beyizlS2Yw_rk0^av)OXO{lwDl~Ksal+{`l(U%Z$K(>)I4%clr!h39w;@6z|`6 zBNqpyk_Co{_^#k#YZmam-M{~Lg&ZvFai#Yg51#WtlmUu=nV#MUjT(M5&~>;28s8-c zwH!03`G0m~k{ljd4nIf)s35pHqu+s4xRa_FPp*ZWDjAR84vuvA_aJ&8b%v z4nq}f<P9*bYcb9i%hz#CgNzT4(ej$8|J@3WMHna<@Xl3x0mg!!pbuG(r34qyn*01U+w> zeGUVrHZ7OnqP#4-)20JVN@F&Hh@*agpZWg}Ow@{M10plLgr4kYUuB=3EvBd0)fH1} zC6rY~%E&}p#>6x?##7@?baH6la9=(qyo!fRWc~?1RmD#mcq$|rlwoEep+r!CNI<3k zX=4tqGyoT0kmp({J1-0CIWK>+YMAL*>2AsMI;4)B=to6IX@98|`9w`sDy|@x6J5|5 zNB;i_EjoYZmH>(`RnwM}8xKrQ&Q55n?{b(L*Aw>neC)CEeaih?gU{TmddEh#0_`oK zgM%1Hk=Y~PQN!vt)!~YGT8o{o|1aFo*VpI4`9GMUvlo{z>`~=)zP-T)>i=IO*B%Y! zx`zjQcb0W(x2Fl4&FG9%a;r3QzwBxz+NhLEw53vPmoBcQ3s%?-o6XeLSIlpRT# z1|_>B$&hiWJ&GcXOC`l|iSxX)&pPX@bJp7Pmp{Jm^?l#_zQ6bRJ-_Go_|-nUMIC(; z7HVN{cPP~NSl0sE^wPhrSNCkqih5y4*EVT;63h%;-rS6)K}F@dp(tajs0*i_>+t*c z3_yUVPq$xk$Ru!+>|e0NpgeaQ^Ko*aiDLF^`z0;3iG5zqf6GldeB9H1>`ij~7k8Z& z%fY6LPVbZ{T7;WkIvv@QX)j?Pd@-1j)|r>C-W!iEFNCJ6_(ExEYfFTkc3Wd3Y3_lO z*eQs#^Y7frLYh2R@%=EIArzvF@C=?2c0_&~4TvFL zI;O%a4MHlQ@D6ynynA{=pDHuATrf{zUd+ofZC4i;G}UzYn7CFHsuUGVfy5=tb#-%) zse#6D`p*No-MLCaJul>?q%1`1n1(UVg5FlsYuia2QrL2MjmQAGA{+T0EQ^p}>=8=c z%fk(ji)J`1`_)yCbjKa-k6MdOPxad|v0&SQ@_z@2UVvFd+Y%7A$R#*j?!CRMd8w(v z>kSfSqiownhVAbz$ojB9kyAK1IaNU{4bAgzG)=Z2dwYAkzA}WDvev8of^A4X035z& zC*N|gv*VO>nuYZ*h6?8X9L89UCVIqQ+>7k--dt$0)6QYon#Y38h74t+qhnrK*;!Ec zyM)pRd^nuWd!dX3q7@)pn++`thK3+PU3Q36Gv>C4zdtpa=Eh}b zFZtv8)40Adaf6mIKPfi$i}~{u;^N{EQm;pTItua{XdCkEM4TFbTpx?;jZl>l1PuQl z98TKY=H8a7vX!TGE>$QLmUN0x(5SAi?uNG&>hyR(K@D)0CqWc|%}gaT9J~<`XzaER z4Ah6H?j^*-cCD8)tMt2Xc`*zIGM-MC|KLjpv`3d zjFcUxDR^7wbU9t2C%L`HyD~kD7e_@o0XA3$V+L55p-wKmM}vz7 z0xcQsGMa4Q?QuFQON@#>HjOV7l^{=vNmT7##?qx<##9}uzG*Y{P61*%fz`3nXVXX| zf}zYMLDIZ-7R+hnKk!qSXkK9$D*j$NN&^8KJ1km)7b3fVJkz!na+-x zPZS>SH5gHJVKEw>!A?gi)IH0we|zNW2`_>u4rp(VscL*Re`|Wd zl`Fq>bX3+K`1MFan`+niw!v&YGUtdi>{%$Sw|Ekb0?%TJ|t-b4g1`2Uy3?IoYH?As; zwmv+3^y+Ot^3X$A=yrNoeoV+6$p1*x_w9Kc=vsI@ki!I&~OO9a>b42)i*HE07=bAzJhW|df5Dr4V-sl!>D2;EGuR7s($Aav^hpNmAT)X7Z1Vhg z6!Zd%6+8R#;xY5-12Ekb`B+?;IL(#78ZWx(Cb~b#uiA4}QJ486S_(DzM+!IWmFm zwFnkX-$677%RM(MpItM7G3K&Uv- zTTHml=!r#^J+A}0o!#6@Q0?)xZ*JLxA_>A?a6!uPxSSjY6hGi%x}m7-0;hGL)c{4o zAlO%?fQz&ks~4C_#%uVnlolVy7X-*%i&-l!BIi8QgQbspl z9H>=#L^l;BTow)_#rgC9zG~HJtU4zzuLjMTf7<%{`wJ$mtUj8kQbnxuOBuli6B||h zd}+%ZI?-Vic0gzp<_5%ip}J zTUmL(u8xZ=9bOpK=q8RpTNx;r-5?!-#}$ZxcM**y{V>gFTGLm;VimFt%osyxpp5|m zbt9r(TKr=#RvylUA0-)>u^Nnq1q}bJCxI1>&>MfV#y@Q&D{6Y=ygRxnLGTAk)LFSB z65n{v58MQGYEV2%x!y)<5q%d<2_|vF1~8eOeI^Hu)NsyM?J3^k=GJ?~nVqXZZn?oi zw8?#LfJugIa0G3~rZtONnwzho(;8kR6x*@X4L}$$7hARKE+xHNkD>81nK^&wZjN2~ zBeB>As}P=?nH?w&BaYBdd~hOOU$uLKH@TnV@v1=iw2w09lUJ9Hf@_#HftiQ<#4Fp)@1vv4v z7(=?&)>){E>y6G#_1YXPeSU*mn{bEFlzt+ literal 0 HcmV?d00001 diff --git a/docs/images/chapters/extremities/c621cc41f6f22ee1beedbcb510fa5b6b.svg b/docs/images/chapters/extremities/c621cc41f6f22ee1beedbcb510fa5b6b.svg index baa9ab6a..d3b2049c 100644 --- a/docs/images/chapters/extremities/c621cc41f6f22ee1beedbcb510fa5b6b.svg +++ b/docs/images/chapters/extremities/c621cc41f6f22ee1beedbcb510fa5b6b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg b/docs/images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg index 64d12c1e..8ef46d1c 100644 --- a/docs/images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg +++ b/docs/images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/ddc6f99a543afad25c55cf16b9deeed9.svg b/docs/images/chapters/extremities/ddc6f99a543afad25c55cf16b9deeed9.svg index f078c502..a3127a01 100644 --- a/docs/images/chapters/extremities/ddc6f99a543afad25c55cf16b9deeed9.svg +++ b/docs/images/chapters/extremities/ddc6f99a543afad25c55cf16b9deeed9.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/extremities/e06ec558d99b53e559d24524f4201951.svg b/docs/images/chapters/extremities/e06ec558d99b53e559d24524f4201951.svg index ed3b2aee..9bd72aa8 100644 --- a/docs/images/chapters/extremities/e06ec558d99b53e559d24524f4201951.svg +++ b/docs/images/chapters/extremities/e06ec558d99b53e559d24524f4201951.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg b/docs/images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg index 05687051..be62b241 100644 --- a/docs/images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg +++ b/docs/images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/2029bca9f4fa15739553636af99b70a8.svg b/docs/images/chapters/inflections/2029bca9f4fa15739553636af99b70a8.svg index 9dded3a2..c745eba0 100644 --- a/docs/images/chapters/inflections/2029bca9f4fa15739553636af99b70a8.svg +++ b/docs/images/chapters/inflections/2029bca9f4fa15739553636af99b70a8.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/4b5c7d0bf0fcd769db007dd98d4a024d.svg b/docs/images/chapters/inflections/4b5c7d0bf0fcd769db007dd98d4a024d.svg index a33d6d45..c3b524e8 100644 --- a/docs/images/chapters/inflections/4b5c7d0bf0fcd769db007dd98d4a024d.svg +++ b/docs/images/chapters/inflections/4b5c7d0bf0fcd769db007dd98d4a024d.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/4d78ebcf8626f777725d67d3672fa480.svg b/docs/images/chapters/inflections/4d78ebcf8626f777725d67d3672fa480.svg index b0dc06eb..bbcccafc 100644 --- a/docs/images/chapters/inflections/4d78ebcf8626f777725d67d3672fa480.svg +++ b/docs/images/chapters/inflections/4d78ebcf8626f777725d67d3672fa480.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/9e1ce3975100600d4979370851929b73.png b/docs/images/chapters/inflections/726ece45630c43be14589c51f1606bd7.png similarity index 100% rename from docs/images/chapters/inflections/9e1ce3975100600d4979370851929b73.png rename to docs/images/chapters/inflections/726ece45630c43be14589c51f1606bd7.png diff --git a/docs/images/chapters/inflections/7c9762c0e04693eb743905cdc0487f8b.svg b/docs/images/chapters/inflections/7c9762c0e04693eb743905cdc0487f8b.svg index 1c0bc505..2568ebf3 100644 --- a/docs/images/chapters/inflections/7c9762c0e04693eb743905cdc0487f8b.svg +++ b/docs/images/chapters/inflections/7c9762c0e04693eb743905cdc0487f8b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/97b34ad5920612574d1b2a1a9d22d571.svg b/docs/images/chapters/inflections/97b34ad5920612574d1b2a1a9d22d571.svg index 6b2e9b47..23682936 100644 --- a/docs/images/chapters/inflections/97b34ad5920612574d1b2a1a9d22d571.svg +++ b/docs/images/chapters/inflections/97b34ad5920612574d1b2a1a9d22d571.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/b2433959e1f451fa3bf238fc37e04527.svg b/docs/images/chapters/inflections/b2433959e1f451fa3bf238fc37e04527.svg index 217baee2..25450b67 100644 --- a/docs/images/chapters/inflections/b2433959e1f451fa3bf238fc37e04527.svg +++ b/docs/images/chapters/inflections/b2433959e1f451fa3bf238fc37e04527.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/inflections/bafdb6583323bda71d9a15c02d1fdec2.svg b/docs/images/chapters/inflections/bafdb6583323bda71d9a15c02d1fdec2.svg index 1a05b531..90f0133c 100644 --- a/docs/images/chapters/inflections/bafdb6583323bda71d9a15c02d1fdec2.svg +++ b/docs/images/chapters/inflections/bafdb6583323bda71d9a15c02d1fdec2.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/molding/079d318ad693b6b17413a91f5de06be8.svg b/docs/images/chapters/molding/079d318ad693b6b17413a91f5de06be8.svg index de6c0325..155cb793 100644 --- a/docs/images/chapters/molding/079d318ad693b6b17413a91f5de06be8.svg +++ b/docs/images/chapters/molding/079d318ad693b6b17413a91f5de06be8.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/molding/82a99caec5f84fb26dce28277377c041.svg b/docs/images/chapters/molding/82a99caec5f84fb26dce28277377c041.svg index 59451769..db0bf546 100644 --- a/docs/images/chapters/molding/82a99caec5f84fb26dce28277377c041.svg +++ b/docs/images/chapters/molding/82a99caec5f84fb26dce28277377c041.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/offsetting/1d4be24e5896dce3c16c8e71f9cc8881.svg b/docs/images/chapters/offsetting/1d4be24e5896dce3c16c8e71f9cc8881.svg index f797b8e8..c3bfbb35 100644 --- a/docs/images/chapters/offsetting/1d4be24e5896dce3c16c8e71f9cc8881.svg +++ b/docs/images/chapters/offsetting/1d4be24e5896dce3c16c8e71f9cc8881.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/offsetting/1d586b939b44ff9bdb42562a12ac2779.svg b/docs/images/chapters/offsetting/1d586b939b44ff9bdb42562a12ac2779.svg index c1764cbb..6a1bd9fe 100644 --- a/docs/images/chapters/offsetting/1d586b939b44ff9bdb42562a12ac2779.svg +++ b/docs/images/chapters/offsetting/1d586b939b44ff9bdb42562a12ac2779.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/offsetting/5bfee4f2ae27304475673d0596e42f9a.svg b/docs/images/chapters/offsetting/5bfee4f2ae27304475673d0596e42f9a.svg index fc705e15..93c47cd6 100644 --- a/docs/images/chapters/offsetting/5bfee4f2ae27304475673d0596e42f9a.svg +++ b/docs/images/chapters/offsetting/5bfee4f2ae27304475673d0596e42f9a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/offsetting/b262e50c085815421d94e120fc17f1c8.svg b/docs/images/chapters/offsetting/b262e50c085815421d94e120fc17f1c8.svg index c5b2375c..fb249f7a 100644 --- a/docs/images/chapters/offsetting/b262e50c085815421d94e120fc17f1c8.svg +++ b/docs/images/chapters/offsetting/b262e50c085815421d94e120fc17f1c8.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/offsetting/fa6c243de2aa78b7451e0086848dfdfc.svg b/docs/images/chapters/offsetting/fa6c243de2aa78b7451e0086848dfdfc.svg index 4be49407..e70572fb 100644 --- a/docs/images/chapters/offsetting/fa6c243de2aa78b7451e0086848dfdfc.svg +++ b/docs/images/chapters/offsetting/fa6c243de2aa78b7451e0086848dfdfc.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointcurves/3c7516c16a5dea95df741f4263cecd1c.svg b/docs/images/chapters/pointcurves/3c7516c16a5dea95df741f4263cecd1c.svg index b3600fb2..ec9fc5b2 100644 --- a/docs/images/chapters/pointcurves/3c7516c16a5dea95df741f4263cecd1c.svg +++ b/docs/images/chapters/pointcurves/3c7516c16a5dea95df741f4263cecd1c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointcurves/55d4f7ed095dfea8f9772208abc83b51.svg b/docs/images/chapters/pointcurves/55d4f7ed095dfea8f9772208abc83b51.svg index 41a86f90..4a14687e 100644 --- a/docs/images/chapters/pointcurves/55d4f7ed095dfea8f9772208abc83b51.svg +++ b/docs/images/chapters/pointcurves/55d4f7ed095dfea8f9772208abc83b51.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointcurves/6f0e2b6494d7dae2ea79a46a499d7ed4.svg b/docs/images/chapters/pointcurves/6f0e2b6494d7dae2ea79a46a499d7ed4.svg index c7598539..82f5fc9b 100644 --- a/docs/images/chapters/pointcurves/6f0e2b6494d7dae2ea79a46a499d7ed4.svg +++ b/docs/images/chapters/pointcurves/6f0e2b6494d7dae2ea79a46a499d7ed4.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointcurves/9203537b7dca98ebb2d7017c76100fde.svg b/docs/images/chapters/pointcurves/9203537b7dca98ebb2d7017c76100fde.svg index bc006d26..f8ffee33 100644 --- a/docs/images/chapters/pointcurves/9203537b7dca98ebb2d7017c76100fde.svg +++ b/docs/images/chapters/pointcurves/9203537b7dca98ebb2d7017c76100fde.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/009715fce01e46e7c07f87a8192a8c62.svg b/docs/images/chapters/pointvectors/009715fce01e46e7c07f87a8192a8c62.svg deleted file mode 100644 index 01f08451..00000000 --- a/docs/images/chapters/pointvectors/009715fce01e46e7c07f87a8192a8c62.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/2a55cb2d23c25408aa10cfd8db13278b.svg b/docs/images/chapters/pointvectors/2a55cb2d23c25408aa10cfd8db13278b.svg index fe6be2d6..5d201cd1 100644 --- a/docs/images/chapters/pointvectors/2a55cb2d23c25408aa10cfd8db13278b.svg +++ b/docs/images/chapters/pointvectors/2a55cb2d23c25408aa10cfd8db13278b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/2dd2f89d1c762991a86526490a3deef6.svg b/docs/images/chapters/pointvectors/2dd2f89d1c762991a86526490a3deef6.svg deleted file mode 100644 index d7141093..00000000 --- a/docs/images/chapters/pointvectors/2dd2f89d1c762991a86526490a3deef6.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/3f439e8106eb359d9323c5c2899b326b.svg b/docs/images/chapters/pointvectors/3f439e8106eb359d9323c5c2899b326b.svg new file mode 100644 index 00000000..4a54a1d9 --- /dev/null +++ b/docs/images/chapters/pointvectors/3f439e8106eb359d9323c5c2899b326b.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/2724b6c42f36b4dbea6962cac844d2c3.png b/docs/images/chapters/pointvectors/5863bd013ad6594f63f8dfa51ff4adc0.png similarity index 100% rename from docs/images/chapters/pointvectors/2724b6c42f36b4dbea6962cac844d2c3.png rename to docs/images/chapters/pointvectors/5863bd013ad6594f63f8dfa51ff4adc0.png diff --git a/docs/images/chapters/pointvectors/5ffdfe2c3619aade280fbc4f43b30faf.svg b/docs/images/chapters/pointvectors/5ffdfe2c3619aade280fbc4f43b30faf.svg new file mode 100644 index 00000000..27cbe48e --- /dev/null +++ b/docs/images/chapters/pointvectors/5ffdfe2c3619aade280fbc4f43b30faf.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/6101b2f8b69ebabba4a2c88456a32aa0.svg b/docs/images/chapters/pointvectors/6101b2f8b69ebabba4a2c88456a32aa0.svg deleted file mode 100644 index 74e46b65..00000000 --- a/docs/images/chapters/pointvectors/6101b2f8b69ebabba4a2c88456a32aa0.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/83c36a23bfe24946e88630d77ea2cb9a.svg b/docs/images/chapters/pointvectors/83c36a23bfe24946e88630d77ea2cb9a.svg new file mode 100644 index 00000000..96925272 --- /dev/null +++ b/docs/images/chapters/pointvectors/83c36a23bfe24946e88630d77ea2cb9a.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/d236b7b2ad46c8ced1b43bb2a496379a.svg b/docs/images/chapters/pointvectors/d236b7b2ad46c8ced1b43bb2a496379a.svg deleted file mode 100644 index e5204b50..00000000 --- a/docs/images/chapters/pointvectors/d236b7b2ad46c8ced1b43bb2a496379a.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/deec095950fcd1f9c980be76a7093fe6.svg b/docs/images/chapters/pointvectors/deec095950fcd1f9c980be76a7093fe6.svg index 968dac30..5b863668 100644 --- a/docs/images/chapters/pointvectors/deec095950fcd1f9c980be76a7093fe6.svg +++ b/docs/images/chapters/pointvectors/deec095950fcd1f9c980be76a7093fe6.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/pointvectors/f4d72cc162d4cbcc6d6a459fced01cfb.png b/docs/images/chapters/pointvectors/f1b4e81d22f4c44d4618b0f55a1a88c5.png similarity index 100% rename from docs/images/chapters/pointvectors/f4d72cc162d4cbcc6d6a459fced01cfb.png rename to docs/images/chapters/pointvectors/f1b4e81d22f4c44d4618b0f55a1a88c5.png diff --git a/docs/images/chapters/pointvectors3d/59b6ce3fcbf79da171d86e962597097e.png b/docs/images/chapters/pointvectors3d/11c1da2357004bb51cf0c591fc492115.png similarity index 100% rename from docs/images/chapters/pointvectors3d/59b6ce3fcbf79da171d86e962597097e.png rename to docs/images/chapters/pointvectors3d/11c1da2357004bb51cf0c591fc492115.png diff --git a/docs/images/chapters/pointvectors3d/9983328e50c2156c124bb1ea4ad5c05b.png b/docs/images/chapters/pointvectors3d/9983328e50c2156c124bb1ea4ad5c05b.png deleted file mode 100644 index aa8cb53328281f0255a633d0ef779270dcfd940d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13157 zcmZ|02UJsQ7X=tV0@6XGDpe4r_g+Mbf*>NjN|D~A2I+>b(u?#aAVne|y^C~05do!! z8X*D!gwUCf_s^^~GizqKp1yVO&AqwjJKsL%?7b7CqpeO(!bAdrK*%3IQqhG#@GQW8 ze8f<2P}31WBJYCR)q{XYNH z)(xn96FIf>bk^kt!#Gt4qPs-Z=5S?H6fdEp=oFsM?h7tCTdUdcwUe) z1jiRkrJR2);|X-hqcNp4Eqtq5zP|5pvrfM5=Uuy6 z2>!RbBRe z@x{>pzt8@E-tfPJ>we7yUtwi>B<}6U+>jTihg;Dq927Y4kZ#mLqpe7cdl1HS;tkF# z@AOvT_@{1p&cY@knEdw7vggUH0l00|fB@N(lanu=YlAg219r7(ELODv&s|HnzAJ?;`Q`Ca*z$Sy|cYGyd&+z2dxvI)>ct;$cJsueXy*8d+?`a7f{qT>*uodcOmPPX2P3_J0b82bawXzO zLI1qT=_qDlnCnMJCMXojoi1Ge^{dejH<65Mw4qI!76zaH`@RxX%4~^`P&0MT4({&i z?(T?UpK`tXFO5xAd@ByG7GvSQC`PaA1r_)b#MkiCI@Gz7Gv@5IiC@G?uc}np^!@Le z0b3EUU{O_=KbxCxN*wi1)l)T!A^K1OczSE+$bV0w%c{`UN7k+Uc7cYHnRP>)&Kkt_ zgzi>RN?K!0zR$(E+1g(F{P}b8?D%i?EaaegH;P=s^X^^5f9LZ(WSb8#)3d=eD%{D? zlrn0;#4M?xphjxAA9bv&y1gWOsF?uiQHfKliW@2t)BTyD_2!t*Z8#jxz|7qJqgZo% zYDxm_>pfZG2;DoDL!qP7=eo3}qfCWiLqcA%%?k?_eHgtBZzy~J_y^B^=+Mq@R6TpY_v657Im21N4FMt%7f0dk>ud6}WizO~ z$&5lvOG_vGjSf%vi?JxBeCn=z*^|CQr&4)A3s&yjrgi0>G~w4TuiMDvsEIKVy8ZOk zzd0uTi;L9%_{5{4nZkno8rT6sA|lJbxBiG^h{?#LJ@|w_hL=a#kIvb?Ir+wTpr8PcS<+4A%iJQ;93TTbjbrHYb2hRrYC+>dgDT2~@)i`*Rs?ME&=Nup{M+69KO}()BWuNjlRplY?0jytW|mlacu>Wt;A^G}s5(1Wpwop( z*fq%$A6>)ZDbwq?xug{>^2k!97Se$PGeEXHX=-J2b-HFHX&We1pUq>~5?^ODg<0nsHy=D%X2hV`@~Ko(now5upX ziIWjj8@YJOHj6t?{q)WmoMR*EtVC&*-p0^1>9v`&x*3Re$qEaHg@xgXiHjGMmJ$Vr zAOoGeG>YBkj0p0NZbrAx5zeENB^Mg)2{JZ!Pdr3NLk^HH-$hzoZAqWH+vfLEGfx8H zp-I^q#(9)uV)=0tZp9p%;OmNxLfrwtb#_92Y>1`tn?fNzxOgW|dl3i+TmEY4o9Uf& zQD%nLgP7^47JmU4dG`mo&tI?L!r=3p@^YUhUpWwcrqp8SHArHXj0X};;3*v?qZYSx zutc6qvhY8sS1Eet?dQj-Guboq-9q)@=^DAjw!3Z?xM?~syaD8BeZ7Q$4WCAiNu4j8Mo&mVA#Q5Q07AB4(u3(f zHKT6@b>Ir(d1#k?z4vuXB>I~kgnzFDxs$!gs!xE3pFxeW!n5|MV)SR$&oJteoFaeSxwzH;M( zT;aF+i)wk^*_DIp#>3%vro#b7zZLsN%_e+qgQXvz9dFuwSMF3VDN(|iK2%s+d*l84 z_nz?NXtOBGBZYxGRK#NZMs6ObXj8=2?#Y)D`P?R7I2Ar8C+A#Tm9jF=qteoJrj#!t zn9`a>LCN7I_m2zTFh%v!G_5yo+yI-OI70dA!X`78;Es?JMk6cf^jaOZP8q~B_T*Dg zJ<-nEP`WV4uoptnkM39-&)>;HrkPb7z79}^#HcXM*1Lkz$p(4hY|BdpDYO|M=qp(; zjobUQ1!auDM=m;_G^ z-swTmwjKFHN+cN~!$2pHo692b=F_YCc$mI^PtD6AIm2wf=K)Q(sNS0QVX;DK0_G$T zDW6SRNdCsORwFt$pv2WJXLRVe1k%x!AptBf#o!zCm$^yE9OvKNt#sol*aeT$*&sRz+t9(#I-v`Nl zk&GwfC|6Lp8xi>FEPl;Z;*pvpY8z>PK;T5?p<- zOLjV%9s-(=*eQRcCxLUD%7``g^^<#DE#4ctWMpKt=dug7oSrQ3X&W*E2-)iXv2??} zS$m+gb+yrWhfPyhzdxBp{J0NW`Vbof*+`Qh21IcE)^2&Z*^@3TmnX%4AM9U?70eZ? ztFPzCLXP;$;Hm%bG4IUk(oC>F6J8FbA&uRLuQmD+BqqDadm)9$h}pSkcYkDPZ96;- zqtaryefxpbtz6ubGJyAHjUHBesG*E-2PFOjns_?eCmR`dY8kSaX~T!{omUt>Q=PzG(nUTc+oud*YDJa{UUAgH8Qtf2Zpg11s9D zinx?dZs2QtBQwwcN9_*URWYU>6bjWkN*V#_CN>$@;<%3opXMAE0e5Uj0e7r4Z=rMV zI6rJ1y$;3e46z|#;V74YBGf-{T4+tYV1S-o{Lml(<-Dg@GkrZMt`HKN^pM*|^=XU) zJ6Kj8Gr4D*4)i?yFg(WAY!fwG%BzpQy{lWMH_jQd{$p;AO!ZkT%dx`BZ7MR)NP@(x z%zd^25=z45SLj=ML4l)I9pZjlsZFl`o=Ph~FJS+j6au=vK2!I$I@Erkf?JZdEfLrl zwAx&}J{0Z+x^Q~PH!CbR^Rra&rk#AEkknMB%*;$GiYWT*QPO^D#Au(1;4|_6>m;Ed z1i*R`0)hC5_WY@-XAYu$^}V+%q0h@Ce?g=-_4TJ-$CO8OVesDai$iKg0zgPX9w+54 zjzNZNQw6E{@kh<}l>#Ei!}ac8@9aD}I$AA}T+6*Txv&uTyj0t2zS)QC;Au2ZZ||N? z%3x%>+wqBivAhMVoY&_+S$j|JozC9CkM0XwU+0D>38X(%S0{oD2dtY2n>M)h08D!| zp(UC6Q_-A=oBPbD<|AILu0_ZE-od_ZK&t|5ovBG>NlzqyPnQ7l@9;1!5Kf-p^D-~K z&Vr*t7-n9D?Pb#WjZg9%ObB2D^U?7hi`#upulOBZ*^TmP`bO<8krlDH6IE_-;fmSb z?mgZ|YX-NE-feil`cH%dBLp*dTUTgJjq}yYl63Fgm?#~3ttG`rujkQW!QuSh*;@-5 zn3fXIP}+EV(}GIG)uE=p29?RSP_re6B8HH1d-l~`73KFO+~%Ua&?Bh_%^nP6V#g0u z-hwY6+%5DpDj}rGdvfLp7=5Gy4qc29&u9h8*=k7O(><|B2cy4N+2A@84%!-abGuk5 z9AI2&IyFB4hMw}9t)R)oOnv5UnS($QiLZ{+f#W1N2S_EaIK=bjY}xbD!Qh-lK}D&y zcb`1TEa-XXC}_U8eJAag*_n0kcyC7N1CNACw>_EW-ynH5Z-s3(s?#8cfNZG-gGmkg zAHF9o3k5-03YR&1xh$DQdZu&{-k18H5XfwUdta7&yYaX)GAI?MOZe;F@rrQ zpL^!%wM0)MtpF0He)aQ|_T8R~nYIjRTb`B_gB-V>u@(LR0e4!D27Lw_Ey;s>e(HOK zE_034ph(=@sY3A7tR`qwuPW)?haxnQ*&22S@5PhL%YQZd@Q!3lKYzs>7W$VLeMplU zXetn7wW4-rOb1u^OFPE;cxp_L;MXX=QH<6#6DkdG9w8! zcxAc%90RI0D#KZIF~wfv_k@MOT}3A5(p=WJJz%Po`rSKxs3Gm;Du6^HVcSjUghzM2 zygt~hv9$cP<1G`*r5UPH=-bZfTi1ty+gByR?G}s($_<@_T<4o__QkVW>M?h*X;P>Z zzrZ#p-1dUmi##nEqib4nyJNj=v2OXNOvUGI7e?84cq!)|)BD1Tii+h_7jFI3C1(cm z>@_7ZfB-|p?22}AunKc0Na%cv-%8!Ig{ik}7zE;AX7u2{3ut*oA(O1T_)1ToQZDaG zfmWSvKCRrY@yi~aC%a?EOz=+~*%i29~#()1_Nn~ImCdSSh+dLe| zx!{z}1bH!zM=PSuQ0GdfT%@MN2Vvpoq60Ci?BR;YE&2;Z(%^8~FOuv$JnO zXVKO5;Og@qxRU1{MG=G0#3oBlk(8Ckg1loywC=^ebcN!3zGTLqwlsK>d$x)6&;-&DW)xZQS%_S3q#YaaH?mOe1p>hVpMHS$i&S2YI{yvbC&#C zs7~~OMY$yi-iL}|h!j1z1IQes*U3m)iXm2!xzVsqYWOtQ`h8KzNGgciP#Ql23roH2 zWn@O-c$wB>%;t4)S`3-PX^}S?W$M;MDA;jUv*yZ6GWLsya&Q$XQGOSY6I@%2y)<`{ zS0Hwa{Tg>@CfeP4W-8V*bmiscr94-O-P(`sREow`8zfC3D=Su?oM<}d{N`HE&iM%u zl(|g?|Frx|^n7L}eEf?X2a>o{FBS4e!KSg9!F-nUaxJ*P>pa|=y?UivQXZX2hjxRu zp=MRrwX}NNgh~^UmO=C$^*>)Uuf)k>H!BbvhQ)7Or1(lRi*@xKbNlr{ zh=r~$QO5#y;6-;NIo;NzshQaQ5aL%anI~nS2+|ahWgjPlhXtT?-Mm`8V$%C08IrR# z#v|VOGrcIEu;Vw9S;%iYxQ99ZC&dH?pG_jx*X@Q5H~9gi_DiNFS<)Apte#Dpp~XHQ z86-piVeu&`ybNX-QmIQ@8FR(KGLaT`J{dq~Rm1z2e{nwVSH@Hj}c$o;pb)=E+ zoS^XO2c(mJc&G8__a;Gbg+YG^@KEo(ZPhp9v9@SYW*5q5O!+0WQy%PfUHzMYyX!7^ z80F%xs7meNlr;NjeZRhy>)E6b?6#g0w)qt(`m%o8-~0QCtIS*MhE6lQ0+Sza+o>&p zu#GA6PC;;KOrTV^ZPm|W-&&r1tH=F2eR-t)#3PK*pB_HVPRgGx)KvHL#Z0X|<<%W# zKhY9BgP?9J>65ko^j1K{CFs7H7P@L~2ed}!2X}Bbi|s+Mr3iYLkex`Vam~`E z#2yV4K`>l2M?d4im!r)I@Z0zk)nEJ;-z{Z6y6(veL)VZU2fbkVyWB1z&V{kqVR53F z8yv))@vy*)6*@I_b!v(z^xvr2k(8Mxue-S+7yfg8i$Q5$B_{&6uHz9?_Z(oLdUan# zSLP3QBBqH(&3I2r^9wt3Dwj+*McUMe&#K!cVZYyfuzADuke7`FI>+S6w`|-p2 z6!(x=dh_5EZuBSkBlBe&_6q0qRM+N=y!PKkX6WhnT%4cYE<3<~e%EMqUrr%{oI+FsgTDSN zbdKLly_d1@dcS0{)lrfxxWK?E0}pFa*7Y^$)E5j?puLuvBGOOgTznEKo0)hj1g_A= zzODupH?|O!X6n}UR= z7pTD4UPjxUJ_qk|F7n)L36)GE9Yv4G?tC8&x$t73V7>Wwf1u{!{hqeK0nm9$+%Fx5 zzyd&Pa3iK@oM$0$U#ql5M0!t)o3VXW4vKiccYH!(0fCJMEWpuuAuO4sz5=+@(r@%U zE6fjUg`o)7)%50{CjzK*(2G@?)R6$1x6c{Tw(e~Rc@lxJQh~)1N=J4%-(Wv``Q8^v zZJnQ8_(gNxXWIM<#5@I>TGns`u}R7z1JC)chJx7?`c{h^5L_@3eR;K_)_S%#r0w@I zsn8)>1r|;v4c>}5#8{Ncsi57|;qu}fb}(s}_-dS+Bto57IB-Cl%!0Z9tqEV_rCWgs z=>i}TTz=Q|Ou>aUsmVkF2ZFCoZ)mQ~50phPJB!|y@_-=P4w-0T!Y9l#N`wM$=XyTz zdDG=gpp`7%G4Z&VG_kPV8?_4YBg>jeR3^9H_T34f~M^5;4f zq3vfJpxD98<NE#x1F9GrNr2;S$2I_;->-Hrk{Nf*ccNX3Q)~YX# z_`d2L4&1-g09h*Is4i30HMiL3pXltxY4=Xgr94oO;KSNH>G@QD)uO!)GRqnocth;o z@!sJgzg|Tx6G;Y^@lR)4TsgkYclCG~TJ^29IV;3qq8U%L008+5t%ng1 z-IAqf*Nf=u-N!zu!G||!3_IGA&ZpetP9Eq4)q&sseYN`5uWAB7SfWRAyqbCU@5?oP zU@n`mp1eriO6W;pbUN=fVOM?jCFC-=kFu99qI|H1pdtBVk2Tg{z#85#g=vYXcbg|s zedclU&#|Y_mnq@8!>1%iTcsdSARModBJk+T#5~VqAs$6;?(FUB z{(#IS+4J|eGFU!F=k-yB96iid3}G2nIIXO^?NzOnCGmhbti4^Kv_&@wz#ney2~qjA zr)L#!0xc{)tTn@SIdTKGr2}y-i-eF>Pw7g_4i-R()8WQ)4tEygA4X9CcCc@wD&-DM zVt~xg&W$IwqH!>OJBFH{Is@NgjQAqKP{j@?RF?Ra?=e@*(3IbgVhQ(!cYzA=`{+^G z`P8IOTIm2l)d3CR1t5U{L97NO4&T4O!oU%u*$4E`X$graZgqn4 zlfA7mfRA_l(7-KHMUN?si7#z*=rbWNm;_|zyhi1dpAWdTY=P1AOV_uBrbR$BV!x3J zq5vgsRBQKsV*cLaJNWP39~WR!7j=qHzM<+8noN*pigc{atIH z_-`!uU043ulIB+`C_>f9?u)_0hXnPmvyq0DL6acPPxRMtd8M=y%CPlJRj~c=^4VGP z0{Wjnwbw8nU$}Zr_sc`~#*LD!{PJ?liD9LDceHh&+*{A5sZgiW6OU&326NCNA>SN^ zLzZ9VH%UWO@3q^0o;ly2$#5>d3OJZPf!b5;GR`)unvEXXA z!Hw)b<(jwnF8!*u(e^8{%^uPOqku_hEn~SonC}{Ww=&l{A`Ko27#^?V^eh=#-+up1 zHn|4mqnAT;(|J00fIZ}$y%n=b3HM9%lxA$cwWc=;iqh())(>(5p?5sW1%pphOTeO- z-$`REM^sdhg3Z(2-3_*5nwhp6c^Qv?ibs4VF$C`SY?za(%=`S+ssBU1CJ zkB?i)=ANi+BMW%UYSfBtumbq%Er-9qSix6(EV>gOWIgInzN^gsVt^)%{!<{?g6a$G zjQwP}KIjxwW_oLVhnY(^zLL$VC`Y>A;UGv~3@E1!F)(~Iy%sSr9w#5Dz<_*9jYu`I z=(op*3M62c7D!h2_m=gI*%8rH&o9L<7w5(+u)_P7FJTh-WsZzcs5Jv?9!sU&2f7Qx zXC-Qt>$r04>CO03YKnbBI!`FP0sptl8oFG6D3!N!&?_om9_L_;5Pc}{5!0V8{8!Xc zaysv!GF!k3?q5cT{rxlXg|iUV3>icNRyeQ3DrPZ0o09l!@e)q;y;5S3y8bB3;c);t zd8fG_UcAEQ$c2BSyz3~-(c*!?(2OM?)IDRES?H~_AyUJB1QIWYZ`O$Av1q|P%OB>d zSm)81RyF24$_SI(9|bgV7qhAd@8-wMl5X_AO-$hne0;MCrQ&`GaVu0wR>E7g>VmfU zjqNAa*tCJxvh{yj=>_bBdFOoCzqOr`?RbGG0wtk6p0k@2Ox(+_!ujV81#ZN1>O~wf zwd3SJF7C6uIB?ROsg32@a%A$jki-5d+WwmtHKQ39XU&uP?fds@X@ZtwvJ*yxh+1`R5b& z_4G$-`q68f<=!S2p~O&UOkCTCiWg6O+yet|0ria-3jg!>uZp^Q)P#BF4R`~Y_Pm~~ zKh4n`I`kqKCA)~X-Oe1{_m=hVP2zq^^K{O|nCnlpv&ti=Mr=hKPz!JM*s_p?K;<|N zWZ^ZaRI;%t!rE9}NR{b_sj`t;;Wo)yER zJ2a2Dldn)jj45LIA2OY0cesvbcF1$WP&&B|_4 zJaxrS9wmsRejulC^Sj&J+&QQTK)&^CW?sz)K7@;l;G;l=O4Ej_j}MBNg<+ZrLt39# z5NVc|Oh<6Vgo8Qv5aveQ!e(3gK;=0UUr9kRuD5r6fK9u&L?U|kbpF)`bcU!sK%*^} zyZzJvxX#bdfv$fwjAzQVTjWg)Xe1yDok~gH#S?_=-R=C`fFFPxMAdP6zui4vMRq&T zIyeeT9;M}l$SKtAHkABcYyhG2x@UIrFkgl0%681 zfl1I{I8`TQFyw3_Z&1ImFAmSGrPO-+Ct?4^X7erb(uofStcRx+il)m)yDPuGI^HOB zGZuNIFDW4r2@17?SnT$;+mW+_

bj%Re#|&0Aj3z>cgKjV>>CI+2p5v%%sY_S2Ce zrx6EBF20*l$&2pi_{l09VJm&{D-(GaU+c(|d5d-L{lnoNKBKKPt}WrV{~`oKTQP_j zaZo$YV0MVwk5o~|=rBac?W3c<97L8u`4bZ~EmiY#Ztx$ocNJY$!Q%s24hvhz0BRhpwo6 z&w26}52iadDYCGiiiJ6uRJz94xR9rhRIn9dK3#1;n!D+ped})cm4m|4lJ!j&+v|V; zXPK+5iY{PFPqugF?^V1M#ik-44U1LFzp7Ptww4)V3r92S(}o7vBhXMMx><)^8*#2TsL)4W8=md(q46sj%Hoj6L5WXz?xP z%L(1$5*?zkbCt?SDR7Cz>YW>*(2AGR+Bq`fO&agJOie{H$Up%uz{oT=H|IN=%!dnf zqWCp(UsF~7DVZ5dnCoA+S0rdZ)qP4!Ai>kS*MBE!XgT|!o zgXyQJCUkDk)MwdOr&~n%doIP9?BSh27z0ugSdG}+++5?KK+JWxAC!F+Da1yQ{}mN< z;)tTWr25rJ4ck@CCn=4e{tAYvmEZPx5mlI@KkABa05ASj`?+T6nwIP~bi+JiR=f(d zk?ajQS!)pJ4%zR@N@*vPT~~V292qY3ibV^zWL?v#8?%hjL!ivO>5ifV0{qhaPOxM> zAW)iG^p+0OGRW9eZtVGE=xcNiXlJVu??B!0yuQx?H~p z93Q4rZYB^Vxfpn(<75(%@5toVc3=>Qg|lXR=_ifeO&37#JATxC7T&!r>yT0c6w?2P ze_}mji)rf{ivLBNFZ#Yba;|E3n6Xn8jc!V-!Zd>ZSUX$ls(}WGL4lj|q6BoEktcI( zVL{nr7FSwgJ%!oua{G1P_kc3@G4IQvgyW#y2}Scw>su@ee5FyUMV+FfkQU$HvmHG& z%BZ`F$Je*pa2BR&tiN68O0{#oHF=@Orl+HTW@8OHV%Xy8g5fTWj(#d@B%o!o0APV} z=TmuXo%8h6s)!}8Fw9-ZungInzxbN;=&ya4zm&3{^yv*y<9`*S@D^O z%Wz>I1>>cYNL$^m=?)6H-SF&cEaLJ$I_LFd5|<{npEKU*N1Al=22i;}LKML^js(F6 zq>0VeOkLwn`zi1}(6u$ZX<{}JAR?xIAk=?SWlGEr)N7CP6Q8dQ4K@dxli3%B(A*}d zQuLqqUi~#x_($m>*Ovt^MZ(Wdea?C;ZNFIed=tGjXV(*Z^HJ$Ua>(}1j^OEZ2LMVS zH?5o;U>Fz~yFhJ-jEYJeMUMj&b!0@F&$ONlWM;z)0%q259lRs=vuUEv(851DDRK}Z z3B39YQ$&1*ZW%2gT7aZ5J~uZk<3_l-KU}wuUi%@U1wUloQFA(%;4@wZL#dVA*%v;^ zGZfK{Mog7jicI?Sj|<~53t)RNaN^<48?|w9A=`yrRdE3RS7sa_8iTBl1F--)ueY~% zKG58OqlC|Y`qQ_I>+F~sQN>~T;D`jSYx^mbwb}VR3jGj@<_ogVnav98I*sN<$L`eaf-HAbTP?%3AY7{3t;T8tIgqWD?@8aVhPKb#~N&<%;BRM&_QM32G*RNj#n(58d z)RggoOjFA1`+P`BQI%4~sc2ZB(-Pd@X826Vp8Esqszp!Qaa!$n$sFyK)q!N-Is)mr z5@_+$6q~Ckcz2;>V&bs-pJFgo0PC6Mk=r7R)T_=10_kuohJITSa5bomnI-IbqriRu zd{5dJS4v41k|Xhv(uCN@iH(7H5UEFZ-b6-1!@J3`r{_m`m(r2j+bk*^?;YGNBYS(* zREo45TwGM7Ze@@Sf{T^dq!?3_`^!uttjc-3LO$R*T^LXNaBybg7N_ z!>UqFi))gOeme+6V z$#A<(;TX5>b(63kEq)FE!Vw{OcIx@E)>tz=a_V6KFbx9HM#}q7!pb=*6dtWs1VRbC zTGd9Cg@?fJ=5hGfSnhZ=8M1odvHbn|T=41ES`fZ?N&6dm$@NhDM;x*AuSgG<2qB?` zJQHp-43VMbBigq*I$+3YGOhhfQr7e>#^j1xTGfn0t4v0Z9iv);;FpIDk64tNu!?7+ zf$I+f*F`BuPH!cbY+#Q!xAO>)sQqIgDiQ1JU->x#72F+9-(rzuHbx`gG|1z)l)z;cX6VFquzsKV>{**7xsZS-*QCDP&_Vt#Zg7&CP{P$3s~hy;!-uP$CY%b`Pp=Xk z*YA^n)+ASt>#tE}qxv3lM)V~B_wMd3`TGPo!;Z{4)8jP$8j2@+6(BbMvu@2*jdRJ# zE(e{uq8dU>1$NGt>BH=EGd|pI-ffgy$ALIcRc1`~t|N=%VSsnlE&Ew`DlaGZ4%cyc zZdC8WxZQs0X4dw)ZWT?d5WEy5P+O`}a(` z28fDMV5mV6p^eNBQ1H%xMbfh=_nWTHNG9Vj23CYqda3`varNrg2TrZKz08fr>sh-I zf`J8Bk7x&WhC)Q~i5&wJN<{PuWKp;>JFp0t%CLUm5CSXfN#&dltreH+ef^j_fEw+K>IOVfM2?Hw-eujssjh}pjb zjlBnq0pCIEqYB)^tsyR>GP$32Sri2@jk{8y^?-EjGLyEVehH%lFYo~;MCdmnVJ|T( zi4@9sGSbpxEt0{vRGR?mSGCJ;5r`7-8PLRB^ES_ua15#fFAm(w7XRw>LjLc)B3;l7 zk$zr`nx}X5jThl8iLvK0i9@?|(Ett$RKuMh?8vT|fkj05&!dSW$2JZ>e3trz*2u z@7g(-3R+tN%9KWT%tK1NQ{0fOI~R{QjG2kaW8+70VMzKDZuamG2hUu*199_yE2u6w z$k0y9%LB_5(9Zb{Tm^5pk5%x*q&!HOn2ds=5P_f!Q+nY^`Erk9nsDc7F#g|P?CK32 zXT{mq4fZ<9?&c=kJ2?Wr1zxp(UBxrv<$ufNaf|=s)O69$tYoQsJxpN{E?+Bda{QUe}x2IJF z?9k?I)_$&0k>RjE?CfcR^vkRl526_*Z8Vdgkht#Kv0v=6@@`J|zE{qcl{^=2SiJc% z0Ephz7*Ky-0guWnKiTVQgpHX7_VMpnwj}NY2^>kP4F#G*_)`PF8?| zd*1|8JoCaCJ4nFPf<5iX%iSOAPjY0!{(RmUM$q}A*ptE}LPlmala%8w(8qxR9VDLB z+=$O#TiIFl*4YM0;N3gR&<#1X?~J+8Y1od>GgvsYe;n!_eBF>!t0!y~e-t-TTpKIoiLqNa+Tc$KNrvzj{RuzHE1%v$RWA?j!MTA5qv zW@{pz4@UR1TgY$DiLD!FgozPZ8Njb8V>QZUyXR2~HS|>}&Js1CZp#fb_Jt^}v zg=xFvG8kaj$gzFJhdxN#eomUCmWtTGjjn)M*9PRNeTB=+cNsxyeO66!!eMGb>MMs7 zsfQ(a6al-<246r3;1#&|JnTv7x*Tqd%#gg&fWzYQEA)l7ipOKpv}Vt5hk!c=LY%ybUDK diff --git a/docs/images/chapters/pointvectors3d/f4a2fa1e0204c890b2bff07228ba678d.png b/docs/images/chapters/pointvectors3d/f4a2fa1e0204c890b2bff07228ba678d.png new file mode 100644 index 0000000000000000000000000000000000000000..1b0e876e32f54867e912dbd51b6e3041d93198bc GIT binary patch literal 12730 zcmaKT1yt1C*Y40N9ZGkIG}4`dfHX*hQc5E^(ukBaDBTDM0z*i*w8Y3u4Bb7%AkuXY z@Auui*7v`6U4^A~HW7wxyb~BINe&Z*FUG5(L5kQBjoBgJ$l{zxOaf_&-J+_!{0PLO0OHWz{B8F){i2 zwu*LEht)+OEfP5*mQ-$(AwJBaz9TBFkuIDqYBy@)HKn@!u)2zjKvJ$ z`I#|en27=}`RI3brBq$t$&`6P-Q$$Y4pW{tGf~z5^$BymfftH|I6;h}MN#pQ75J}F zbf=o4H9s~laYE03e)uG5V9QpMfQ>0XRArrqGPZ9uLaCsrm2cL{*D-ES$ljMri0J=2 z!2fep*gS3Sx?1s===(n`kXM%{d-p=+g-;_Q9(65wHtKPNx&&U%x_>ww%efK!xm-Cc z#hf3?2Q_nk_3G8e-pQm38)dzicX1PKM-NyD^gr-Adtlh=Bb1(z zK^)h&DXH`iM2ca0T!HEGv%9}2KHSuuPkk)@IZM21AyJGHF+n(^N@3SAs=htur|`p^ z)=S1HUlr>()rvSpCNzj)m1XD`Gt+nxU?RuJlCh}mbMrH? z*9j*q5VzmDo;k>EWZ%h7bE|y?p_S|QXJkkrcDPER4h0=uSl_CgrlzKm3|Y-IjRz#X zxXfKG()4>evMZ9Jg&+aG$uB7xZORiq@!f!#B=Yn1oE`^;Z1@NX??lPEDZNJbQf*q1 z9R)RY7iciLun_BsoRmxEG(jY46f?@9TgO66+EU;7ixP(*lzQ#cT}7i87R;fo6aEq; zkt`m39^k2`zo_=L9~%$o0p5kDl2{pV?IS28#QnWhj{{33ITwj%;U-f9BYbR$GJdX2 z79AZu#AW4ZXUAVS4;nm&xTnmOy+nkQ@Vtgm=>A5KoZ{+^y@7#FJ+j}_HE zv#vF^xSMS`e}TsO>E-C`EN%|`&4q(?&2*aoh6k$5N zwlR-gb@)cNaLi8jQSjgrt4QUa3s)v=*ubMw-3hlnC{GF&1G>RjkoYZkjOkG9zuU&f zUssTknkwtyfE@Djc-g=1W;x6U4T;Gd82PW~>hYNU<`_LIhe+B&o-YAk(3c9l@H=xgaeEGQ^QO;7*%>kH@TQM7S2#D_To`MJH3%q*AlCV*x`jM2ewO^P6?Tkk`lw< zQ(?!crBs{fZ4d0uSESWq*u2wyCI1ePvh;UvOQ%HeLnp)6GR)`VAt_wzfB&5V?r%@p zD#M|}*-@LPl>AMpnf~tN{Y#+UNqS-s=qWT0RE=(hr-Ua@+> zdmRU-9h(keiwDs+Rjn6x@EAmR@S6%TtrDAPXQQ8~1J*!AmlLF;6qtZgw~ju zI+5$^@w^l>F5LZniO;czzo=0cCM=(wf|m9fQ$okx5zWl(T-Zc6@u=eGY28CXno1R# z>WpH2%6Db;VtrbqGt2fvyl?j0HIgb8j5_ps}x9(-DTG{L+OZ!jmREQInTm z9!yXH){vBSY-80{U?MM5I%nAjDR8l{(u*Rg>5o372vEOejBx`KFvEfs*+ukN3e1j{ zTeP=TAoY5&#UK^93om->oD&p;W{#JwJxN=}#>OZpDdkv5A(G5*pB{FMM2L)gd2D<5oE#lv=-3O}NYTk^ z2Vsjhd{KS7cGr@+B~%`bnVGrY`svor4th}7rKV7g03~F;Sb<{*8;0Pt73PCdlfnq! zxSOHu(}mrQ?ST8AtT4khN~Q)^NjytQluH#Kh2|4*(jgRw)4%DoLopqO2$yK!fEE`O z5k>WYBfq=477B!$Yiarp5D0w*^74v z+#2zWjVtC&ai6;@wNy*`p0S<^mAJG>&-IOVn%GN-Kke_g9lIAQ4uLco;0PWH3G5sC zwyt1PpNf=df>whGohB``W+o=oDg4PS@CxH*r9W!V*^=HmIbn4yl^cL2@OPaVFWBxp zr7T0o-qs`5Vdr@F7`opuU_6r*H`?5&i*JN?cH{;(6}TLE`_32al&-EWm?k$j_dVO9hXM(n|-zv)j9pOVKP=79% z6!U8G5tZ!;{6qkur~i!Wk;#ddhlXT9Y4V=BdP)DL`_}HRqPu&|)DjEJ+{l0E4uY7-A*Qksc<{D*%$WxlkUSG^_(WcDOC zr#~J}UdqbOR^oc3z(52XkN&SsT$E3%JG|q;r^d`4Kk3Q$^I-_(>l#TYuX#(v_O{*G zb-+h?#<3l?M$?L25499Fj+E(}+jQ%~LMlG;aK; zOIqdgf)T#_ittmo`Z^ks$VeFy~w1q7lPK-)R* zy(sm@9Vsst?L#h6|9c?ErQk;~`-7sQBIrjSj3w`>(C+P@+hQV>KCYS=EI z{mP-}ILT3;pLDjW+!`jHc?!RAklQs?-Ac zJvypgJ>u}0+7QWFO&)@<`E`Hc3#Wmlwe{DvK4?-*e*hR~R1or8i=FJz+=%-`sXp)) ztTMfB7zx*4S_P%D(mA1v2NtdtlNA*eSjsKcT#t15{33S&n4?t3_;dbG)MLEz@^TQ+ zaI-Z!w0RR+K{w`?<%KDdLSMgscj$Brf%mmiN9sT92d`d+p;8IB-+W^L$%J-#0Y9Tis6Q znG4yap9IDspzDYoT(qzQYN4q~IFcz=v*f_>AYKE5^ChM_(t^LvK+K#z#(jfI4WB2! zv?l6t^2O^$+hHoxMmL+zIA7Ra_YiBh;-nR-DWWJ6i)bCw1>ER=w*Th$1s<_cCrE*n zSaM}QFIIDj*L{)50?ZE^07_#NzY^*XcwP&h>$GSphn2e`MvLq8+WH@WH!^m=}VHz9K2iR80Ur=6E6m>6oc?cz6ECW-Dr(q(z`F%Q#^FiFTJI zs_7$flk7S30)Rx|2Vlo%^yK#-=^G*i8H#$?*f2E;8*Euj7cpjY$W-NPj0L}=;b-)# zrx-z}GuV=fdJf<$`IK5d<;#ueM~2kq-QXclkyO~1AydrH&^GZ^qYsSNghm`zz}nx97c`q z(5NreEf6BS4#<|LqM`@!Uw6XV zG|n#?3xNZabT40v`t#xm^3Ffe;pC6rgD~X40noyLJd$!R|6FcTzp~O3HPz_;#^_pC z|CP^7)I-j629+M;cwE=Pj}?_KIgAQDL6QhRLH1j2>4#s(vj z!#k0$Y9E-lFUDnOXMY;RhY&q@=R-N_#t-^I~#E^dmjz*uhp;xAaLXP5elZg`H;f4l~U|`Y_J?GH2EFo?yciN=j3uUi}ut zKlf`ZYfa*;azOB0?HII|UYx6|%jPjGM0~qDv2>Z0VcVK}nCS5w^9g?UGelf^*Ve2j znvrUW>|$TXxWtIQM0Fyyj*1i0{H=z8!>)6l|1?&tX)qrKe|+()u~l(>89-l0O@z&s z4@G46E`cS81gOhv_ZdFqi;@^>k(K@g=7#f)49+L1*v*;HKjronSwzwrhj#{67c5f z>oP+$7Lwzm>&nu9tv<$4@V1vqt63-HHFC0CG~nv2dIoiA46R*tGywxmTF6a1HWZg3V^QkVb%iu)%Psa9agw-^09!iC?R@guZUgB z)$k#eZ{Tz-e|~WeI`?g2KtgdjBOY}ud8X>vVCS9ykG6$GDu6tFYHF%_HgTPc{3Q{0 zP$!ZP7Yjy-W5)9=*`{Tk+okh6tj%8DK|DPpSnpFYDd{jc-qaqYmRcTg_6x1P@2<|? zk-eZO^^vqBui-ddVk`xIBV3#8QWYQa`=5V4)H)zm#!GaIe!O`>yh$dIZv>vEwd+m2 z>KPUaF%p@^Tdtg{Pf_k7y$=?~Uz9Msh@-4cw$((Clggvzetmr%(YFe~icq1H)h8p4 zo*0h^2sW%>>b+HYD%apty$ij$&o=AW%-{3wU&52VAYG2FHuOi7J`H&d&z8D#I=$Tk z4ZyOy2Yq;j#Ia!^pJxitD))PhtF+iZ4rhq0)*{RWYR&$4*OJa15IyF+W}TpiJ>+>A zhN;{Yr)~kfLL9&}zwI0sKcL>F0DgC8;``{_Ty)JFc=}8Q90wD<>{Msf5+&X(Z-d>@ zwuBXw;nFrep5YkwO6w|qIe=h10^GSOtu(Ys*f<1YQs>xtcGmFZQe=pn0PcLDG5#Dp z&SM{;IrNdFn*&h>dUL+1?qZS{v|;;Bi_N7@oB7UM?KH<;GJH`*Z@5u<$&`?K!S@l)AEJ}auTDGb8mZDD_V6Ya$dbKR!?0j>R9P-}*T~fDHc(0_iVf2S( z&!)B}zYAwX>a;l#XOR)%`Jg0hS9U{j+!If2^a-2@z}<2G^q& zfVs_K$zYP}g)Pv?!GU zEgF}5XZ-3Hd^pXa%c1G*8Vn3=!gFK6JNO|8TQw}$7_j3?r&-~zV|FdT8wdq*uj(Q^ z-}vK4B!_f5FsqZcEAe_Q4n;DX%MKy^Pp02+zb|*C`0bfCHuTMz59;(o&!4>VW-7Rnp@u%k|_}GEp3!s1(rc0Ky+-Z@kLW- zF2%LmnwoRhQmu+u=XX0mhWs32+tgS;_PJY+)-PVns4@IeiXI*XMGSf73FHn9ve$;7u42=ZlvSyZ8y;eksqF|^l{%& zhXA}z5f*1X0gi=7^7`*s!$I5S3p6Yv9kA=zRYd2 zIg$mkQqTmAxD6cOSl-YBs)TilmPfi|{8*(l8aZ7ipST7^J+|U)BvQUuM*Gzmh4G4! zh9E50lPMvmU#ReA>s`W&>_pu+qMiKXZTSBT+cp+ZiV=bqUoc_Rz^gN;kT|!U+g|-i zY5!46U(Kb|mWJ1rk{R0Rz^G2@vOeyO=ABH1*V@_&SWqFUga#VAxOC0*(olCV^ ztjA^@w1c7K?pwbZuU5$0gKUqqJL%%sCBBZ$4W?uUcRJ*${=y4tR&EIrO%SCaSX~=P z^76K^UCU7A_ZtAo3+}@QF%MfHu5hW-rS0OJu$7>!!PbRo6c)#s5>Z-orvv3-Ay0i9 zZbLh8bPkA$o>Kkqs9&70sriSHn&t0yjM*59&Q?an9;8Q8h3i7j{{Q-pmPH*smChXTi!NiX&q3 z<%4psmcLa}kQ(=nq7`+8@U~w)ttOaJ%sacs7{+T9+3A4xP8+GV-)>U2@S(oE93ME} zs=u#>+|I7?EUM{35a^Z{IyT;JJ9mBnc)o54ljEsod;ODQtab8O{|(?9mbM5=np4NQ0V!S5`26? z0|P3}&2Cw;vLAT~;a`odP?M?o6z<-f&583(aw9r`r~?4%4YDpF>ON-oR!U#5F8AS3 zEmeInQVt@{Qc`^al2E`_ll#Xe!9N?9wK~n#E#t_Xp#@wcEeguZou>En9S#NNK1B4j z#(yRIb)7eW>}uQ-+q*M;A!ptMqT(eD%}ow_O>HueyK|q>JO(VGiZ2cUO-B@OTf}MG zX=~9BgA%tHwPG}Vv)~Qesz#skOGE@BTz?Nt1Y2i-U*>4S0k{kRCIIU@<)x@4CeK(^ z44aw_2H<&ts?I_^sTqSuYbl_cG@zxWha&*1BJBMBXDbU zfT!rXLx>0d2fmOXKj}DtIrHo55o>hfW5F0Wu79_*0i7~E|E2n)yrpKixM)@+S1&Pa zKv4ZNRjH9Eaa0c1I6hKVZ15*RTkhtxLGdhn?vx}uik?xN3r#pmHoQW@(W+vkew zuS+_uLqALzS5iqyNi|&VH@_)LY~6Em=>h@u#ctM-({wc!T=EEy$Fv~`u#>a%Szx{$ z}7$Ggx9Vt*Q2hfsnmJ1CmAg3d8MX?a_g^A>FhbM z04mDiKTyer?V=3S)e(Gl{>vv!^tr*{UtLQ=18yQcd5tH#(;*`Hn2 z1kXIFa_CjX9ql|@hYuV^_1(Z+Q3o=bPl^hG%TJmaJ0^l)9iIJE$W{{9{S|#u=Q#Z# z@TxDcdn8MOaj<&z!k|=29hW(6DDNNL!r+TG>0M{I-5tsj$dfX|S$W4mbu5>t%4_u9 z^LEZ_!&nSdgFtcWj+_K>OS~ema7K+SxQNX~ANTFf@rA3rFUWxjs)n>An!OKt?;y9g z$gkeU7Ci!N*nQEAJg>X-h0~xS^~T{X_uA2fOMqrfXlL__%wa7Px;Px*(%xO&e;D-f zMN!jm!nZ>{Xv&iu^1MN9jlJEu#<9_iuMSkXcCRtfCvrH{|Lw>nFmCScE%N7F5|Cnh z`@cN@ysr}a%JNXFSIV9Vg12D9Ul(MZmRHB3BJbkDtC1t^UD_sLh6`KOpF@Y_b`JVavGZF{^EzGfMAjZmTT$ZK}LxSpW%1T zw0+9tNP3^REie9_X~02=@s*JotNufBHf4!P5UmWGy}0k}h}yZK^Y4kL*~ilSh=cO{ zh`_;WcGgh&EAyoHXBH)@;H56t7sn0I!{GkNAr!ll zA<%{q1flQogZhCL#^t6>m}O$VWWRLdUjCJ2UPCYaB#+f4z4{*aS|S(OZ+0o=f76H8 z)80!RnDTY{$R}!XQ=6;|<&$s;7fGAE0hv9g^<0qANTa>2xIYyXCASnKLf6B2D*ZsO!FqxMtF+X7^j<)~((tXf zv_;UZG4WiqcuD>@6tu;VQ6)8uph7>_ZHABevOfuTcErx4_1+CSMw zFYGk6gYp>vd$P4D>6zVz;xT|jE;Fuu0NC}SS|{w6PdGmhPD^AkreL(4t1s2fG8xuj zL$5uT6zI|OwGR~-6TTg+z5$+HFPmKj*92OH0f7)(-Dv?p$qOXsfF?zq`+=m@-E<3` z=J4fLEh1*K<_-6oBN+@rDa^m87@Cs&F;c#^#rpl#sW#f|5fl1p(PwDOrw9bCuYcYL zexVlYr;(tF1ZZ)<1LYSKbnWwSM|7H?H9MDPiDUU)jCG*+P~?GVbDrcxaVgSMgPWu- zr5s9aV`Hgl!uo`anZvfD-L2#$&v{b1P$)i7^}BPY01)&YEOLQ*T z!|6iFE!mCMZ;b`4#qM{cYa1{zE<0G@uJp;AEH8(o+pS;WX`sR75>iOGM9w zsOY?&*tASO2)w;K`yDQ=m$Ho9M|Sz77cnM02YKI})21O%sJ`4#O9Ko<+MZ2KulV)D zq964X`dDq3W=jqh7z;;qOGA{oty1^M<_BRXM-ze!Ij03$CP z>*J06WF+Ybt&MsCK6_yYx4XTa^Yb^H{?7vTa@y(l%rO~@WU61E2hoN%*8lmC?f>%g zLnh)Si`$1#q{*<8MRJd7`72j1(o}i0-#>^}4yPHsRyOv@c}!)!z3b=a8K?_&p5PG@ zcC8-f0y3#gt^ibt2jk)JidEPbi(9I*5E-K5xdT6(hSP+myBL)#jcX1<1H?i?uk6>$(vo0A- z=SHlCYcJxKmmi&<(8V>pry#)K=I+H_TseyCdn0o5k_>s7Jh%?R%}G z(w6J~oEWH>fY&rhd!WTaQ>+~c-<~`nZ6dfrg?G?jCm6C`?0gRz+b^Mz@I=dR2gcEr zhPN>u-nuXYPX-K*sB^v(%-d;14fhIoLdxx?a#K9&y!n2h! zZODw}^|x52XMesK6h-YdHU|>Oo^|&3M_8qtr$-7cJhQIJ-)Nk39kLB}@nepl zl>o$ZP|cfQ!hqkcc_3$rg6X^0d?QrT!A@k6huW)ht@W=fM&^^;#eO~g9>4@SjJ>PQ zsz5$xA)%n5`M7wX3}{%haGnn0116TWqZP;U^|RS_EV}oY4aYAjVQo#jt!AbQiQ~wk z^7SL8h?r>-weqhZ)Kh?96BFmR#@vrM!Y0EX`nGy;9RLpGCxSuQO8`oqi$puSo^bKH znQ^d`-tWdlAp-Gt7qWys(d#mXc-1Ism-SRXRuliMIkuv0KkMNID2cB|HKxWQ~etQkAr2db(gLW$d~s}g{#R=o&OOMqU7A}Zh38n^B~kt z@~~TzL8asRbn#&3{vW*=c~8^ggYs9x*e>@QGpFFP$%D7|GvOHFgi-Z`frgHVeqT8? zPIHyh?-p4dx|+0|ljY5>$Z{OUBgev~Jft`Xy`YE`JURIiAU(7Cq51?q=;o;BI|00Y zbaq~74ix=t=uOaYMzF;V$+yn!RnI-Zf{VJX-2)qbxo|pbSZhBqBv|`GY3|3WbNs%3 ziy6=}P!qe(G#UxNLX9L1My40!e_rsan(7Ejjq_dqG&R0a(ag2=inh^Xn3A-4L_thH@-;}uh^i9sMP1Fr(hYjodqUFp7$ zM?e7hXB_WEe-V)TnR-zteq|sbR;E7pn}7@F&7`%PSph3kK)fUGT544q>wfE<_r4h} z^|&ZJw5y~23b)d?zV_OL#|&{;lXH!Cy5I|AErX>5W(%YzA|lB>ktAOt-~H(+bW;qe*|bUi$Gm8 zRQ~nGB8a*VVR*mR-5Pw3IV#LsKSf5~zY}%80nv;+ABCbIl?`qEgP8XlGr!{vjf>c|0#-G? zia2+DdT8EqW=TXS$?ywb=4x4RzoCF~ePmszHjoW)?3&HmN8KPmAU0qfuTh*ZU=5T`vGg*rz@UI?1qkf`ya1R795>LZycPTeen5^< zX4**N@9+QC&Q1P(Jjs`& z?YI9LK`sMEQ)Z9r62{rUsR+;X$D%J4r#sIajHBoa>~?D7Fq+J-0%(H>%n-0)!FYzj znn2aWkGC@(ynb}_*3%eq$}R6(R~7+391uv9r-ds?NAD+1FG&Z_jQ8!6*zY>Hz3Bss zMxCuH#}9Ati@o>USnai9z0XcYcILMr2Iswj7P>WNmZ&LE=Sju&g@98kP>!2fkO3t$ zS5Z8D{RANXi|Q%0cd@p{d^3{S85i)E8L~1X`fdf&x%GJRmvpfBm|-Wbtidx`^Jknl z%r)dVQp&jlvc|X!$c*bJlGG9I18&>Y_p7`*?>%Jrj(Y@R3n*!o+M zgy>^47Mf&41GT@73zrSEzyeOUF3-b#z?A)RK|wRi4&0M5X9Fb+N~DlXof%N0^M zgcK$S4Sf+lykO@E*v_dGNWp?!vF`Vckk1^7(FD^ykoVc;4bImk$TZJ<<9m$A20|z* zs-J+7;XcUu4^dRpR&MUxjZKYFrc5B+9oz(*L8Vn6!R}O5K`A^hd)yzzQ9@(xb5K8e zd-giI{kW_D<|HR~8)cBU;UC0<5zO|SP+Ih{M>5{-%u|vmf#};)<#$Uk8FUNXZOzeCx@Y6;g6axfk20n!-T~M&S24=w$?s`4 zxaRr?jEXI9{?FK!r*c0pQpcJI;>gNK{ED=K*AJP~FMe&=q} zaZdtnfk!v^)2J9U6}}2$J}4THh>MF?x~;2*RfLF2L+Jy~Ubi644t^>SN_~tAyjner zSrq+9-@2JY1ihq1+n?}ZzA+yh>x$YdKTe}4cBKS%Qu$?fbT!&xf)*l)^K}6C%G^hq5#Y6 zFmo}p89-7Om{|!N=y3?W;aQO{SU!)#2+Fy=+Js&m_Ki+Vgoe}k+!FyB6HmCw7Jtvd z?b>6R$PDMEfg#N#)Bk~vAG%?oIK1vx4l*zg=57w>W~Cv3?>1{)y|gErTUd~;S?&iSC8mUa z&(6l*R-YDS`1!T}G>(e`oLs1u;(BxS{zqLMpy*QakR-8q3#J6nzuHx~Wv~M}$)gu! z^jEo4UMK*nstRo<#>YPb8OY}=Lyj*WDv*fQFI2RP;CMy-&iKG}KAf_OTON@(;JUoq z6`-p&`O~O(>tWWnwZ#sE*vm)fwkKL_r>>@`o831Zv9y*Rmp^ek)Oh`ICA=I{&(G@H zj=3EHFiCjyOLu#?HqL+7Y6|d1ADE}z{MR`xI)OysH;`SETlf)&6VhYz)oZlet>^a7 zATPWnhe{dfrGb?{O~bq6(}CsPOs>kuin;F{Bc#r*HbWwMSU@IWL?dZ9D^N%0%N68d z{F6D(+TlW6aou?Lf-lw%=)6HvZ$pcCHez#`=CHcjL4V7S8p}bqxFA7Ew1aB?7eooi zo&_I!Y-Oa9nhV}aw-d&+xqrRE&IO24Rfc7|dsGh7GIejvee1qZ={-Cf@m8c2p}^G0 zLJv4N?KU!1jL|@NzIgHCm8&aJB1;|&MhHY;rW+=Y9n&;Uj&d*vC5hxT30?oPSK34! z`!BJHt?23SKU))* \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/polybezier/8c1b570b3efdfbbc39ddedb4adcaaff6.svg b/docs/images/chapters/polybezier/8c1b570b3efdfbbc39ddedb4adcaaff6.svg index 16c75145..5cc88838 100644 --- a/docs/images/chapters/polybezier/8c1b570b3efdfbbc39ddedb4adcaaff6.svg +++ b/docs/images/chapters/polybezier/8c1b570b3efdfbbc39ddedb4adcaaff6.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/1244a85c1f9044b6f77cb709c682159c.svg b/docs/images/chapters/reordering/1244a85c1f9044b6f77cb709c682159c.svg index f925f8be..cbe3e70d 100644 --- a/docs/images/chapters/reordering/1244a85c1f9044b6f77cb709c682159c.svg +++ b/docs/images/chapters/reordering/1244a85c1f9044b6f77cb709c682159c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/41e184228d85023abdadd6ce2acb54c7.svg b/docs/images/chapters/reordering/41e184228d85023abdadd6ce2acb54c7.svg index 8e3cb407..6c12ec56 100644 --- a/docs/images/chapters/reordering/41e184228d85023abdadd6ce2acb54c7.svg +++ b/docs/images/chapters/reordering/41e184228d85023abdadd6ce2acb54c7.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/483c89c8726f7fd0dca0b7de339b04bd.svg b/docs/images/chapters/reordering/483c89c8726f7fd0dca0b7de339b04bd.svg index 30538744..e52344a0 100644 --- a/docs/images/chapters/reordering/483c89c8726f7fd0dca0b7de339b04bd.svg +++ b/docs/images/chapters/reordering/483c89c8726f7fd0dca0b7de339b04bd.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/4debbed5922d2bd84fd322c616872d20.svg b/docs/images/chapters/reordering/4debbed5922d2bd84fd322c616872d20.svg index 5ae35fa5..93db824d 100644 --- a/docs/images/chapters/reordering/4debbed5922d2bd84fd322c616872d20.svg +++ b/docs/images/chapters/reordering/4debbed5922d2bd84fd322c616872d20.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/773fdc86b686647c823b4f499aca3a35.svg b/docs/images/chapters/reordering/773fdc86b686647c823b4f499aca3a35.svg index 7c1ad8d9..f1cdecd6 100644 --- a/docs/images/chapters/reordering/773fdc86b686647c823b4f499aca3a35.svg +++ b/docs/images/chapters/reordering/773fdc86b686647c823b4f499aca3a35.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/7a9120997e4a4855ecda435553a7bbdf.svg b/docs/images/chapters/reordering/7a9120997e4a4855ecda435553a7bbdf.svg index 5c854ce4..39d5ef17 100644 --- a/docs/images/chapters/reordering/7a9120997e4a4855ecda435553a7bbdf.svg +++ b/docs/images/chapters/reordering/7a9120997e4a4855ecda435553a7bbdf.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/b2fda1dcce5bb13317aa42ebf5e7ea6c.svg b/docs/images/chapters/reordering/b2fda1dcce5bb13317aa42ebf5e7ea6c.svg index 90a19093..187f7a5a 100644 --- a/docs/images/chapters/reordering/b2fda1dcce5bb13317aa42ebf5e7ea6c.svg +++ b/docs/images/chapters/reordering/b2fda1dcce5bb13317aa42ebf5e7ea6c.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/c37918c649befad06de255a6415faf29.png b/docs/images/chapters/reordering/c37918c649befad06de255a6415faf29.png deleted file mode 100644 index 253c3882d8d7e0bb784e329a856210780a1ea558..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11104 zcmb7qbzD_@v?rmIARQtNA_Bqzlx~m^E-fO`A&5vxr_xBvML@bPA|N0jjiiSVkdhAR zl-n^OjnH%2g@vzT6zrEIXePe}bs3{T=&=O!^U=S%Q$!lR?V3H&M;^Dw6 zl=-t&@E;sA6-9ZBOXTm2`n)&{3?>X^c^Mt|l#NLb9i7K%xLfuwbxJ8zWGKJz`e((4 zDtSe`)il5=x~`cW#>al+L7ec1?AG~mhB#7kwB7yiCojuB(CF9ReyNi6yt0pj_GM%h z8|LURXU6NS*JBAneik2N<;nk6tk?HVe)vIy7lcRNK*fMrJBNpFL`LDnJq7iXoYdD&{c653=H{TIQBk3*N z+0|9e6FGqssT!)HUuj35=01yWJ64Y0s9uJf?t5}aw@5!ITQS<{DP8p~0&-sG;~h&n zNpBk0T6z%?k)z2?U$l#I$*66VP{GjKfjsrOwOA#qs5`e#%(>RV%u9S!~wla=1u-r^%}fI;A8I3e7zCuc*VcNLe|aAEj^}6 zgxmMxgEZ6fE<0J+&w+tC>!(G!E!OvBnMhuv=ZLCwn+lxeF=P4Pp2^r<1+s^Yio4 znHtgsLs@xwxPr+<+Iebizgt3>6T0Y|wswtAri3yz@JjW(#}5x_m)~~XefpJ2Ozh_2 zlou~QKfl95CnZK>U$!DMRe0a8U%_9$3brpeUBSV*e&i*G6V==r9xBg56R9vbIN12C zOoly9hJ!+ujf|Ot11~HrEUFJ{7z-QQ@nHQ)ipVRRg@uJgF*lyYA4zi`@4`DIBqTHn zhOD1Im(kOs@ec@CAq$n8xEv(OE731Po^}+Sh<{Iy8r!W~$c3}}X10E}B=TDl$g{+% zTv6s_hz{w9yUohWORW8m>hXh@n3$MKN=nkIs)Wv>^mY?fZ+`vK9kCUR;ykds$G`1B z*dkq|n_XW|-_g-=G{<-unvz2IBashVoPih}Mc)$6+YtKq-xQx!>R*tBUFqxVLnU`x z+uJKXcyJXCmxPK6CswJ|#lt9|xi!GW%}p*>ONN`ueEDbQ*7kPO&O#U8i(lN{yWK+Y z)SiB|m4Uk`*S|Zwa6K_PnwW)!g(;y6uKDKEC(bKZu1NDF$Z=D>GE75fqqe2lz9XSui~U@a0JR`O2hfwqb0I=@q#&4DMN!}W^Jv@#e*Rn zZUw5fyu3W4tc;u>2#Y`IM}fW4&aro3aIh>K89ejSQc|op7*5qGYyIM6L17`w>+A9= zD%YUZ-o?c+Q}j!{M9y($#^eevZgy?$xMSRVQyTbx^5MH*c!6 z98ELDKV*)7n5kRPH#!;y)qutlwr6N7eRJ^IMH`9>kWC?*w5bUyYj>`OtFb zYIqw~z7Bz(pC3Vdt-M!b%@Z%e7GYh#P7D6PprHLH9-S^eZUbrE&*Wac5?EbZ%hcgS zimj)oN77y)yN|D%iz@v0(h}|)=^4Fq&bST|TH00jxDJcZ@bJ^N?xpb|t9!J_52U3r zC_Z)D@o^bSr?&bEuw$14H4ld?DJdD#wE&$lSCb>AWoQ^#@VGcDD+?<=K0c~)aq$`4 z1+%Cqt)`|Xv?U%szKnwd%FNuHl#Y(DY;>K*CrOokdEZm7NY~lTP3%|y-|_L8+1c0| z8yir+9}5Zs($g7{x8J-OZrT!TI`~l&n)-o`j!wEUj(!2Z0|mPsv@n!RlLbFB3k#N3 z{@}uJ(B9tOjPd0ObrhpiR5&$nR!+{9hK2?j3D0|4T3Rvh-v@^Zjg7rMIq@7E9?mW-BsBIrzyI~+c<}0~O)DC0zCKdg-rg>)pn&r|;s!RHwSIw9 z0*9(W;-p=Oeo?SOwv4qkhnbm~flc*kH*`o8y;$%ZI(lw>wCv-jPt8Z$bFoQDVJ>UG zOra}6Lqi=r4WXpqpBp!B_!w;(QW|J!`R^|Enol?QRJm@@1`{(z6&7+^SX!Fy%y-ZT z+R_v~TDeU?PCXB%H@FOqVw-gVa8%WM zmPmgf-}l|SS-nPhj*i>24^l*32<+>&aj1BWBE0@o6w?556 zIr2fB!IOoWgTC52JY1^DksKQz-)^HeHbL&t_goZ!CLmWOA*-aMq}MXEz&LpFtvrj& zvuEu50s@#A&~Vf|290o=B^DiI&Mq#d2kWDHRSwMSu44L6pOVtjK0N(&#t2`?v~2We zf4~3d&pd=T_*-+Sw4W5|B4dTo_lOyQIAHqn;;_B97yTni;P>2Ii;G8q0vnlWe~xnE zz2{_K?Iz!T_(1D@ypX`b!O?g)?H3)-_1Fx4F6Ln_w7ay4NycM!F6~5z2vZtoXJ-H@ zR=`F8sY2ELFET~Cb48U?&A5!-uUlK?xu1R|O!vDuewp`F!cbNgE6wNNiTLSynMS_O z(fIU5@ckFRqyd$>KipqlUY547V3U=VH8`01Ws-&Z9ix^P@G#e3nn~K*TbzvyfA|(A z#%F_S|H>)PYY!eg(5rJVolC^uxdgDHYwG{`^EKQmqnO*D*0bYXKD!Cwz`#Hz9-bb{ z3zRT+5I!z9)wRDL-ilCQWnpDCTvV7EEwkG0SK;kBt*tZF zOKEa4GMGJS65+j4mvnF5ylL;~z{H5SA@Dt$7uQQOQMj-BCS`TM&gMc_LaFb$C-fH- z2hq`?-=$me(Qm7p(dbtb<|`{JO&8~iFJ*!--_6ngDw z_}fLB%P6)iYn;rlTFuxF3#X*~si>&ybvvD0N9$$1G3n{i5?%+;_}Za_@50D$o6WX{ z!E^wKR2SdAqFZbfS@B|6l*dsKE`4_9O+iil%3xzMJGO&qW%A?4ni|@Riwitr;w5n< zsK_b5OP>fDJ}ej(QWr<8zlx33xkOWQ+>GP<`?bXPe#%+f*(m^(!I+u8*qC+z;scW* zs-Vv69{-Ii@R8l!-2lmQa0v1&q)Xvd4d(|>#dm)Q0N!!%@F+Mr@#pQkm&L@8z{HH8 z6X`FFYXHR1&>&e#Xu$s65MRqwZxjvFtGu$3RZ#G&F>wizU~+fx%ki(KaFFhcNmg6E zeiw26f#%iK)$Y)RnZs+$BzPwLNeHKcV{pRAs~mn~eKxEO&P(&`EV|tBc-x&U)Y98a439HW+=Cwgwr^k{0O*qgT^U(yhTPv784WG=<)45Ki-%%LB4=c1+fU%q@9F=@xB z;f1}wd(d!k@`9a(#s9d=_@eot7xse<4`U$U1H?l1I`cMG{V2i!;BMXrqgKLB^LSd? z+SNQ^?stZdi)LaJvYP-ZnBqEOK73fM3R_*Z>W8OOXi!ad>((vdSBr$uddR!^iizW- z&R5h&8hpeQB5AKy=o4jXgw}fQ2y(7kqG(Fox6PE;$bg9j3yQI)yo&Tt zjY43o)@}1Ue2&BF;2rPF^FzIIYtqG@)N4Qs=I1RE2;TwjaT`>TK-+R~bLTKI^E4H- z%mb$D)wWQ@8~aUKQniy}xqBo|xJ~;A zyKgZ8+7#+?S@7TZ^y!m^wswGKwt}Of5u;~4L)o)#S%CDfwxi81B7tZAk3%{-s$YcQ`=9D1hPva$sfIvkm8pKo@a8`EteA*Y{{9fS5xmv}@-i-;|M&kz20>1JJBarRS~f zNC_qsw6NzM$0RE=Pxo3&tF0jRYZaUhC})S|pUmE;8$_~8&`b#>yU@jFwU zmuJ0~CcBH>!ft<3h8a8`OoR_dC%cHIb_IoL<+p+!*}6F0WR;XmTXVu&p(Y?t?a95^ zdCE=oBUy;}#jnDq!Y5@_JRvc@yQ?TZ+Q^yRmwHOlA2`A3>W@|qT2HJ4E>ZefRoKh$Onvs@L=)wZ@aL=u5WT5{itA#rOlrwLx^ z#kHx>zjF0z=`X(Fjr<`SU{3P#@+JLK_SJ@70Acz0`R>4#V^dQlW)4O^BNF>$95nSJ zaH6W#TRjEE4R1+V6(%%eNM_&GISHceDqBoY4!*k;6%~}l^#`;)=~BJV=>toexD?r; z2*|<$cX5{l?IuDkyWaQ7JZWWhUubWoeE;(jV4Q=KQ})S|8+k4y%~Zv7Nmb2e70_{o zPb+(F2^F%>+qqA+w>~RtvcBhZqT~l}d>bBKYSqioW5X2q(nyHEZ*3oWcFxr&i`~hk zt{eIZW3=yL-t5$%etY8kxVYR$h!iE4u7fT%b3oHtbKu(Pt<8p09^FE{rd2E!S%Wu^ zCk3GNK-9%3v8C)453H2HSpG=kHr_PMP8z1wqHIp5{G%>nyNJpqPOC zbHY!*ttMRO;y`z9_$?20LHzso&|yRZRz34MezG{p!+~L=w!xEjOY6QJKqVg|s=-x* zm7(i}U87Td;05F55$<(5;l?MIfrNs^Hj! z>yJ;mg{EhqxR-M5Wm7ulT3SIVgL34Ue@1l%gcKo8w|&TGRT&uB4R|tzlDm(7hcKdC z*Y(s+Znq|hOR82G$)?A|NGCIq7SHsV_Iq97cx>vlzxpUAH`lRWh`DF6&om1r5LGw~ zA>oy8U^1{OM9d(c)}7rFxMny6xF4I6@&isrI8HGHfB3XsS4Zb3=F`>}?zV~0^*zz$ z!0hD=4Ct)RksGbO3__v>W43Z=;z zZ*6To+IkM<6jDL<|6;a$HT-2JQt9(hn#0xvcOP{)iuYrQqJd2BQ%I z<}MCU__45XzK|ig`}=6;Q&~Gfcr``X5zFiFPtcG}TOyx%#=y!Jm?ys*PXCw}F-GIX zfy#pF#JeeID-9x#$Dr!9$L=CRxluHPDT8ceVJ3pfA}h%;$+>xX=5XsH<!(0(V&Y`jnao~f{cnc2Z9THFF#83+HHbcfQa%mP$!acWY{k+m(n*$y&9ic zSj?olP05&;FrA&BgPg<+l6?bUa2?RPy1*Al-`LstUQJC6-OH+-!|1Wyi31*^x=`S{ zU~n)C3nvD3`p%YmHTD3$L$!6izuN+1RRc_;i3tN>Wn^>TBjN;P?p=tpsCs*QYv||%j*RFP8h>N3|8_129*%~dUi+v%d6Me))$*InZZ^GX z5-}YXYU2ST=DLj!bF~ly4W=X(#=ZOZW%33b4+cw$i+Rt^&VGWVE-68&*)UD5wa2n5 zsjIuKE*dcK@mEt;8$=x(xFT(06B-?@_}5=V&?TEWTKQlWK+~n34A!87!$8`>F^JR; zDygdGpqSMxOZ7@#jtdgr6#TK0#{zwZAr+|xqP7u5c>DbJty_qANZI?VZU7*)#H0xe zQ3xxC*Ca$$J@e`TbVOGC_LlpqJoh;P95%IebgsaCeEi6v_J`8bIT7QvZ02kIqD2d5 zew#rKgKxf*E9YdJ**cut3E$4Hf{G1|j9kdUi6$mDHZ}%S0?8**zX?{DT)qxG_VE?C zrm0|Zsq=~!42SD2A;e3zB7x`-{H=j{@(TTpJ>Lf`q`rr>)0tIOBgmU$6B0sT-Y|1= zz8!eUTgRe`g@x6)v@3FhS@pv`e5;-mN6&AqVrR#_e!+U&-lBw$C zFIE!CS~BlISzJ+5lN7Nxva(pfbzwz_K99ZUHX#o7z_f&k#MKrQs9umSBm}8tx#4Pg zE%k>};jfl@s(%m(%rYPV1GHw&-tY7#kbjfP@zk0M>2G}JgJ3316T5^T=YlqSa*04pXnH8NGq%?!*3Ya1I`3yYjChChoHrYt0QBxGd% z&^3AcN$=kI1HG9UP?vJiPj8jDFDPgRrVRplRNQ(Pz~6zBHa1FsR;j&POhi7D*B7Rc z?MSz{PPjH)j0W^m1RapKuRNgwQ0nyRRjJJo=lsG#lL;yVY$>o24H6Ct>O@roWtl;} zq}B}jtPbV_yF-I~PW^S;krC8jduL~}9I-?o7(Q=IX`uB@+hds3lDVs%8qu>is;jJv ziHfF(YJq1V4cdKDjM?X-4yS6WDCIS3o>n*$tLq`i3)I_J+$f>1q&>efJ9eUBuSIhbsTLiTCq!YXwG z(NY(oKYpm5q5aNqfdnqQ*XQM-`R0~+I8-l)snKS(lQonf*Xf&qksx269!ACY^5+9v zi^=x0qgLrIb#{Wu^eT&!_(2_)zi0Ib^L5^Cj8~d(j8!-b{OY0;ak_Giin~#f(I;?X zVnTBBg^i8B4rdUco8r(UJwaUZo}Ku{kG>9Y3?jfz%F4)SeC|VL2S0vIC4uJw)UlJ3 z(@9;i8;dk&yp!hG>ne0A{q1camGgQL#8PJ@Ab#O-$m;68*FI(MF$a`%T6pMvIO$g9 zzCFv!WB%ir090#CV&d|9uj!xd^Hx>DRII|nG=3Mm=?Gk@3D&a*6vN~KEg=VLR}E%y z*C{hNBQO`uN)rPJaHE>%tq^#c+crVbq>OC>v~IPtMw|3yJt!ZXY5}iu21a#&0S`Ks zRnbmFF1yd#q-+$7)=rtA^$b+?)oO#DjvHcNZNE`s%UUrbb^=|anj%cf_4souoQ!i< z@+WZA?%uu2<7m((t&un(3qx?-wRRx7jRfxsC`WlXhbf;!!@PsPM%qw>g7#Apz?x?^ z{Vv6zg*?WiA92RRT(a}>7znp(oC<~$)-Q5B39jc)A`BsBQ~;3&maQ+}OCz?%-w&AQjFQoz#E zGNQ@EB)7iS@o39bAyWfI&1+jfA5AWD)BnBL!?;RZ%00$DdUy)ir_~8WN+;c8?$n9t_n%@LJpIw zReiqR-P=brG7a{DhLO?rve6%-Wn|#ZfVg!dNt@ zamI&e^89)*@HL2enumwoVhWsjXp_!xAZP*(v9f#x15`?cIXcR8vc?7R9P%pM1>md_ zj6CrLp8aTqFvM}bowW7)_o;)q8^KLr$-PA^QW_yUy7$~q{J(tRj}{jTYtCT=5X~I2 z5%K#XbpJl(Qg1q%+SvO|U7dIyW8-3_5;PAm;Ga%^Q&$iKiukL+uS<|(hZlDMM z{(A_cFCNe+RdPnVFgH;16ug$EnW(eRYvt=y_n;uMRImaN-=c z^bCws*UhO&#AZxNN;+E3j;`YAV67-GH)(rI+1}Ih9RUI0&*q(f-#NcH+u3oFS5#zW zXUCz9#F?B#BsLlu&F3fkOufyAW4+@_Xrsn)IbT_pZ~?BTiBSdoku5R z`BYzDxCpIneUH|5qKfp+ojZ7hgz}(M!M4m7lT_w~-~u`wlre-6K*mDA;eGUo5}baV ze9u1`iF*TYuyGMH5**sOvR=s+Fn~}HRskVS8>mr;pm_s`ZZh8{jJU3kI1Yz*LUIK5c`RHHW_M_tnL(X9DWF1Af3C`t&r??k zEn+*RtDbs++A;wcYJ$gyvZ?rBN)vnxXPTHKU{xdU0}(qoSgQK^v;r=xI*TxRvF+@c zCh{dB6f>ahL7w5yuh}JHl_J)f z9tGMzEHu;v!hs}+lcycMuoof@I8;yi(mE{6U;+Z1(q#9w|NZ_w|Fg2B{GuXDaJYqw zH=j|32YCR-CT(pwEUx6GKLgVrcW`RbDdb;j0BtE?YHIoe9FvYSa1pR=iXXeV32E!= zcS4_w83`n*Mkr)g7aWX8bD0SkM1sLuXT}G$Dfq^qnv=87KkQO2{_-wZ~`}60h zwSM8uKI<*`2xd@>P@U*1$2pBBPr^WiGKq?MHf{(I1_TG=0MGh2(cIlN&$Ky|g~Gon zWY>zw$e5Vd%gffP$$~^MuTcM}r~l~}63@=c+5$|Sn{5k+xSB@b86ktmJZX6R!+>TWBPU0KAHYrQX}?Q}_jjKLzkZFOd$KZlClWo!%*RK{5*r%tI@u%rITokc za2(=qRYk>+x#zubL;rmK{O7B>pJ;8vh4)nY#oldpX684_Dk|o#eA9~eKY)`|0aQo1o1^79IR!-^wUIj}M1t-c6~lZc*C9vm8C=I3|P7;_Wa8{ER!b{B7LZO!=ll?tAg z-7W@odM_HFi4W?2*;$lM*Z~6_&4>ow6AMRtL*SXoSo!lrl&OE$#$Wp2Vb0E)K`t=Y z8b%I+HBr(>6sS?@t0lEO+czWq{a8i1;YUaAVCq^|jLB>c3~45oyzX6M<>9#wivTco zQ#O9MR)PfM1I{jfFk%jmN!WFr21y(td&q)#1E>d$m@7BPL}VNyQ9FloPqdo0HaTL& z12SZQb+Xix8qj3Y2!((s1MiFDCD4Mn>6auz>30TC`?3*v%6S|sP{ zDk%7JED%C`H9<=LZWgn^^R zQ+FX8Mp6+JDyHHIlX{DJ;zjoh#8(h%*q=WDxdM(dgy(BVmQJ}RDMM++#hZ6~8Qv+e zxzUvy_}2f=5E(Mw>W#kJf3`OHMmG8^dziNN_aDFx0fgc7Ld$ir054Wg4Zmc%y;sW{ zfTrmy`bK4yk^fs}7Lrx~VyHThbFU1qSIa>n3YitSjWnXp99Na4ezseX>`#Rj78SYF z-e9nQ#-F6|_;E-^1``JbK~3M7It6=xDtlbhzur9&B=>5`&1`OYKqg@Y2V&r@l$O$z zK;JK^utd^`M&rV@dCuvgE42%TG&tiyQs**NU!!1G1CfOVsRJ}E0R^>r<#^x7NGKd+ zvCnJ*5&SU)Jv~wFpxE;Oph#Z%*L8vNw0Ax>K2*Qaj*EFO*eE4t+%mJB94U?0-6_W5aFzzq_ zMSf<=t(-2i?HRiA)t3?O@9&qdUkHIC!);VYLo9j3ge21trO*SjL4&DxRZ2<X2NS!77h|_q96O zps;Y*r9oUR7#m1>-`p$gdQ8Y|GrvxelV`2th^%d?&$b(%vNyAU0e}0K}W(8iwBlBDoGV~6?~?auKP_M zdrL0%rX$(fE5o+sh?Am zp9#J#6AXNCvtbwl6;=d^2wPILw6rm4X;IK!pHoFWoSv)Qd)&J{@5+?Y}g)@BT;_6LMz&QsWC2V>< z0GhA=_v@bjVHNVfSq%Np@BGP70*j#VE9_}1Zj|;j7%u+rJEfP`Xg=3oUW<3lhLu?i Nw=cz?zLJ`Z5d8R0m5VnwoP|1*a&P?W1=Ak5n5F!hihma{_X33Z# znWx|V?(g~Moa=Yab^WgE?5*~`)>_{8UC(phpZhaB5jxuH6r{|gC=`m~x`vuA3U!7K z`9n+yuQ24#R>6M=Ei~2DP^ZYhS+%(dC=>_kx|*`SN80ZRPZz!UYQ+tQly^(x?{3OS zE(M2>-mfOVFB8b28_z@&KZ8=gOj?b~XAy3jyBaUxc=h5}75e5*+N%X=&m7~ulS*HF zwY^K0zHsqDg2c^~2d5{~!)DT2tZuuL*E4#I3stU9?LN3TwRXJbu6VZ@Lms4!VUBim zcVF+)lnrUk-n5l#WA4c*V;>(HYBlB*XNy*!lb-ZQr=(LM_M|3-zXkZUh&ceqJ-u!_ab8M^SeL0!#|J#%P4=(!OebN8?`tlh~V(i)Nr>-A2jg5_adwWqYZ=8+S z;Hf&Wl{;jGFPo-jYRdZSTRK^YO2F;xYnU2a$Hqtt2EB%bQM=^qrAFkDEqIYFPo}<{&doYFd~I*9|J9uu zpPCw(l!Puct{{zMygX}VZ=;HxohB#5fB*jdM!%-;%u7SFhER(0)NE`q+3K;g^#S

- +

So let's look at that in action: the following graphic is interactive in that you can use your up and down arrow keys to increase or decrease the interpolation ratio, to see what happens. We start with three points, which gives us two lines. Linear interpolation over @@ -544,13 +544,13 @@ function". An illustration: Let's say we have a function that maps some value, let's call it x, to some other value, using some kind of number manipulation:

- +

The notation f(x) is the standard way to show that it's a function (by convention called f if we're only listing one) and its output changes based on one variable (in this case, x). Change x, and the output for f(x) changes.

So far, so good. Now, let's look at parametric functions, and how they cheat. Let's take the following two functions:

- +

There's nothing really remarkable about them, they're just a sine and cosine function, but you'll notice the inputs have different names. If we change the value for a, we're not going to change the output value for f(b), since a isn't used in that @@ -559,7 +559,7 @@ @@ -569,7 +569,7 @@ fa(t) and fb(t) with what we usually mean with them for parametric curves, things might be a lot more obvious:

- +

There we go. x/y coordinates, linked through some mystery value t.

So, parametric curves don't define a y coordinate in terms of an x coordinate, like normal functions do, but they instead @@ -597,8 +597,8 @@

@@ -613,7 +613,7 @@ @@ -624,8 +624,8 @@

@@ -640,7 +640,7 @@ @@ -652,8 +652,8 @@

@@ -842,7 +842,7 @@ function Bezier(3,t,w[]): @@ -850,8 +850,8 @@ function Bezier(3,t,w[]):

@@ -939,7 +939,7 @@ function RationalBezier(3,t,w[],r[]): It all has to do with how we run from "the start" of our curve to "the end" of our curve. If we have a value that is a mixture of two other values, then the general formula for this is:

- +

The obvious start and end values here need to be a=1, b=0, so that the mixed value is 100% value 1, and 0% value 2, and a=0, b=1, so that the mixed value is 0% value 1 and 100% value 2. Additionally, we don't want "a" and "b" to be independent: @@ -948,7 +948,7 @@ function RationalBezier(3,t,w[],r[]): and end point, so we need to make sure we can never set "a" and "b" to some values that lead to a mix value that sums to more than 100%. And that's easy:

- +

With this we can guarantee that we never sum above 100%. By restricting a to values in the interval [0,1], we will always be somewhere between our two values (inclusively), and we will always sum to a 100% mix. @@ -1523,7 +1523,7 @@ function drawCurve(points[], t): The general rule for raising an nth order curve to an (n+1)th order curve is as follows (observing that the start and end weights are the same as the start and end weights for the old curve):

- +

However, this rule also has as direct consequence that you cannot generally safely lower a curve from nth order to (n-1)th order, because the control points cannot be "pulled apart" cleanly. We can @@ -1537,18 +1537,18 @@ function drawCurve(points[], t): some things can be done much more easily with matrices than with calculus functions, and this is one of those things. So... let's go!

We start by taking the standard Bézier function, and condensing it a little:

- +

Then, we apply one of those silly (actually, super useful) calculus tricks: since our t value is always between zero and one (inclusive), we know that (1-t) plus t always sums to 1. As such, we can express any value as a sum of t and 1-t:

- +

So, with that seemingly trivial observation, we rewrite that Bézier function by splitting it up into a sum of a (1-t) and t component:

- +

So far so good. Now, to see why we did this, let's write out the (1-t) and t parts, and see what that gives us. I promise, it's about to make sense. We start with (1-t): @@ -1556,8 +1556,8 @@ function drawCurve(points[], t):

@@ -1570,8 +1570,8 @@ function drawCurve(points[], t):

@@ -1586,7 +1586,7 @@ function drawCurve(points[], t): @@ -1594,13 +1594,13 @@ function drawCurve(points[], t): And this is where we switch over from calculus to linear algebra, and matrices: we can now express this relation between Bézier(n,t) and Bézier(n+1,t) as a very simple matrix multiplication:

- +

where the matrix M is an n+1 by n matrix, and looks like:

@@ -1619,8 +1619,8 @@ function drawCurve(points[], t):

The steps taken here are:

@@ -1649,7 +1649,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1847,9 +1847,9 @@ function drawCurve(points[], t):

@@ -1858,16 +1858,9 @@ function drawCurve(points[], t):

-

@@ -1877,9 +1870,9 @@ function drawCurve(points[], t):

@@ -1895,7 +1888,7 @@ function drawCurve(points[], t): @@ -1903,7 +1896,7 @@ function drawCurve(points[], t): @@ -1935,7 +1928,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -1948,7 +1941,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -2022,7 +2015,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -2134,7 +2127,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -2183,10 +2176,11 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + +

 

Scripts are disabled. Showing fallback image. - + @@ -2221,15 +2215,15 @@ function drawCurve(points[], t):

And then we turn this into our solution for t using basic arithmetics:

@@ -2247,8 +2241,8 @@ function drawCurve(points[], t):

@@ -2264,16 +2258,16 @@ function drawCurve(points[], t):

And then, using these v values, we can find out what our a, b, and c should be:

@@ -2284,7 +2278,7 @@ function drawCurve(points[], t): class="LaTeX SVG" src="./images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg" width="308px" - height="63px" + height="64px" loading="lazy" />

Easy-peasy. We can now almost trivially find the roots by plugging those values into the quadratic formula.

@@ -2306,8 +2300,8 @@ function drawCurve(points[], t):

@@ -2462,8 +2456,8 @@ function getCubicRoots(pa, pb, pc, pd) {

(The Wikipedia article has a decent animation for this process, so I will not add a graphic for that here)

@@ -2496,7 +2490,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - +
@@ -2510,7 +2504,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -2547,14 +2541,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2582,37 +2576,37 @@ function getCubicRoots(pa, pb, pc, pd) { rotate the curves so that the last point always lies on the x-axis, too, making its coordinate (...,0). This further simplifies the function for the y-component to an n-2 term function. For instance, if we have a cubic curve such as this:

- +

Then translating it so that the first coordinate lies on (0,0), moving all x coordinates by -120, and all y coordinates by -160, gives us:

- +

If we then rotate the curve so that its end point lies on the x-axis, the coordinates (integer-rounded for illustrative purposes here) become:

- +

If we drop all the zero-terms, this gives us:

- +

We can see that our original curve definition has been simplified considerably. The following graphics illustrate the result of aligning our example curves to the x-axis, with the cubic case using the coordinates that were just used in the example formulae:

-
- - - Scripts are disabled. Showing fallback image. - - - - - Scripts are disabled. Showing fallback image. - - -
+ + + Scripts are disabled. Showing fallback image. + + + +

 

+ + + Scripts are disabled. Showing fallback image. + +

@@ -2635,14 +2629,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2673,7 +2667,7 @@ function getCubicRoots(pa, pb, pc, pd) { inflection, and we can find out where those happen relatively easily.

What we need to do is solve a simple equation:

- +

What we're saying here is that given the curvature function C(t), we want to know for which values of t this function is zero, meaning there is no "curvature", which will be exactly at the point between our circle being on one side of the curve, and our @@ -2682,8 +2676,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2706,7 +2700,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2714,7 +2708,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2725,8 +2719,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2743,7 +2737,7 @@ function getCubicRoots(pa, pb, pc, pd) { class="LaTeX SVG" src="./images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg" width="533px" - height="20px" + height="19px" loading="lazy" />

@@ -2753,7 +2747,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2761,8 +2755,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2776,7 +2770,7 @@ function getCubicRoots(pa, pb, pc, pd) { Scripts are disabled. Showing fallback image. - + @@ -2834,8 +2828,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2847,8 +2841,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2857,7 +2851,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2914,12 +2908,12 @@ function getCubicRoots(pa, pb, pc, pd) { cx + dy), which means we can't do translation, since that requires we end up with some kind of (x + a, y + b). If we add a bogus z coordinate that is always 1, then we can suddenly add arbitrary values. For example:

- +

Sweet! z stays 1, so we can effectively ignore it entirely, but we added some plain values to our x and y coordinates. So, if we want to subtract p1.x and p1.y, we use:

- +

Running all our coordinates through this transformation gives a new set of coordinates, let's call those U, where the first coordinate lies on (0,0), and the rest is still somewhat free. Our next job is to make sure point 2 ends up lying on the @@ -2927,12 +2921,12 @@ function getCubicRoots(pa, pb, pc, pd) { currently have. This is called shearing, and the typical x-shear matrix and its transformation looks like this:

- +

So we want some shearing value that, when multiplied by y, yields -x, so our x coordinate becomes zero. That value is simply -x/y, because *-x/y * y = -x*. Done:

- +

Now, running this on all our points generates a new set of coordinates, let's call those V, which now have point 1 on (0,0) and point 2 on (0, some-value), and we wanted it at (0,1), so we need to @@ -2940,7 +2934,7 @@ function getCubicRoots(pa, pb, pc, pd) { point 3 to end up on (1,1), so we can also scale x to make sure its x-coordinate will be 1 after we run the transform. That means we'll be x-scaling by 1/point3x, and y-scaling by point2y. This is really easy:

- +

Then, finally, this generates a new set of coordinates, let's call those W, of which point 1 lies on (0,0), point 2 lies on (0,1), and point three lies on (1, ...) so all that's left is to make sure point 3 ends up at (1,1) - but we can't scale! Point 2 is already in the @@ -2949,13 +2943,13 @@ function getCubicRoots(pa, pb, pc, pd) { but y-shearing. Additionally, we don't actually want to end up at zero (which is what we did before) so we need to shear towards an offset, in this case 1:

- +

And this generates our final set of four coordinates. Of these, we already know that points 1 through 3 are (0,0), (0,1) and (1,1), and only the last coordinate is "free". In fact, given any four starting coordinates, the resulting "transformation mapped" coordinate will be:

- +

Okay, well, that looks plain ridiculous, but: notice that every coordinate value is being offset by the initial translation, and also notice that a lot of terms in that expression are repeated. Even though the maths looks crazy as a single expression, we can just @@ -2965,13 +2959,13 @@ function getCubicRoots(pa, pb, pc, pd) { First, let's just do that translation step as a "preprocessing" operation so we don't have to subtract the values all the time. What does that leave?

- +

Suddenly things look a lot simpler: the mapped x is fairly straight forward to compute, and we see that the mapped y actually contains the mapped x in its entirety, so we'll have that part already available when we need to evaluate it. In fact, let's pull out all those common factors to see just how simple this is:

- +

That's kind of super-simple to write out in code, I think you'll agree. Coding math tends to be easier than the formulae initially make it look! @@ -3033,7 +3027,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -3046,17 +3040,17 @@ function getCubicRoots(pa, pb, pc, pd) { cubic case either: because of the kind of curve we're starting with, we know there is only root, simplifying the code we need!

First, let's look at the function for x(t):

- +

We can rewrite this to a plain polynomial form, by just fully writing out the expansion and then collecting the polynomial factors, as:

- +

Nothing special here: that's a standard cubic polynomial in "power" form (i.e. all the terms are ordered by their power of t). So, given that a, b, c, d, and x(t) are all known constants, we can trivially rewrite this (by moving the x(t) across the equal sign) as:

- +

You might be wondering "where did all the other 'minus x' for all the other values a, b, c, and d go?" and the answer there is that they all cancel out, so the only one we actually need to subtract is the one at the end. Handy! So now we just solve this equation using @@ -3080,7 +3074,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -3097,9 +3091,9 @@ y = curve.get(t).y fy(t), then the length of the curve, measured from start point to some point t = z, is computed using the following seemingly straight forward (if a bit overwhelming) formula:

- +

or, more commonly written using Leibnitz notation as:

- +

This formula says that the length of a parametric curve is in fact equal to the area underneath a function that looks a remarkable amount like Pythagoras' rule for computing the diagonal of a straight angled triangle. This sounds pretty simple, right? Sadly, @@ -3125,7 +3119,7 @@ y = curve.get(t).y works, I can recommend the University of South Florida video lecture on the procedure, linked in this very paragraph. The general solution we're looking for is the following:

- +

In plain text: an integral function can always be treated as the sum of an (infinite) number of (infinitely thin) rectangular strips sitting "under" the function's plotted graph. To illustrate this idea, the following graph shows the integral for a sinusoid function. The @@ -3188,8 +3182,8 @@ y = curve.get(t).y

@@ -3203,15 +3197,15 @@ y = curve.get(t).y values, for any n, so if we want to approximate our integral with only two terms (which is a bit low, really) then these tables would tell us that for n=2 we must use the following values:

- +

Which means that in order for us to approximate the integral, we must plug these values into the approximate function, which gives us:

@@ -3230,7 +3224,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -3259,7 +3253,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3274,7 +3268,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3349,12 +3343,12 @@ y = curve.get(t).y we can find a lot of insight.

So, what does the function look like? This:

- +

Which is really just a "short form" that glosses over the fact that we're dealing with functions of t, so let's expand that a tiny bit:

- +

And while that's a litte more verbose, it's still just as simple to work with as the first function: the curvature at some point on any (and this cannot be overstated: any) curve is a ratio between the first and second derivative cross product, and something that @@ -3389,7 +3383,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3413,7 +3407,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3743,7 +3737,7 @@ lli = function(line1, line2): So, how can we compute C? We start with our observation that C always lies somewhere between the start and ends points, so logically C will have a function that interpolates between those two coordinates:

- +

If we can figure out what the function u(t) looks like, we'll be done. Although we do need to remember that this u(t) will have a different for depending on whether we're working with quadratic or cubic curves. @@ -3752,9 +3746,9 @@ lli = function(line1, line2): > (with thanks to Boris Zbarsky) shows us the following two formulae:

- +

And

- +

So, if we know the start and end coordinates, and we know the t value, we know C, without having to calculate the A or even B coordinates. In fact, we can do the same for the ratio function: as another function of @@ -3762,18 +3756,18 @@ lli = function(line1, line2): pure function of t, too.

We start by observing that, given A, B, and C, the following always holds:

- +

Working out the maths for this, we see the following two formulae for quadratic and cubic curves:

- +

And

- +

Which now leaves us with some powerful tools: given thee points (start, end, and "some point on the curve"), as well as a t value, we can contruct curves: we can compute C using the start and end points, and our u(t) function, and once we have C, we can use our on-curve point (B) and the ratio(t) function to find A:

- +

With A found, finding e1 and e2 for quadratic curves is a matter of running the linear interpolation with t between start and A to yield e1, and between A and end to yield @@ -3781,9 +3775,9 @@ lli = function(line1, line2): distance ratio between e1 to B and B to e2 is the Bézier ratio (1-t):t, we can reverse engineer v1 and v2:

- +

And then reverse engineer the curve's control control points:

- +

So: if we have a curve's start and end point, then for any t value we implicitly know all the ABC values, which (combined with an educated guess on appropriate e1 and e2 coordinates for cubic curves) gives us the necessary information @@ -3809,8 +3803,8 @@ lli = function(line1, line2):

@@ -3855,8 +3849,8 @@ lli = function(line1, line2):

@@ -3870,8 +3864,8 @@ lli = function(line1, line2):

@@ -3882,8 +3876,8 @@ lli = function(line1, line2):

The result of this approach looks as follows:

@@ -4000,9 +3994,9 @@ for (coordinate, index) in LUT: initial B coordinate. We don't even need the latter: with our t value and "whever the cursor is" as target B, we can compute the associated C:

- +

And then the associated A:

- +

And we're done, because that's our new quadratic control point!

And then we (trivially) rearrange the terms across multiple lines:

@@ -4150,7 +4144,7 @@ for (coordinate, index) in LUT: @@ -4158,7 +4152,7 @@ for (coordinate, index) in LUT: @@ -4166,15 +4160,15 @@ for (coordinate, index) in LUT:

Which we can then decompose:

@@ -4182,7 +4176,7 @@ for (coordinate, index) in LUT: @@ -4200,7 +4194,7 @@ for (coordinate, index) in LUT: @@ -4228,7 +4222,7 @@ for (coordinate, index) in LUT: @@ -4240,7 +4234,7 @@ for (coordinate, index) in LUT: @@ -4256,7 +4250,7 @@ for (coordinate, index) in LUT: @@ -4267,7 +4261,7 @@ for (coordinate, index) in LUT: @@ -4280,16 +4274,16 @@ for (coordinate, index) in LUT:

In which we can replace the rather cumbersome "squaring" operation with a more conventional matrix equivalent:

@@ -4305,7 +4299,7 @@ for (coordinate, index) in LUT: @@ -4313,7 +4307,7 @@ for (coordinate, index) in LUT: @@ -4321,8 +4315,8 @@ for (coordinate, index) in LUT:

@@ -4333,8 +4327,8 @@ for (coordinate, index) in LUT:

@@ -4366,8 +4360,8 @@ for (coordinate, index) in LUT:

@@ -4446,8 +4440,8 @@ for (coordinate, index) in LUT:

@@ -4505,7 +4499,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4531,8 +4525,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4544,16 +4538,16 @@ for p = 1 to points.length-3 (inclusive):

Thus:

@@ -4565,8 +4559,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4576,7 +4570,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4584,24 +4578,24 @@ for p = 1 to points.length-3 (inclusive):

and merge the matrices:

This looks a lot like the Bézier matrix form, which as we saw in the chapter on Bézier curves, should look like this:

So, if we want to express a Catmull-Rom curve using a Bézier curve, we'll need to turn this Catmull-Rom bit:

@@ -4609,39 +4603,39 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg" width="227px" - height="84px" + height="76px" loading="lazy" />

Into something that looks like this:

And the way we do that is with a fairly straight forward bit of matrix rewriting. We start with the equality we need to ensure:

Then we remove the coordinate vector from both sides without affecting the equality:

Then we can "get rid of" the Bézier matrix on the right by left-multiply both with the inverse of the Bézier matrix:

@@ -4651,16 +4645,16 @@ for p = 1 to points.length-3 (inclusive):

And now we're basically done. We just multiply those two matrices and we know what V is:

We now have the final piece of our function puzzle. Let's run through each step.

@@ -4670,7 +4664,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4680,8 +4674,8 @@ for p = 1 to points.length-3 (inclusive):
    @@ -4690,8 +4684,8 @@ for p = 1 to points.length-3 (inclusive):
      @@ -4701,7 +4695,7 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg" width="348px" - height="84px" + height="76px" loading="lazy" />
        @@ -4710,8 +4704,8 @@ for p = 1 to points.length-3 (inclusive):
          @@ -4720,8 +4714,8 @@ for p = 1 to points.length-3 (inclusive):

          And we're done: we finally know how to convert these two curves!

          @@ -4734,8 +4728,8 @@ for p = 1 to points.length-3 (inclusive):

          @@ -4745,16 +4739,16 @@ for p = 1 to points.length-3 (inclusive):

          Or, if your API allows you to specify Catmull-Rom curves using plain coordinates:

@@ -4827,13 +4821,13 @@ for p = 1 to points.length-3 (inclusive): make things a little better. We'll start by linking up control points by ensuring that the "incoming" derivative at an on-curve point is the same as it's "outgoing" derivative:

- +

We can effect this quite easily, because we know that the vector from a curve's last control point to its last on-curve point is equal to the derivative vector. If we want to ensure that the first control point of the next curve matches that, all we have to do is mirror that last control point through the last on-curve point. And mirroring any point A through any point B is really simple:

- +

So let's implement that and see what it gets us. The following two graphics show a quadratic and a cubic poly-Bézier curve again, but this time moving the control points around moves others, too. However, you might see something unexpected going on for quadratic curves... @@ -4994,8 +4988,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5007,8 +5001,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5021,7 +5015,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5033,8 +5027,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5043,8 +5037,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5237,33 +5231,33 @@ for p = 1 to points.length-3 (inclusive): We start out with our start and end point, and for convenience we will place them on a unit circle (a circle around 0,0 with radius 1), at some angle φ:

- +

What we want to find is the intersection of the tangents, so we want a point C such that:

- +

i.e. we want a point that lies on the vertical line through S (at some distance a from S) and also lies on the tangent line through E (at some distance b from E). Solving this gives us:

- +

First we solve for b:

- +

which yields:

- +

which we can then substitute in the expression for a:

- +

A quick check shows that plugging these values for a and b into the expressions for Cx and Cy give the same x/y coordinates for both "a away from A" and "b away from B", so let's continue: now that we know the coordinate values for C, we know where our on-curve point T for t=0.5 (or angle φ/2) is, because we can just evaluate the Bézier polynomial, and we know where the circle arc's actual point P is for angle φ/2:

- +

We compute T, observing that if t=0.5, the polynomial values (1-t)², 2(1-t)t, and t² are 0.25, 0.5, and 0.25 respectively:

- +

Which, worked out for the x and y components, gives:

- +

And the distance between these two is the standard Euclidean distance:

- +

So, what does this distance function look like when we plot it for a number of ranges for the angle φ, such as a half circle, quarter circle and eighth circle? @@ -5304,7 +5298,7 @@ for p = 1 to points.length-3 (inclusive): In fact, let's flip the function around, so that if we plug in the precision error, labelled ε, we get back the maximum angle for that precision:

- +

And frankly, things are starting to look a bit ridiculous at this point, we're doing way more maths than we've ever done, but thankfully this is as far as we need the maths to take us: If we plug in the precisions 0.1, 0.01, 0.001 and 0.0001 we get the radians values 1.748, @@ -5411,7 +5405,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5423,7 +5417,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5431,7 +5425,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5468,8 +5462,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5491,8 +5485,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5502,15 +5496,15 @@ for p = 1 to points.length-3 (inclusive):

@@ -5520,8 +5514,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5531,8 +5525,8 @@ for p = 1 to points.length-3 (inclusive):

And that's it, we have all four points now for an approximation of an arbitrary circular arc with angle φ.

@@ -5542,7 +5536,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5550,7 +5544,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5561,15 +5555,15 @@ for p = 1 to points.length-3 (inclusive):

Which, in decimal values, rounded to six significant digits, is:

@@ -5758,7 +5752,7 @@ for p = 1 to points.length-3 (inclusive): >, we can compute a point on the curve for some value t in the interval [0,1] (where 0 is the start of the curve, and 1 the end, just like for Bézier curves), by evaluating the following function:

- +

Which, honestly, doesn't tell us all that much. All we can see is that a point on a B-Spline curve is defined as "a mix of all the control points, weighted somehow", where the weighting is achieved through the N(...) function, subscripted with an obvious parameter @@ -5773,14 +5767,14 @@ for p = 1 to points.length-3 (inclusive): k subscript to the N() function applies to.

Then the N() function itself. What does it look like?

- +

So this is where we see the interpolation: N(t) for an (i,k) pair (that is, for a step in the above summation, on a specific knot interval) is a mix between N(t) for (i,k-1) and N(t) for (i+1,k-1), so we see that this is a recursive iteration where i goes up, and k goes down, so it seem reasonable to expect that this recursion has to stop at some point; obviously, it does, and specifically it does so for the following i/k values:

- +

And this function finally has a straight up evaluation: if a t value lies within a knot-specific interval once we reach a k=1 value, it "counts", otherwise it doesn't. We did cheat a little, though, because for all these values we need to scale @@ -5797,12 +5791,12 @@ for p = 1 to points.length-3 (inclusive): Carl de Boor — came to a mathematically pleasing solution: to compute a point P(t), we can compute this point by evaluating d(t) on a curve section between knots i and i+1:

- +

This is another recursive function, with k values decreasing from the curve order to 1, and the value α (alpha) defined by:

- +

That looks complicated, but it's not. Computing alpha is just a fraction involving known, plain numbers. And, once we have our alpha value, we also have (1-alpha) because it's a trivial subtraction. Computing the d() function is thus mostly a @@ -5810,7 +5804,7 @@ for p = 1 to points.length-3 (inclusive): recursion might see computationally expensive, the total algorithm is cheap, as each step only involves very simple maths.

Of course, the recursion does need a stop condition:

- +

So, we actually see two stopping conditions: either i becomes 0, in which case d() is zero, or k becomes zero, in which case we get the same "either 1 or 0" that we saw in the N() function above. @@ -5820,7 +5814,7 @@ for p = 1 to points.length-3 (inclusive): Casteljau's algorithm. For instance, if we write out d() for i=3 and k=3, we get the following recursion diagram:

- +

That is, we compute d(3,3) as a mixture of d(2,3) and d(2,2), where those two are themselves a mixture of d(1,3) and d(1,2), and d(1,2) and d(1,1), respectively, which are diff --git a/docs/ja-JP/index.html b/docs/ja-JP/index.html index 84bc056f..7fffc027 100644 --- a/docs/ja-JP/index.html +++ b/docs/ja-JP/index.html @@ -33,7 +33,7 @@ - + @@ -499,27 +499,27 @@

ベジエ曲線は「パラメトリック」関数の一種です。数学的に言えば、パラメトリック関数というのはインチキです。というのも、「関数」はきっちり定義された用語であり、いくつかの入力を1つの出力に対応させる写像を表すものだからです。いくつかの数値を入れると、1つの数値が出てきます。入れる数値が変わっても、出てくる数値はやはり1つだけです。パラメトリック関数はインチキです。基本的には「じゃあわかった、値を複数個出したいから、関数を複数個使うことにするよ」ということです。例として、ある値xに何らかの操作を行い、別の値へと写す関数があるとします。

- +

f(x)という記法は、これが関数(1つしかない場合は慣習的にfと呼びます)であり、その出力が1つの変数(この場合はxです)に応じて変化する、ということを示す標準的な方法です。xを変化させると、f(x)の出力が変化します。

ここまでは順調です。では、パラメトリック関数について、これがどうインチキなのかを見てみましょう。以下の2つの関数を考えます。

- +

注目すべき箇所は特に何もありません。ただの正弦関数と余弦関数です。ただし、入力が別々の名前になっていることに気づくでしょう。仮にaの値を変えたとしても、f(b)の出力の値は変わらないはずです。なぜなら、こちらの関数にはaは使われていないからです。パラメトリック関数は、これを変えてしまうのでインチキなのです。パラメトリック関数においては、どの関数も変数を共有しています。例えば、

複数の関数がありますが、変数は1つだけです。tの値を変えた場合、fa(t)fb(t)の両方の出力が変わります。これがどのように役に立つのか、疑問に思うかもしれません。しかし、実際には答えは至ってシンプルです。fa(t)fb(t)のラベルを、パラメトリック曲線の表示によく使われているもので置き換えてやれば、ぐっとはっきりするかと思います。

- +

きました。x/y座標です。謎の値tを通して繫がっています。

というわけで、普通の関数ではy座標をx座標によって定義しますが、パラメトリック曲線ではそうではなく、座標の値を「制御」変数と結びつけます。tの値を変化させるたびに2つの値が変化するので、これをグラフ上の座標 @@ -541,8 +541,8 @@

@@ -750,7 +750,7 @@ function Bezier(3,t,w[]): @@ -758,8 +758,8 @@ function Bezier(3,t,w[]):

@@ -1359,7 +1359,7 @@ function drawCurve(points[], t): The general rule for raising an nth order curve to an (n+1)th order curve is as follows (observing that the start and end weights are the same as the start and end weights for the old curve):

- +

However, this rule also has as direct consequence that you cannot generally safely lower a curve from nth order to (n-1)th order, because the control points cannot be "pulled apart" cleanly. We can @@ -1373,18 +1373,18 @@ function drawCurve(points[], t): some things can be done much more easily with matrices than with calculus functions, and this is one of those things. So... let's go!

We start by taking the standard Bézier function, and condensing it a little:

- +

Then, we apply one of those silly (actually, super useful) calculus tricks: since our t value is always between zero and one (inclusive), we know that (1-t) plus t always sums to 1. As such, we can express any value as a sum of t and 1-t:

- +

So, with that seemingly trivial observation, we rewrite that Bézier function by splitting it up into a sum of a (1-t) and t component:

- +

So far so good. Now, to see why we did this, let's write out the (1-t) and t parts, and see what that gives us. I promise, it's about to make sense. We start with (1-t): @@ -1392,8 +1392,8 @@ function drawCurve(points[], t):

@@ -1406,8 +1406,8 @@ function drawCurve(points[], t):

@@ -1422,7 +1422,7 @@ function drawCurve(points[], t): @@ -1430,13 +1430,13 @@ function drawCurve(points[], t): And this is where we switch over from calculus to linear algebra, and matrices: we can now express this relation between Bézier(n,t) and Bézier(n+1,t) as a very simple matrix multiplication:

- +

where the matrix M is an n+1 by n matrix, and looks like:

@@ -1455,8 +1455,8 @@ function drawCurve(points[], t):

The steps taken here are:

@@ -1485,7 +1485,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1683,9 +1683,9 @@ function drawCurve(points[], t):

@@ -1694,16 +1694,9 @@ function drawCurve(points[], t):

-

@@ -1713,9 +1706,9 @@ function drawCurve(points[], t):

@@ -1731,7 +1724,7 @@ function drawCurve(points[], t): @@ -1739,7 +1732,7 @@ function drawCurve(points[], t): @@ -1771,7 +1764,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -1784,7 +1777,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -1858,7 +1851,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1970,7 +1963,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -2019,10 +2012,11 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + +

 

Scripts are disabled. Showing fallback image. - + @@ -2057,15 +2051,15 @@ function drawCurve(points[], t):

And then we turn this into our solution for t using basic arithmetics:

@@ -2083,8 +2077,8 @@ function drawCurve(points[], t):

@@ -2100,16 +2094,16 @@ function drawCurve(points[], t):

And then, using these v values, we can find out what our a, b, and c should be:

@@ -2120,7 +2114,7 @@ function drawCurve(points[], t): class="LaTeX SVG" src="./images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg" width="308px" - height="63px" + height="64px" loading="lazy" />

Easy-peasy. We can now almost trivially find the roots by plugging those values into the quadratic formula.

@@ -2142,8 +2136,8 @@ function drawCurve(points[], t):

@@ -2298,8 +2292,8 @@ function getCubicRoots(pa, pb, pc, pd) {

(The Wikipedia article has a decent animation for this process, so I will not add a graphic for that here)

@@ -2332,7 +2326,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - +
@@ -2346,7 +2340,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -2383,14 +2377,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2418,37 +2412,37 @@ function getCubicRoots(pa, pb, pc, pd) { rotate the curves so that the last point always lies on the x-axis, too, making its coordinate (...,0). This further simplifies the function for the y-component to an n-2 term function. For instance, if we have a cubic curve such as this:

- +

Then translating it so that the first coordinate lies on (0,0), moving all x coordinates by -120, and all y coordinates by -160, gives us:

- +

If we then rotate the curve so that its end point lies on the x-axis, the coordinates (integer-rounded for illustrative purposes here) become:

- +

If we drop all the zero-terms, this gives us:

- +

We can see that our original curve definition has been simplified considerably. The following graphics illustrate the result of aligning our example curves to the x-axis, with the cubic case using the coordinates that were just used in the example formulae:

-
- - - Scripts are disabled. Showing fallback image. - - - - - Scripts are disabled. Showing fallback image. - - -
+ + + Scripts are disabled. Showing fallback image. + + + +

 

+ + + Scripts are disabled. Showing fallback image. + +

@@ -2471,14 +2465,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2509,7 +2503,7 @@ function getCubicRoots(pa, pb, pc, pd) { inflection, and we can find out where those happen relatively easily.

What we need to do is solve a simple equation:

- +

What we're saying here is that given the curvature function C(t), we want to know for which values of t this function is zero, meaning there is no "curvature", which will be exactly at the point between our circle being on one side of the curve, and our @@ -2518,8 +2512,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2542,7 +2536,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2550,7 +2544,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2561,8 +2555,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2579,7 +2573,7 @@ function getCubicRoots(pa, pb, pc, pd) { class="LaTeX SVG" src="./images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg" width="533px" - height="20px" + height="19px" loading="lazy" />

@@ -2589,7 +2583,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2597,8 +2591,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2612,7 +2606,7 @@ function getCubicRoots(pa, pb, pc, pd) { Scripts are disabled. Showing fallback image. - + @@ -2670,8 +2664,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2683,8 +2677,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2693,7 +2687,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2750,12 +2744,12 @@ function getCubicRoots(pa, pb, pc, pd) { cx + dy), which means we can't do translation, since that requires we end up with some kind of (x + a, y + b). If we add a bogus z coordinate that is always 1, then we can suddenly add arbitrary values. For example:

- +

Sweet! z stays 1, so we can effectively ignore it entirely, but we added some plain values to our x and y coordinates. So, if we want to subtract p1.x and p1.y, we use:

- +

Running all our coordinates through this transformation gives a new set of coordinates, let's call those U, where the first coordinate lies on (0,0), and the rest is still somewhat free. Our next job is to make sure point 2 ends up lying on the @@ -2763,12 +2757,12 @@ function getCubicRoots(pa, pb, pc, pd) { currently have. This is called shearing, and the typical x-shear matrix and its transformation looks like this:

- +

So we want some shearing value that, when multiplied by y, yields -x, so our x coordinate becomes zero. That value is simply -x/y, because *-x/y * y = -x*. Done:

- +

Now, running this on all our points generates a new set of coordinates, let's call those V, which now have point 1 on (0,0) and point 2 on (0, some-value), and we wanted it at (0,1), so we need to @@ -2776,7 +2770,7 @@ function getCubicRoots(pa, pb, pc, pd) { point 3 to end up on (1,1), so we can also scale x to make sure its x-coordinate will be 1 after we run the transform. That means we'll be x-scaling by 1/point3x, and y-scaling by point2y. This is really easy:

- +

Then, finally, this generates a new set of coordinates, let's call those W, of which point 1 lies on (0,0), point 2 lies on (0,1), and point three lies on (1, ...) so all that's left is to make sure point 3 ends up at (1,1) - but we can't scale! Point 2 is already in the @@ -2785,13 +2779,13 @@ function getCubicRoots(pa, pb, pc, pd) { but y-shearing. Additionally, we don't actually want to end up at zero (which is what we did before) so we need to shear towards an offset, in this case 1:

- +

And this generates our final set of four coordinates. Of these, we already know that points 1 through 3 are (0,0), (0,1) and (1,1), and only the last coordinate is "free". In fact, given any four starting coordinates, the resulting "transformation mapped" coordinate will be:

- +

Okay, well, that looks plain ridiculous, but: notice that every coordinate value is being offset by the initial translation, and also notice that a lot of terms in that expression are repeated. Even though the maths looks crazy as a single expression, we can just @@ -2801,13 +2795,13 @@ function getCubicRoots(pa, pb, pc, pd) { First, let's just do that translation step as a "preprocessing" operation so we don't have to subtract the values all the time. What does that leave?

- +

Suddenly things look a lot simpler: the mapped x is fairly straight forward to compute, and we see that the mapped y actually contains the mapped x in its entirety, so we'll have that part already available when we need to evaluate it. In fact, let's pull out all those common factors to see just how simple this is:

- +

That's kind of super-simple to write out in code, I think you'll agree. Coding math tends to be easier than the formulae initially make it look! @@ -2869,7 +2863,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -2882,17 +2876,17 @@ function getCubicRoots(pa, pb, pc, pd) { cubic case either: because of the kind of curve we're starting with, we know there is only root, simplifying the code we need!

First, let's look at the function for x(t):

- +

We can rewrite this to a plain polynomial form, by just fully writing out the expansion and then collecting the polynomial factors, as:

- +

Nothing special here: that's a standard cubic polynomial in "power" form (i.e. all the terms are ordered by their power of t). So, given that a, b, c, d, and x(t) are all known constants, we can trivially rewrite this (by moving the x(t) across the equal sign) as:

- +

You might be wondering "where did all the other 'minus x' for all the other values a, b, c, and d go?" and the answer there is that they all cancel out, so the only one we actually need to subtract is the one at the end. Handy! So now we just solve this equation using @@ -2916,7 +2910,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -2933,9 +2927,9 @@ y = curve.get(t).y fy(t), then the length of the curve, measured from start point to some point t = z, is computed using the following seemingly straight forward (if a bit overwhelming) formula:

- +

or, more commonly written using Leibnitz notation as:

- +

This formula says that the length of a parametric curve is in fact equal to the area underneath a function that looks a remarkable amount like Pythagoras' rule for computing the diagonal of a straight angled triangle. This sounds pretty simple, right? Sadly, @@ -2961,7 +2955,7 @@ y = curve.get(t).y works, I can recommend the University of South Florida video lecture on the procedure, linked in this very paragraph. The general solution we're looking for is the following:

- +

In plain text: an integral function can always be treated as the sum of an (infinite) number of (infinitely thin) rectangular strips sitting "under" the function's plotted graph. To illustrate this idea, the following graph shows the integral for a sinusoid function. The @@ -3024,8 +3018,8 @@ y = curve.get(t).y

@@ -3039,15 +3033,15 @@ y = curve.get(t).y values, for any n, so if we want to approximate our integral with only two terms (which is a bit low, really) then these tables would tell us that for n=2 we must use the following values:

- +

Which means that in order for us to approximate the integral, we must plug these values into the approximate function, which gives us:

@@ -3066,7 +3060,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -3095,7 +3089,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3110,7 +3104,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3185,12 +3179,12 @@ y = curve.get(t).y we can find a lot of insight.

So, what does the function look like? This:

- +

Which is really just a "short form" that glosses over the fact that we're dealing with functions of t, so let's expand that a tiny bit:

- +

And while that's a litte more verbose, it's still just as simple to work with as the first function: the curvature at some point on any (and this cannot be overstated: any) curve is a ratio between the first and second derivative cross product, and something that @@ -3225,7 +3219,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3249,7 +3243,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3579,7 +3573,7 @@ lli = function(line1, line2): So, how can we compute C? We start with our observation that C always lies somewhere between the start and ends points, so logically C will have a function that interpolates between those two coordinates:

- +

If we can figure out what the function u(t) looks like, we'll be done. Although we do need to remember that this u(t) will have a different for depending on whether we're working with quadratic or cubic curves. @@ -3588,9 +3582,9 @@ lli = function(line1, line2): > (with thanks to Boris Zbarsky) shows us the following two formulae:

- +

And

- +

So, if we know the start and end coordinates, and we know the t value, we know C, without having to calculate the A or even B coordinates. In fact, we can do the same for the ratio function: as another function of @@ -3598,18 +3592,18 @@ lli = function(line1, line2): pure function of t, too.

We start by observing that, given A, B, and C, the following always holds:

- +

Working out the maths for this, we see the following two formulae for quadratic and cubic curves:

- +

And

- +

Which now leaves us with some powerful tools: given thee points (start, end, and "some point on the curve"), as well as a t value, we can contruct curves: we can compute C using the start and end points, and our u(t) function, and once we have C, we can use our on-curve point (B) and the ratio(t) function to find A:

- +

With A found, finding e1 and e2 for quadratic curves is a matter of running the linear interpolation with t between start and A to yield e1, and between A and end to yield @@ -3617,9 +3611,9 @@ lli = function(line1, line2): distance ratio between e1 to B and B to e2 is the Bézier ratio (1-t):t, we can reverse engineer v1 and v2:

- +

And then reverse engineer the curve's control control points:

- +

So: if we have a curve's start and end point, then for any t value we implicitly know all the ABC values, which (combined with an educated guess on appropriate e1 and e2 coordinates for cubic curves) gives us the necessary information @@ -3645,8 +3639,8 @@ lli = function(line1, line2):

@@ -3691,8 +3685,8 @@ lli = function(line1, line2):

@@ -3706,8 +3700,8 @@ lli = function(line1, line2):

@@ -3718,8 +3712,8 @@ lli = function(line1, line2):

The result of this approach looks as follows:

@@ -3836,9 +3830,9 @@ for (coordinate, index) in LUT: initial B coordinate. We don't even need the latter: with our t value and "whever the cursor is" as target B, we can compute the associated C:

- +

And then the associated A:

- +

And we're done, because that's our new quadratic control point!

And then we (trivially) rearrange the terms across multiple lines:

@@ -3986,7 +3980,7 @@ for (coordinate, index) in LUT: @@ -3994,7 +3988,7 @@ for (coordinate, index) in LUT: @@ -4002,15 +3996,15 @@ for (coordinate, index) in LUT:

Which we can then decompose:

@@ -4018,7 +4012,7 @@ for (coordinate, index) in LUT: @@ -4036,7 +4030,7 @@ for (coordinate, index) in LUT: @@ -4064,7 +4058,7 @@ for (coordinate, index) in LUT: @@ -4076,7 +4070,7 @@ for (coordinate, index) in LUT: @@ -4092,7 +4086,7 @@ for (coordinate, index) in LUT: @@ -4103,7 +4097,7 @@ for (coordinate, index) in LUT: @@ -4116,16 +4110,16 @@ for (coordinate, index) in LUT:

In which we can replace the rather cumbersome "squaring" operation with a more conventional matrix equivalent:

@@ -4141,7 +4135,7 @@ for (coordinate, index) in LUT: @@ -4149,7 +4143,7 @@ for (coordinate, index) in LUT: @@ -4157,8 +4151,8 @@ for (coordinate, index) in LUT:

@@ -4169,8 +4163,8 @@ for (coordinate, index) in LUT:

@@ -4202,8 +4196,8 @@ for (coordinate, index) in LUT:

@@ -4282,8 +4276,8 @@ for (coordinate, index) in LUT:

@@ -4341,7 +4335,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4367,8 +4361,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4380,16 +4374,16 @@ for p = 1 to points.length-3 (inclusive):

Thus:

@@ -4401,8 +4395,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4412,7 +4406,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4420,24 +4414,24 @@ for p = 1 to points.length-3 (inclusive):

and merge the matrices:

This looks a lot like the Bézier matrix form, which as we saw in the chapter on Bézier curves, should look like this:

So, if we want to express a Catmull-Rom curve using a Bézier curve, we'll need to turn this Catmull-Rom bit:

@@ -4445,39 +4439,39 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg" width="227px" - height="84px" + height="76px" loading="lazy" />

Into something that looks like this:

And the way we do that is with a fairly straight forward bit of matrix rewriting. We start with the equality we need to ensure:

Then we remove the coordinate vector from both sides without affecting the equality:

Then we can "get rid of" the Bézier matrix on the right by left-multiply both with the inverse of the Bézier matrix:

@@ -4487,16 +4481,16 @@ for p = 1 to points.length-3 (inclusive):

And now we're basically done. We just multiply those two matrices and we know what V is:

We now have the final piece of our function puzzle. Let's run through each step.

@@ -4506,7 +4500,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4516,8 +4510,8 @@ for p = 1 to points.length-3 (inclusive):
    @@ -4526,8 +4520,8 @@ for p = 1 to points.length-3 (inclusive):
      @@ -4537,7 +4531,7 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg" width="348px" - height="84px" + height="76px" loading="lazy" />
        @@ -4546,8 +4540,8 @@ for p = 1 to points.length-3 (inclusive):
          @@ -4556,8 +4550,8 @@ for p = 1 to points.length-3 (inclusive):

          And we're done: we finally know how to convert these two curves!

          @@ -4570,8 +4564,8 @@ for p = 1 to points.length-3 (inclusive):

          @@ -4581,16 +4575,16 @@ for p = 1 to points.length-3 (inclusive):

          Or, if your API allows you to specify Catmull-Rom curves using plain coordinates:

@@ -4663,13 +4657,13 @@ for p = 1 to points.length-3 (inclusive): make things a little better. We'll start by linking up control points by ensuring that the "incoming" derivative at an on-curve point is the same as it's "outgoing" derivative:

- +

We can effect this quite easily, because we know that the vector from a curve's last control point to its last on-curve point is equal to the derivative vector. If we want to ensure that the first control point of the next curve matches that, all we have to do is mirror that last control point through the last on-curve point. And mirroring any point A through any point B is really simple:

- +

So let's implement that and see what it gets us. The following two graphics show a quadratic and a cubic poly-Bézier curve again, but this time moving the control points around moves others, too. However, you might see something unexpected going on for quadratic curves... @@ -4830,8 +4824,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4843,8 +4837,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4857,7 +4851,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4869,8 +4863,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4879,8 +4873,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5073,33 +5067,33 @@ for p = 1 to points.length-3 (inclusive): We start out with our start and end point, and for convenience we will place them on a unit circle (a circle around 0,0 with radius 1), at some angle φ:

- +

What we want to find is the intersection of the tangents, so we want a point C such that:

- +

i.e. we want a point that lies on the vertical line through S (at some distance a from S) and also lies on the tangent line through E (at some distance b from E). Solving this gives us:

- +

First we solve for b:

- +

which yields:

- +

which we can then substitute in the expression for a:

- +

A quick check shows that plugging these values for a and b into the expressions for Cx and Cy give the same x/y coordinates for both "a away from A" and "b away from B", so let's continue: now that we know the coordinate values for C, we know where our on-curve point T for t=0.5 (or angle φ/2) is, because we can just evaluate the Bézier polynomial, and we know where the circle arc's actual point P is for angle φ/2:

- +

We compute T, observing that if t=0.5, the polynomial values (1-t)², 2(1-t)t, and t² are 0.25, 0.5, and 0.25 respectively:

- +

Which, worked out for the x and y components, gives:

- +

And the distance between these two is the standard Euclidean distance:

- +

So, what does this distance function look like when we plot it for a number of ranges for the angle φ, such as a half circle, quarter circle and eighth circle? @@ -5140,7 +5134,7 @@ for p = 1 to points.length-3 (inclusive): In fact, let's flip the function around, so that if we plug in the precision error, labelled ε, we get back the maximum angle for that precision:

- +

And frankly, things are starting to look a bit ridiculous at this point, we're doing way more maths than we've ever done, but thankfully this is as far as we need the maths to take us: If we plug in the precisions 0.1, 0.01, 0.001 and 0.0001 we get the radians values 1.748, @@ -5247,7 +5241,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5259,7 +5253,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5267,7 +5261,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5304,8 +5298,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5327,8 +5321,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5338,15 +5332,15 @@ for p = 1 to points.length-3 (inclusive):

@@ -5356,8 +5350,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5367,8 +5361,8 @@ for p = 1 to points.length-3 (inclusive):

And that's it, we have all four points now for an approximation of an arbitrary circular arc with angle φ.

@@ -5378,7 +5372,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5386,7 +5380,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5397,15 +5391,15 @@ for p = 1 to points.length-3 (inclusive):

Which, in decimal values, rounded to six significant digits, is:

@@ -5594,7 +5588,7 @@ for p = 1 to points.length-3 (inclusive): >, we can compute a point on the curve for some value t in the interval [0,1] (where 0 is the start of the curve, and 1 the end, just like for Bézier curves), by evaluating the following function:

- +

Which, honestly, doesn't tell us all that much. All we can see is that a point on a B-Spline curve is defined as "a mix of all the control points, weighted somehow", where the weighting is achieved through the N(...) function, subscripted with an obvious parameter @@ -5609,14 +5603,14 @@ for p = 1 to points.length-3 (inclusive): k subscript to the N() function applies to.

Then the N() function itself. What does it look like?

- +

So this is where we see the interpolation: N(t) for an (i,k) pair (that is, for a step in the above summation, on a specific knot interval) is a mix between N(t) for (i,k-1) and N(t) for (i+1,k-1), so we see that this is a recursive iteration where i goes up, and k goes down, so it seem reasonable to expect that this recursion has to stop at some point; obviously, it does, and specifically it does so for the following i/k values:

- +

And this function finally has a straight up evaluation: if a t value lies within a knot-specific interval once we reach a k=1 value, it "counts", otherwise it doesn't. We did cheat a little, though, because for all these values we need to scale @@ -5633,12 +5627,12 @@ for p = 1 to points.length-3 (inclusive): Carl de Boor — came to a mathematically pleasing solution: to compute a point P(t), we can compute this point by evaluating d(t) on a curve section between knots i and i+1:

- +

This is another recursive function, with k values decreasing from the curve order to 1, and the value α (alpha) defined by:

- +

That looks complicated, but it's not. Computing alpha is just a fraction involving known, plain numbers. And, once we have our alpha value, we also have (1-alpha) because it's a trivial subtraction. Computing the d() function is thus mostly a @@ -5646,7 +5640,7 @@ for p = 1 to points.length-3 (inclusive): recursion might see computationally expensive, the total algorithm is cheap, as each step only involves very simple maths.

Of course, the recursion does need a stop condition:

- +

So, we actually see two stopping conditions: either i becomes 0, in which case d() is zero, or k becomes zero, in which case we get the same "either 1 or 0" that we saw in the N() function above. @@ -5656,7 +5650,7 @@ for p = 1 to points.length-3 (inclusive): Casteljau's algorithm. For instance, if we write out d() for i=3 and k=3, we get the following recursion diagram:

- +

That is, we compute d(3,3) as a mixture of d(2,3) and d(2,2), where those two are themselves a mixture of d(1,3) and d(1,2), and d(1,2) and d(1,1), respectively, which are diff --git a/docs/js/custom-element/lib/perform-code-surgery.js b/docs/js/custom-element/lib/perform-code-surgery.js index 2d765594..5498427d 100644 --- a/docs/js/custom-element/lib/perform-code-surgery.js +++ b/docs/js/custom-element/lib/perform-code-surgery.js @@ -22,7 +22,7 @@ export default function performCodeSurgery(code) { // 3. rewrite all public GraphicsAPI functions to have the required `this.` prefix GraphicsAPI.methods.forEach((fn) => { - const re = new RegExp(`([({\\s\\r\\n])${fn}\\(`, `g`); + const re = new RegExp(`([!({\\s\\r\\n])${fn}\\(`, `g`); code = code.replace(re, `$1this.${fn}(`); }); diff --git a/docs/news/2020-09-18.html b/docs/news/2020-09-18.html index dbbf2c78..3263431a 100644 --- a/docs/news/2020-09-18.html +++ b/docs/news/2020-09-18.html @@ -27,7 +27,7 @@ - + diff --git a/docs/news/2020-09-19-draft.md b/docs/news/draft.md similarity index 100% rename from docs/news/2020-09-19-draft.md rename to docs/news/draft.md diff --git a/docs/zh-CN/index.html b/docs/zh-CN/index.html index a6598b6f..3e496999 100644 --- a/docs/zh-CN/index.html +++ b/docs/zh-CN/index.html @@ -33,7 +33,7 @@ - + @@ -450,7 +450,7 @@ >的结果。这听起来很复杂,但你在很小的时候就做过线性插值:当你指向两个物体中的另外一个物体时,你就用到了线性插值。它就是很简单的“选出两点之间的一个点”。

如果我们知道两点之间的距离,并想找出离第一个点20%间距的一个新的点(也就是离第二个点80%的间距),我们可以通过简单的计算来得到:

- +

让我们来通过实际操作看一下:下面的图形都是可交互的,因此你可以通过上下键来增加或减少插值距离,来观察图形的变化。我们从三个点构成的两条线段开始。通过对各条线段进行线性插值得到两个点,对点之间的线段再进行线性插值,产生一个新的点。最终这些点——所有的点都可以通过选取不同的距离插值产生——构成了贝塞尔曲线 : @@ -477,26 +477,26 @@

贝塞尔曲线是“参数”方程的一种形式。从数学上讲,参数方程作弊了:“方程”实际上是一个从输入到唯一输出的、良好定义的映射关系。几个输入进来,一个输出返回。改变输入变量,还是只有一个输出值。参数方程在这里作弊了。它们基本上干了这么件事,“好吧,我们想要更多的输出值,所以我们用了多个方程”。举个例子:假如我们有一个方程,通过一些计算,将假设为x的一些值映射到另外的值:

- +

记号f(x)是表示函数的标准方式(为了方便起见,如果只有一个的话,我们称函数为f),函数的输出根据一个变量(本例中是x)变化。改变xf(x)的输出值也会变。

到目前没什么问题。现在,让我们来看一下参数方程,以及它们是怎么作弊的。我们取以下两个方程:

- +

这俩方程没什么让人印象深刻的,只不过是正弦函数和余弦函数,但正如你所见,输入变量有两个不同的名字。如果我们改变了a的值,f(b)的输出不会有变化,因为这个方程没有用到a。参数方程通过改变这点来作弊。在参数方程中,所有不同的方程共用一个变量,如下所示:

多个方程,但只有一个变量。如果我们改变了t的值,fa(t)fb(t)的输出都会发生变化。你可能会好奇这有什么用,答案其实很简单:对于参数曲线,如果我们用常用的标记来替代fa(t)fb(t),看起来就有些明朗了:

- +

好了,通过一些神秘的t值将x/y坐标系联系起来。

所以,参数曲线不像一般函数那样,通过x坐标来定义y坐标,而是用一个“控制”变量将它们连接起来。如果改变t的值,每次变化时我们都能得到两个值,这可以作为图形中的(x,y)坐标。比如上面的方程组,生成位于一个圆上的点:我们可以使t在正负极值间变化,得到的输出(x,y)都会位于一个以原点(0,0)为中心且半径为1的圆上。如果我们画出t从0到5时的值,将得到如下图像: @@ -517,8 +517,8 @@

@@ -530,7 +530,7 @@ @@ -538,8 +538,8 @@

@@ -551,7 +551,7 @@ @@ -561,8 +561,8 @@

这就是贝塞尔曲线完整的描述。在这个函数中的Σ表示了这是一系列的加法(用Σ下面的变量,从...=<值>开始,直到Σ上面的数字结束)。

@@ -716,7 +716,7 @@ function Bezier(3,t,w[]): @@ -724,8 +724,8 @@ function Bezier(3,t,w[]):

@@ -809,13 +809,13 @@ function RationalBezier(3,t,w[],r[]): 既然我们知道了贝塞尔曲线背后的数学原理,你可能会注意到一件奇怪的事:它们都是从t=0t=1。为什么是这个特殊区间?

这一切都与我们如何从曲线的“起点”变化到曲线“终点”有关。如果有一个值是另外两个值的混合,一般方程如下:

- +

很显然,起始值需要a=1, b=0,混合值就为100%的value 1和0%的value 2。终点值需要a=0, b=1,则混合值是0%的value 1和100%的value 2。另外,我们不想让“a”和“b”是互相独立的:如果它们是互相独立的话,我们可以任意选出自己喜欢的值,并得到混合值,比如说100%的value1和100%的value2。原则上这是可以的,但是对于贝塞尔曲线来说,我们通常想要的是起始值和终点值之间的混合值,所以要确保我们不会设置一些“a”和"b"而导致混合值超过100%。这很简单:

- +

用这个式子我们可以保证相加的值永远不会超过100%。通过将a限制在区间[0,1],我们将会一直处于这两个值之间(包括这两个端点),并且相加为100%。

@@ -1331,7 +1331,7 @@ function drawCurve(points[], t): The general rule for raising an nth order curve to an (n+1)th order curve is as follows (observing that the start and end weights are the same as the start and end weights for the old curve):

- +

However, this rule also has as direct consequence that you cannot generally safely lower a curve from nth order to (n-1)th order, because the control points cannot be "pulled apart" cleanly. We can @@ -1345,18 +1345,18 @@ function drawCurve(points[], t): some things can be done much more easily with matrices than with calculus functions, and this is one of those things. So... let's go!

We start by taking the standard Bézier function, and condensing it a little:

- +

Then, we apply one of those silly (actually, super useful) calculus tricks: since our t value is always between zero and one (inclusive), we know that (1-t) plus t always sums to 1. As such, we can express any value as a sum of t and 1-t:

- +

So, with that seemingly trivial observation, we rewrite that Bézier function by splitting it up into a sum of a (1-t) and t component:

- +

So far so good. Now, to see why we did this, let's write out the (1-t) and t parts, and see what that gives us. I promise, it's about to make sense. We start with (1-t): @@ -1364,8 +1364,8 @@ function drawCurve(points[], t):

@@ -1378,8 +1378,8 @@ function drawCurve(points[], t):

@@ -1394,7 +1394,7 @@ function drawCurve(points[], t): @@ -1402,13 +1402,13 @@ function drawCurve(points[], t): And this is where we switch over from calculus to linear algebra, and matrices: we can now express this relation between Bézier(n,t) and Bézier(n+1,t) as a very simple matrix multiplication:

- +

where the matrix M is an n+1 by n matrix, and looks like:

@@ -1427,8 +1427,8 @@ function drawCurve(points[], t):

The steps taken here are:

@@ -1457,7 +1457,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1655,9 +1655,9 @@ function drawCurve(points[], t):

@@ -1666,16 +1666,9 @@ function drawCurve(points[], t):

-

@@ -1685,9 +1678,9 @@ function drawCurve(points[], t):

@@ -1703,7 +1696,7 @@ function drawCurve(points[], t): @@ -1711,7 +1704,7 @@ function drawCurve(points[], t): @@ -1743,7 +1736,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -1756,7 +1749,7 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + @@ -1830,7 +1823,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1942,7 +1935,7 @@ function drawCurve(points[], t): Scripts are disabled. Showing fallback image. - + @@ -1991,10 +1984,11 @@ function drawCurve(points[], t): > Scripts are disabled. Showing fallback image. - + +

 

Scripts are disabled. Showing fallback image. - + @@ -2029,15 +2023,15 @@ function drawCurve(points[], t):

And then we turn this into our solution for t using basic arithmetics:

@@ -2055,8 +2049,8 @@ function drawCurve(points[], t):

@@ -2072,16 +2066,16 @@ function drawCurve(points[], t):

And then, using these v values, we can find out what our a, b, and c should be:

@@ -2092,7 +2086,7 @@ function drawCurve(points[], t): class="LaTeX SVG" src="./images/chapters/extremities/d9e66caeb45b6643112ce3d971b17e5b.svg" width="308px" - height="63px" + height="64px" loading="lazy" />

Easy-peasy. We can now almost trivially find the roots by plugging those values into the quadratic formula.

@@ -2114,8 +2108,8 @@ function drawCurve(points[], t):

@@ -2270,8 +2264,8 @@ function getCubicRoots(pa, pb, pc, pd) {

(The Wikipedia article has a decent animation for this process, so I will not add a graphic for that here)

@@ -2304,7 +2298,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - +
@@ -2318,7 +2312,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -2355,14 +2349,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2390,37 +2384,37 @@ function getCubicRoots(pa, pb, pc, pd) { rotate the curves so that the last point always lies on the x-axis, too, making its coordinate (...,0). This further simplifies the function for the y-component to an n-2 term function. For instance, if we have a cubic curve such as this:

- +

Then translating it so that the first coordinate lies on (0,0), moving all x coordinates by -120, and all y coordinates by -160, gives us:

- +

If we then rotate the curve so that its end point lies on the x-axis, the coordinates (integer-rounded for illustrative purposes here) become:

- +

If we drop all the zero-terms, this gives us:

- +

We can see that our original curve definition has been simplified considerably. The following graphics illustrate the result of aligning our example curves to the x-axis, with the cubic case using the coordinates that were just used in the example formulae:

-
- - - Scripts are disabled. Showing fallback image. - - - - - Scripts are disabled. Showing fallback image. - - -
+ + + Scripts are disabled. Showing fallback image. + + + +

 

+ + + Scripts are disabled. Showing fallback image. + +

@@ -2443,14 +2437,14 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + Scripts are disabled. Showing fallback image. - + @@ -2481,7 +2475,7 @@ function getCubicRoots(pa, pb, pc, pd) { inflection, and we can find out where those happen relatively easily.

What we need to do is solve a simple equation:

- +

What we're saying here is that given the curvature function C(t), we want to know for which values of t this function is zero, meaning there is no "curvature", which will be exactly at the point between our circle being on one side of the curve, and our @@ -2490,8 +2484,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2514,7 +2508,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2522,7 +2516,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2533,8 +2527,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2551,7 +2545,7 @@ function getCubicRoots(pa, pb, pc, pd) { class="LaTeX SVG" src="./images/chapters/inflections/1679090a942a43d27f886f236fc8d62b.svg" width="533px" - height="20px" + height="19px" loading="lazy" />

@@ -2561,7 +2555,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2569,8 +2563,8 @@ function getCubicRoots(pa, pb, pc, pd) {

@@ -2584,7 +2578,7 @@ function getCubicRoots(pa, pb, pc, pd) { Scripts are disabled. Showing fallback image. - + @@ -2642,8 +2636,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2655,8 +2649,8 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2665,7 +2659,7 @@ function getCubicRoots(pa, pb, pc, pd) { @@ -2722,12 +2716,12 @@ function getCubicRoots(pa, pb, pc, pd) { cx + dy), which means we can't do translation, since that requires we end up with some kind of (x + a, y + b). If we add a bogus z coordinate that is always 1, then we can suddenly add arbitrary values. For example:

- +

Sweet! z stays 1, so we can effectively ignore it entirely, but we added some plain values to our x and y coordinates. So, if we want to subtract p1.x and p1.y, we use:

- +

Running all our coordinates through this transformation gives a new set of coordinates, let's call those U, where the first coordinate lies on (0,0), and the rest is still somewhat free. Our next job is to make sure point 2 ends up lying on the @@ -2735,12 +2729,12 @@ function getCubicRoots(pa, pb, pc, pd) { currently have. This is called shearing, and the typical x-shear matrix and its transformation looks like this:

- +

So we want some shearing value that, when multiplied by y, yields -x, so our x coordinate becomes zero. That value is simply -x/y, because *-x/y * y = -x*. Done:

- +

Now, running this on all our points generates a new set of coordinates, let's call those V, which now have point 1 on (0,0) and point 2 on (0, some-value), and we wanted it at (0,1), so we need to @@ -2748,7 +2742,7 @@ function getCubicRoots(pa, pb, pc, pd) { point 3 to end up on (1,1), so we can also scale x to make sure its x-coordinate will be 1 after we run the transform. That means we'll be x-scaling by 1/point3x, and y-scaling by point2y. This is really easy:

- +

Then, finally, this generates a new set of coordinates, let's call those W, of which point 1 lies on (0,0), point 2 lies on (0,1), and point three lies on (1, ...) so all that's left is to make sure point 3 ends up at (1,1) - but we can't scale! Point 2 is already in the @@ -2757,13 +2751,13 @@ function getCubicRoots(pa, pb, pc, pd) { but y-shearing. Additionally, we don't actually want to end up at zero (which is what we did before) so we need to shear towards an offset, in this case 1:

- +

And this generates our final set of four coordinates. Of these, we already know that points 1 through 3 are (0,0), (0,1) and (1,1), and only the last coordinate is "free". In fact, given any four starting coordinates, the resulting "transformation mapped" coordinate will be:

- +

Okay, well, that looks plain ridiculous, but: notice that every coordinate value is being offset by the initial translation, and also notice that a lot of terms in that expression are repeated. Even though the maths looks crazy as a single expression, we can just @@ -2773,13 +2767,13 @@ function getCubicRoots(pa, pb, pc, pd) { First, let's just do that translation step as a "preprocessing" operation so we don't have to subtract the values all the time. What does that leave?

- +

Suddenly things look a lot simpler: the mapped x is fairly straight forward to compute, and we see that the mapped y actually contains the mapped x in its entirety, so we'll have that part already available when we need to evaluate it. In fact, let's pull out all those common factors to see just how simple this is:

- +

That's kind of super-simple to write out in code, I think you'll agree. Coding math tends to be easier than the formulae initially make it look! @@ -2841,7 +2835,7 @@ function getCubicRoots(pa, pb, pc, pd) { > Scripts are disabled. Showing fallback image. - + @@ -2854,17 +2848,17 @@ function getCubicRoots(pa, pb, pc, pd) { cubic case either: because of the kind of curve we're starting with, we know there is only root, simplifying the code we need!

First, let's look at the function for x(t):

- +

We can rewrite this to a plain polynomial form, by just fully writing out the expansion and then collecting the polynomial factors, as:

- +

Nothing special here: that's a standard cubic polynomial in "power" form (i.e. all the terms are ordered by their power of t). So, given that a, b, c, d, and x(t) are all known constants, we can trivially rewrite this (by moving the x(t) across the equal sign) as:

- +

You might be wondering "where did all the other 'minus x' for all the other values a, b, c, and d go?" and the answer there is that they all cancel out, so the only one we actually need to subtract is the one at the end. Handy! So now we just solve this equation using @@ -2888,7 +2882,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -2905,9 +2899,9 @@ y = curve.get(t).y fy(t), then the length of the curve, measured from start point to some point t = z, is computed using the following seemingly straight forward (if a bit overwhelming) formula:

- +

or, more commonly written using Leibnitz notation as:

- +

This formula says that the length of a parametric curve is in fact equal to the area underneath a function that looks a remarkable amount like Pythagoras' rule for computing the diagonal of a straight angled triangle. This sounds pretty simple, right? Sadly, @@ -2933,7 +2927,7 @@ y = curve.get(t).y works, I can recommend the University of South Florida video lecture on the procedure, linked in this very paragraph. The general solution we're looking for is the following:

- +

In plain text: an integral function can always be treated as the sum of an (infinite) number of (infinitely thin) rectangular strips sitting "under" the function's plotted graph. To illustrate this idea, the following graph shows the integral for a sinusoid function. The @@ -2996,8 +2990,8 @@ y = curve.get(t).y

@@ -3011,15 +3005,15 @@ y = curve.get(t).y values, for any n, so if we want to approximate our integral with only two terms (which is a bit low, really) then these tables would tell us that for n=2 we must use the following values:

- +

Which means that in order for us to approximate the integral, we must plug these values into the approximate function, which gives us:

@@ -3038,7 +3032,7 @@ y = curve.get(t).y Scripts are disabled. Showing fallback image. - + @@ -3067,7 +3061,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3082,7 +3076,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3157,12 +3151,12 @@ y = curve.get(t).y we can find a lot of insight.

So, what does the function look like? This:

- +

Which is really just a "short form" that glosses over the fact that we're dealing with functions of t, so let's expand that a tiny bit:

- +

And while that's a litte more verbose, it's still just as simple to work with as the first function: the curvature at some point on any (and this cannot be overstated: any) curve is a ratio between the first and second derivative cross product, and something that @@ -3197,7 +3191,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3221,7 +3215,7 @@ y = curve.get(t).y > Scripts are disabled. Showing fallback image. - + @@ -3551,7 +3545,7 @@ lli = function(line1, line2): So, how can we compute C? We start with our observation that C always lies somewhere between the start and ends points, so logically C will have a function that interpolates between those two coordinates:

- +

If we can figure out what the function u(t) looks like, we'll be done. Although we do need to remember that this u(t) will have a different for depending on whether we're working with quadratic or cubic curves. @@ -3560,9 +3554,9 @@ lli = function(line1, line2): > (with thanks to Boris Zbarsky) shows us the following two formulae:

- +

And

- +

So, if we know the start and end coordinates, and we know the t value, we know C, without having to calculate the A or even B coordinates. In fact, we can do the same for the ratio function: as another function of @@ -3570,18 +3564,18 @@ lli = function(line1, line2): pure function of t, too.

We start by observing that, given A, B, and C, the following always holds:

- +

Working out the maths for this, we see the following two formulae for quadratic and cubic curves:

- +

And

- +

Which now leaves us with some powerful tools: given thee points (start, end, and "some point on the curve"), as well as a t value, we can contruct curves: we can compute C using the start and end points, and our u(t) function, and once we have C, we can use our on-curve point (B) and the ratio(t) function to find A:

- +

With A found, finding e1 and e2 for quadratic curves is a matter of running the linear interpolation with t between start and A to yield e1, and between A and end to yield @@ -3589,9 +3583,9 @@ lli = function(line1, line2): distance ratio between e1 to B and B to e2 is the Bézier ratio (1-t):t, we can reverse engineer v1 and v2:

- +

And then reverse engineer the curve's control control points:

- +

So: if we have a curve's start and end point, then for any t value we implicitly know all the ABC values, which (combined with an educated guess on appropriate e1 and e2 coordinates for cubic curves) gives us the necessary information @@ -3617,8 +3611,8 @@ lli = function(line1, line2):

@@ -3663,8 +3657,8 @@ lli = function(line1, line2):

@@ -3678,8 +3672,8 @@ lli = function(line1, line2):

@@ -3690,8 +3684,8 @@ lli = function(line1, line2):

The result of this approach looks as follows:

@@ -3808,9 +3802,9 @@ for (coordinate, index) in LUT: initial B coordinate. We don't even need the latter: with our t value and "whever the cursor is" as target B, we can compute the associated C:

- +

And then the associated A:

- +

And we're done, because that's our new quadratic control point!

And then we (trivially) rearrange the terms across multiple lines:

@@ -3958,7 +3952,7 @@ for (coordinate, index) in LUT: @@ -3966,7 +3960,7 @@ for (coordinate, index) in LUT: @@ -3974,15 +3968,15 @@ for (coordinate, index) in LUT:

Which we can then decompose:

@@ -3990,7 +3984,7 @@ for (coordinate, index) in LUT: @@ -4008,7 +4002,7 @@ for (coordinate, index) in LUT: @@ -4036,7 +4030,7 @@ for (coordinate, index) in LUT: @@ -4048,7 +4042,7 @@ for (coordinate, index) in LUT: @@ -4064,7 +4058,7 @@ for (coordinate, index) in LUT: @@ -4075,7 +4069,7 @@ for (coordinate, index) in LUT: @@ -4088,16 +4082,16 @@ for (coordinate, index) in LUT:

In which we can replace the rather cumbersome "squaring" operation with a more conventional matrix equivalent:

@@ -4113,7 +4107,7 @@ for (coordinate, index) in LUT: @@ -4121,7 +4115,7 @@ for (coordinate, index) in LUT: @@ -4129,8 +4123,8 @@ for (coordinate, index) in LUT:

@@ -4141,8 +4135,8 @@ for (coordinate, index) in LUT:

@@ -4174,8 +4168,8 @@ for (coordinate, index) in LUT:

@@ -4254,8 +4248,8 @@ for (coordinate, index) in LUT:

@@ -4313,7 +4307,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4339,8 +4333,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4352,16 +4346,16 @@ for p = 1 to points.length-3 (inclusive):

Thus:

@@ -4373,8 +4367,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4384,7 +4378,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4392,24 +4386,24 @@ for p = 1 to points.length-3 (inclusive):

and merge the matrices:

This looks a lot like the Bézier matrix form, which as we saw in the chapter on Bézier curves, should look like this:

So, if we want to express a Catmull-Rom curve using a Bézier curve, we'll need to turn this Catmull-Rom bit:

@@ -4417,39 +4411,39 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/b21386f86bef8894f108c5441dad10de.svg" width="227px" - height="84px" + height="76px" loading="lazy" />

Into something that looks like this:

And the way we do that is with a fairly straight forward bit of matrix rewriting. We start with the equality we need to ensure:

Then we remove the coordinate vector from both sides without affecting the equality:

Then we can "get rid of" the Bézier matrix on the right by left-multiply both with the inverse of the Bézier matrix:

@@ -4459,16 +4453,16 @@ for p = 1 to points.length-3 (inclusive):

And now we're basically done. We just multiply those two matrices and we know what V is:

We now have the final piece of our function puzzle. Let's run through each step.

@@ -4478,7 +4472,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4488,8 +4482,8 @@ for p = 1 to points.length-3 (inclusive):
    @@ -4498,8 +4492,8 @@ for p = 1 to points.length-3 (inclusive):
      @@ -4509,7 +4503,7 @@ for p = 1 to points.length-3 (inclusive): class="LaTeX SVG" src="./images/chapters/catmullconv/79e333cd0c569657eea033b04fb5e61b.svg" width="348px" - height="84px" + height="76px" loading="lazy" />
        @@ -4518,8 +4512,8 @@ for p = 1 to points.length-3 (inclusive):
          @@ -4528,8 +4522,8 @@ for p = 1 to points.length-3 (inclusive):

          And we're done: we finally know how to convert these two curves!

          @@ -4542,8 +4536,8 @@ for p = 1 to points.length-3 (inclusive):

          @@ -4553,16 +4547,16 @@ for p = 1 to points.length-3 (inclusive):

          Or, if your API allows you to specify Catmull-Rom curves using plain coordinates:

@@ -4635,13 +4629,13 @@ for p = 1 to points.length-3 (inclusive): make things a little better. We'll start by linking up control points by ensuring that the "incoming" derivative at an on-curve point is the same as it's "outgoing" derivative:

- +

We can effect this quite easily, because we know that the vector from a curve's last control point to its last on-curve point is equal to the derivative vector. If we want to ensure that the first control point of the next curve matches that, all we have to do is mirror that last control point through the last on-curve point. And mirroring any point A through any point B is really simple:

- +

So let's implement that and see what it gets us. The following two graphics show a quadratic and a cubic poly-Bézier curve again, but this time moving the control points around moves others, too. However, you might see something unexpected going on for quadratic curves... @@ -4802,8 +4796,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4815,8 +4809,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4829,7 +4823,7 @@ for p = 1 to points.length-3 (inclusive): @@ -4841,8 +4835,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -4851,8 +4845,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5045,33 +5039,33 @@ for p = 1 to points.length-3 (inclusive): We start out with our start and end point, and for convenience we will place them on a unit circle (a circle around 0,0 with radius 1), at some angle φ:

- +

What we want to find is the intersection of the tangents, so we want a point C such that:

- +

i.e. we want a point that lies on the vertical line through S (at some distance a from S) and also lies on the tangent line through E (at some distance b from E). Solving this gives us:

- +

First we solve for b:

- +

which yields:

- +

which we can then substitute in the expression for a:

- +

A quick check shows that plugging these values for a and b into the expressions for Cx and Cy give the same x/y coordinates for both "a away from A" and "b away from B", so let's continue: now that we know the coordinate values for C, we know where our on-curve point T for t=0.5 (or angle φ/2) is, because we can just evaluate the Bézier polynomial, and we know where the circle arc's actual point P is for angle φ/2:

- +

We compute T, observing that if t=0.5, the polynomial values (1-t)², 2(1-t)t, and t² are 0.25, 0.5, and 0.25 respectively:

- +

Which, worked out for the x and y components, gives:

- +

And the distance between these two is the standard Euclidean distance:

- +

So, what does this distance function look like when we plot it for a number of ranges for the angle φ, such as a half circle, quarter circle and eighth circle? @@ -5112,7 +5106,7 @@ for p = 1 to points.length-3 (inclusive): In fact, let's flip the function around, so that if we plug in the precision error, labelled ε, we get back the maximum angle for that precision:

- +

And frankly, things are starting to look a bit ridiculous at this point, we're doing way more maths than we've ever done, but thankfully this is as far as we need the maths to take us: If we plug in the precisions 0.1, 0.01, 0.001 and 0.0001 we get the radians values 1.748, @@ -5219,7 +5213,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5231,7 +5225,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5239,7 +5233,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5276,8 +5270,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5299,8 +5293,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5310,15 +5304,15 @@ for p = 1 to points.length-3 (inclusive):

@@ -5328,8 +5322,8 @@ for p = 1 to points.length-3 (inclusive):

@@ -5339,8 +5333,8 @@ for p = 1 to points.length-3 (inclusive):

And that's it, we have all four points now for an approximation of an arbitrary circular arc with angle φ.

@@ -5350,7 +5344,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5358,7 +5352,7 @@ for p = 1 to points.length-3 (inclusive): @@ -5369,15 +5363,15 @@ for p = 1 to points.length-3 (inclusive):

Which, in decimal values, rounded to six significant digits, is:

@@ -5566,7 +5560,7 @@ for p = 1 to points.length-3 (inclusive): >, we can compute a point on the curve for some value t in the interval [0,1] (where 0 is the start of the curve, and 1 the end, just like for Bézier curves), by evaluating the following function:

- +

Which, honestly, doesn't tell us all that much. All we can see is that a point on a B-Spline curve is defined as "a mix of all the control points, weighted somehow", where the weighting is achieved through the N(...) function, subscripted with an obvious parameter @@ -5581,14 +5575,14 @@ for p = 1 to points.length-3 (inclusive): k subscript to the N() function applies to.

Then the N() function itself. What does it look like?

- +

So this is where we see the interpolation: N(t) for an (i,k) pair (that is, for a step in the above summation, on a specific knot interval) is a mix between N(t) for (i,k-1) and N(t) for (i+1,k-1), so we see that this is a recursive iteration where i goes up, and k goes down, so it seem reasonable to expect that this recursion has to stop at some point; obviously, it does, and specifically it does so for the following i/k values:

- +

And this function finally has a straight up evaluation: if a t value lies within a knot-specific interval once we reach a k=1 value, it "counts", otherwise it doesn't. We did cheat a little, though, because for all these values we need to scale @@ -5605,12 +5599,12 @@ for p = 1 to points.length-3 (inclusive): Carl de Boor — came to a mathematically pleasing solution: to compute a point P(t), we can compute this point by evaluating d(t) on a curve section between knots i and i+1:

- +

This is another recursive function, with k values decreasing from the curve order to 1, and the value α (alpha) defined by:

- +

That looks complicated, but it's not. Computing alpha is just a fraction involving known, plain numbers. And, once we have our alpha value, we also have (1-alpha) because it's a trivial subtraction. Computing the d() function is thus mostly a @@ -5618,7 +5612,7 @@ for p = 1 to points.length-3 (inclusive): recursion might see computationally expensive, the total algorithm is cheap, as each step only involves very simple maths.

Of course, the recursion does need a stop condition:

- +

So, we actually see two stopping conditions: either i becomes 0, in which case d() is zero, or k becomes zero, in which case we get the same "either 1 or 0" that we saw in the N() function above. @@ -5628,7 +5622,7 @@ for p = 1 to points.length-3 (inclusive): Casteljau's algorithm. For instance, if we write out d() for i=3 and k=3, we get the following recursion diagram:

- +

That is, we compute d(3,3) as a mixture of d(2,3) and d(2,2), where those two are themselves a mixture of d(1,3) and d(1,2), and d(1,2) and d(1,1), respectively, which are

6&yOs7W;WXSEE$8kj zW%rr4$8olQ{i@>O;ZeC@OZD3On8@AL)pt6lo#<@*;KN$(@Ufu$ckc+57E~9Hccz?2Kg_bcx8Gf^0H8 zLl>6qy>+N3G!N@S4?}Jp3YU$JZyrwhpR$sM;7K}65}?%7)h(y%1Neo7i5`EqVh@SH z-=FK#u(jncNPQ9f<~T1~Y<6xAi$TZ5#i44=V*C4b(b3m}Lqpy6U&P3B5NQ7(u(*D`ndaavZ;mx0eH--8%d+XoMnm6gw+ID~{K z6%-WY41c1>$H%E@Xp|4Nja1Zm@vJM1Z=0G@z_M*@IC^+{Z<#)C+WhlJ1y=WlrX~#? zo$8}o^3Yv)IRi^NIy$IQqbLR61D&|PT#AZ{dxwYFH8p8MOuMM%O^3CWu{FqpV?-Bnt6x7R}^o$}6|J8>OWI{frht4y=RnZ>=WmT1BY7cOkT9d&f# zrkCjsJX`|#Q3eGJ@KFF=ol7q_{{H=mm}9`u?r%MfkB2{ijXpxB6pvY+HN#P~)Odvto5X7|`mt6>}QqpuaEMLBPCc34UPKV*Qz28lXA^1Eu3<4HFq=DYrplK zKY#wVu5Mssqsq^pKc~ak{pwqz|9z#oSuKi5jBu_sx@oa5`?U^#wK%(}=$gy{sZ+b1 zME3jlq}F9jw{PEuNw6T_|;Q)biiCMyed{rYvZyqEYZ;d?RIrqG5T zKXAkA=C3-eU{BF<9vJBMfz6YlAp)F-OG7U}5rmY^uSami}f`NB8oBl2hh>V zteqhj5gbgw!^bz*M5Wja5XBL%vF1^0P%xjbTR$*BN5`vGA4~!i0t(RPTUx^{#p7U` zOkc)p*)$y;9Y%FN(xH^B2lb_afq~|t$vU@h2eh|q2z{-*8&f;Rhk~!2lam7|5&rC1 zpvvo#RE`G^A2v?bdW$^h=Yh4I+1s2;l6K}LB_oS}`7-3o>G3*R%(}}|nM)j6GD*sb z>tyB22^owKDW_QiD^aEl-<^Nt4i>XVYCOd*2?(qoZqCfilo$!RByOteB>m-rO@{69 z@bco~=Wn;ye)KI(I%t1uf&0=WQYI!QqiUCn?+XgzGcsawG!wa`q>|QYz2Dx-RM5D2 zv!&>6Wr+lv=3vY?cVO3crEEGt|0@;$s@S!59T?j0}NrB77!ytVbPqi^35L`O%5 z$HaV!%#H_OfhB$ozvQvma!%yQPYt*RhrB%N) zu5y~&n2S}M+^pWwY`t>j3V_K>zA-i%gH1Lrx`xGa`uO+&nse`UK7)-j`r;=~NRED* zz<0}{ErzwdySt^JxNccL^%E?JuAUyWZtyuXk28;kKeRykIUW36iWx4yC;A~TFAEp7 z4lR8FHm{|nrFY2%X1%hxc~(~JH5j|4cB7(ySB9x>-n@w{Z{6XVY!thqS+DD^M1)%4 zLZ&~Pw6wIxOvt$s_@LbW&jfgG!l$yrOm_ttGYS|ON$D8B4-aSOalFmRD9$5yjQ3R}qBO($Z=Z^9jlO{F%xBc;#MvQW8)Ms-u&`btnMm zL>w*LVFuEfMj`uZ=-W3K@rf&CNl{9`3}ua4!*(I2u< zD)w*g|4=qHHQ_&a@Bry^WSBRFQK=RT%J^pWx*Z^lIWI47(W53f&f(x|S66dm2$_g^ zJ<0^(`ZCT*@cxw5`swCd;9kFnL8qSFc|u zp(j22;zo{nP&2^Z)~{})5hWgv1^@l)LP|>+91=3~Jzp=cxVR0FE*yY7x7JEa-h92u zN>n+!uYPclK{Q#bwN>GE3cl8yEgl_U=deSn$C*)?x1V)E9P`a&v95 zZ9vS<8s2k=;p?*8F|#fkbzB*`EG{WI<#e^x9Fz6&Bdu;eeM3V-?PP2=A3C%F@VFFO zjYYyv1I*cd;UQ$_W}&Hot-ax(Ny^RiW4`o~6mAM1SA}Y$L8HU3C-BY; z-}9fx)tJq>VE>Fe_h1`?N%#c?S8cCU`5wBlDEf^HvDM}q6o@#@ssR<4gLQ>EUcm7@ zp+aWHOjB5?`?{IWMg!5_@5(8R|A`L*$dyxmb8yWWeXQ<3|3n-e`P3Zm{Gg6d%PT0r zZ^C#SZx3(65Fk6SB|!O|9=nsXE3h~(d~5k&iX*`FgpAvx>+W|l`s_})het)JDJh{| z37I}~T^Yi{qx&Qd3#47r`u_0B&nMDA9eclj5B~Mb8W0(FOr^+R%XAVSHj@HD|AXz7 z&EKWXo%r$=c`$wfP5bU_bL?U;0 zcYb=(s_N?5jhUvsO8-O2x=vg%**PKep~8RmR?B)2KD%j3xfC28P7L$kRy;-4{xfv3 z(}-+&`f__S&@_0?rnlDPnNQ!@2!_!%@l& z(*gna4DU7R7m0~Y4=ZM2jrR_xPGerYps(v(VbFH9!b8C&f=qjGyiqLDw63nM8d_S-8S>s3w^cwh zxZpWnRB!P;MW2)Xg+RY&X0Qwyeg_X&q#RNI(N1ypaW`^24u4l}?)-4rG9~3pTNWo$ zYEwyy3wjHMtCy?Y^6q9Tzef0kV>RZ1ogKYPwiU2N&|kA5=gjJ7TO#2h;p>i!Gb47}al-EgPCiPi0)yAI05!tKZ9UTqyAEM;kofTK-1ul5`^5wu9x+*|$%~ygAP;i>j84(jt zQZRiFD*(M1$B!l9Q$32Oacm`cEDwX0XLASMc< zhV{T67#`SUIT6pTs9@lV&(l=y|8e8Sjg8FH{md$#ebK2L>PF_Udrui=C!a%qvKH6; zA?4!c-WLj?9+GlNB6d1F`s}>mxYU24+DnxsMm6lZv$NRv!~|!&#-7mG`rnRsYrU>W zI82fQy{+ry48B9j%BzA?-GhoQF)m7ybYMg7AQMJG7ugaB7KPg9m zo8;+Vs_R5K;$Fen<&>38UDqXEx6Sn3D*hK@Y--crr$zbs0U$5B@Cyw-m_z`rKAIQy zpMkG0#c6>KUFsqW8Bgf96@LRW`1oKO{FSVQ?UvTo+4gwuMF1axxnlwFUFgO<8m0Ia zU&FdIjECWmE8OS@<`WycfLzFO7u$#-Pf1CcURvsKzsUOW<426$2&Q5Dyc+SjRRt{& zIEW&$e}i*bq6Lcp$~@Td>sphVt+ys>daU9RTHKa;>OOVjMI0p^s7`=QGBB|Z1 zIJ1zqZ{7rEd{<9s6p@(?VYi?%d%N6pUIIC7ww$Wlgr5sAd4> zizwpO7}iMORoT_mDeE8CfNVs^#ZlLFas)fO(eW-VEsfNAOMWo<9Jsn_XHw;OCL$uj zsN9xjDrZ8u$Us#nam$pDGp#IjAkCp}pYZf#{WK;ok6+)=5Z;;tiKY&NL!3F*~ zPEQU4$I7pTm%&Zx;4X+rYilEtbzeiOYSMFoRnV*^X}y1qgEpeKgHa?{iXL|m|3Qbp zg4 zF;?x=JUl$p6~kt#dU|wI_a_omgCn5LK-<|JgnNV}>us zJLgf;rEP3Y@Vdu`HG61a6g53PLAo|kc3=Bl3K|+3;E3mbV);vjff`lXPvD_`E-WCb z0EMtMn&9W2;GfxybmywfyzXq%gxITRH$E1APB(N`YQgLAnt>Al_noL59dWDkh5 z)9Q!_4EKcfKWi3-vgWd?ya_-#vp@xa)l&0)V=+6Hi;s^8O1Y-%7E2J=PokotB~~4@ zcH>nvLPA2&>uo@)&W?8X%rvTj4Jjps2APEvW=@gi7r*1U)YQ)Xn&wS-lIddqV}WK1 z5dbuN&=z%?)xu#i-47P#=I}uTfv05li(SGFEh;AFnVc$>F*|EvRAit`L^7R)#T%b& zH!w6LDj58_Kc0OpTE)PCQP`QTZ2;I*Z?8^Wrw2a_hkSj~d-v{vP;yqN{PIN+=r4ii ze#}TBSb{*dxOjO(*LB&xVw+$S^Q-dnNq7??wmz#zGlzhDbXE{{5(Les3gY6d|1*3k zkEC+NySbk}z1sSm=`l+J)G}?$Gs1FzKJgw0W908QsadLFB#yX+hz4^dDCOKO?KCMG z(Cq=EcE4QAW~G>!nW1FQ?tcGz=(LBSiBPMtvmzrWSM%|a`<5Z!xm45a#3JWG4bt9i zAZvUE9;%k(5^aQ(0|mzB8wzy7bzGsq?9{A@a>=w5_haZoA@%L}DkVnD&aifJp-}0N9Cni{-scda+r>*J|&AdoH zfBr1x{EM7#i{>!PprF)#LI%tY*P7TEtyLXIM-21%^U_P6T=5!l0NC!6p1H#dTsxMC zdQ|Y0A*5m(-&F9v>vNW0OKRQoBUrg$xz2!Unzd5kvIEb#8LWYbo2e46HN~LvElQKh zOvmh;4lrlzE6HphKc0WP5K&Mdps+WM4~j6D-_v+$P##OHgdAX6?eL=3Y8vz$I&`LRq2tx% zy9my_E-y!Rq=f$5xw)ds$;LY0!?lMUwiq<{{+{m(5BarD5Dyv1XPTXr_s@9sjn?xH z=HLdDcTaXe?+Y50p!^SiOab}-f;-8G(PDWDW+m`O=@rk94+k%SJe>nQJPqHNe7$y; z4Y0+`Z+{+l^39_3DHe_UcXifiX=wvtAZkl|{9Ija(UT!>RB6u&o{YDzLgN=i6_1o! z5>c{9q0S}ZP7j&L32{FPhhiFk-h&=d1~|+ea1x!$QVuG?HW7kdo|w3BNWJ#r)vMW2 zo6MGmAfng$m)7^0y>WVbvHV(V%24m-7{{TlpAdWmfCTbCYV&s#WuM7tv1oXHLGxda z9;o=PFDtnEG?6Xfe9YK!r)uytg0;Fi1>|+FP4T3mBQ5xDfk9EA{w3eV+JAO@Qs(rb z?ENqje%xUfR8wB*B$yd25@u^a+l`a zDgUW_>)9QjXZXD-9jYP0!C3&L17YruM?an|EiFwFv!Rr)@6=A0_htlNwiP}f3sb~> z*>cr$lOYS^nFqJn-ri2@zDOH^IC|yf<>uSVgK6EGBTjRz6kQNyc<-)V)z#I_Rs3cv z-X9;4{b=2@ao)5J*dExAU?Lz?Un({6uNJTu#H9g1b91@5LLQ3k9U8Ju-2GXejafo) z1AJ;nxBRN~*jTC4ux=aAuL!1PJ1A?2l+TZr6qC%M~e%#rxu(o9C zt2A$7CoB%M=^u5`Wb(FH_BJp(O2B2QzNnL>ov9EF+-Rn(N1+M+{Fsle+});q+W2;0 z%sa!%%F2AA+SRDyA%o5NF5ooa505&zKJ9EV|Ko^rUvIs4^5>inXj%mL$3H${e~(pw3I+4O{;osqU{R*Z1ZP6W1{f6CB_-7Gm_Jv~So}PJ2+z#>_Z2%> zaaa(vteahB+Z%2=z9+EpJ_k#=QtoRk5b=Z~dM!CQ8NANBx2s%ECrcjEJibv-JSo>Ce{jbZC zCTKIux(Om=9BNXPD_$vIfA(m93!yx?+QlI~=U-h7U^s0+56>jqWXu#2MT&uR@c@fq zvrnCUrYl(t@ueSG$~Io4MBGG(gb>5Rx+f#Ljm?`JO1>VhSNdfBD_f@Uu9}Gni;zhb z3f7IBS)3RiZmx(?-F3E^gq%eR88B5In_LGwzdOHH6%`dp`Nrvsp-^Oz$XNiegDKe+ zR?&*YUQZIuZ;h-#$P}{=%9{OG8@s<1#Cl2Z-(PxHUan8Q?F-{a3+8kgjG$Iq@g0wv z49DQja^uTekhF?GV|BqcdC5((Lu0)nAtSTA7R%NRc}XY(MFSf>@LP-xCFJo zw>KTZmr<{GOa3h6)gWVl6MS=To9u*P;P`v&3W(BaSceu^Tgc&rAYlb-f@O1a6LeAw zcn}-8ipLQZo7-OU;3qsq-pjp}*}67?Ls+ogk53edLZ%jv**@G(`WvUgqoSrpP;Okr zL3t-AFmR(=a*E^fWeV_;5qV@oW$jL2_`#$ByuZz*+)PAa0wTBJpJ#S$gX{ouC&acz zlM`0qaNJy6cu0f(t{z|uAt5s{H3js&edo@FBsQK~3i~|v<5g!M3xk}cW_QvX(h#4- z3r3KOAn6HsO^6Mjrs&V68cM$O@-v`dO>Hd{Sm4*MH$XF-sj7|DAXbd4jszbc#0oJP znd(3PB%6E1!JRF^K15nZ$h0~bOw8$oTMDm*_WThM_)@^o0;~$i`Kmm(cwzPp6-bU# zFo_aCTOsbqiyIg4@bJtlj5jCTr?5ZU<7*`x9J1L;1P2~g*gkp`r1F~DguMq`wwl8= z9E5+Z%Yy}_<_&nby7^kZXV0E(Y__p;L&$*`M_*qGK(l-Knt>p!Fpl;;+`)o3imW3f zrjC0XSU|IBP#-(q3y!x89K0Lj+XMszEFr};I=^n_B{~V-R3l=I+`ja(3tYEkpxw%Y z!>MzoRgMA4^4=2M2^~qG#U{4bzniA#7r%ZT(9zks;_(}hF!}p;ee1#Zce-AyhOI4L z5&T{}71Ua`evHFofN&q^x~(`f+^RKr_^XJBh;h>}_aQx|9>SdC6U{ z1Jwab4Q!Y0?;9Hx6+E}~$!M?yz(vPG9)n!}lig_GvuC7WM$&+<92G?_Xk1PVp`euS zfj9*Gp`Zt_FijAV@-_xCrSWQ4GT3hT1jY|uojZg!i7DVn*UM`-d;LEIdw1M9m z%T5IlD0i|qhgS5H1LvJDd;q~@2p-bpJZTkAkHnrhJBvL0&W{X6pwseosg*czcOaIX zSzdltRV5YPVqvyCof3|f876{=+0BH?CP*yW@XnpH5FY?{H)zGLI`&}-RfcJaB$beW z%|c>JOi9^_d1izoLIcbC z?ml+#JqG(nM^7&Z5C)R=T@SfWD=Xcbz**6;STul4eNPV+EJ0yZ$HGD%{7c7iIZsx)kDl;C$m=s3BnTdtj}YH7(0H2L=3yODqXJb@908D0K8`A zsRmD=iIBRluROQ{1*dsFkN_ZF7vOf})ksFynlB$dP(m5-^Ybg+zD)yP+3{Bw6Yw!4 zM)RsYsasJ8eh)!1^3ypFMd~pd!I!0*PtCw^7A8Z3-voFG@UUcX?f_DJsiU#>V;xA1 zk4bMqM)X!UU-fVCo*^s;B=ai3ZHkY0=-+_b1APUH2M1Du*PnP?HFTEZX}-Ms)*A#1 z(Ad7QF=T_o7GDhM(etuwZEuHUX0m_%`gM^>%I!S}d3fTD?d_|OgH7z(-zN(pp@P^2 ztV%dD(d~ZmEt#Ffd4LBbI(vDeo=I0>yYV#JqH=mR8Aa{gR!RWE|&kAT-=M| zL;5dYpa0S&;HLL$&ro4wAr6E^gZ(+{ef2u=VtcSUgap7(N+K`serpGVvapccxQG!f z2YMbVWo)CEgM$NDBd}k6V!>ydlkIyg$wDGf@Dd!;897d`j;UvI`1ds>=xRjg)zxLJ z>!v|WuL27Xg$*W$Eo(s}zZQWCoGi)F{f}pny#6Fj8|)p}8RV?Q%Nz6J?gt+uyy{7# z;5SuO@quOu^pswpf_STUWQ4eEG^)N{=^$knHE~6-eiJEGL&LC|ppjveY(QX#%n{gnpF}<>h$iOe=WW4Zc5!iut!_^EmaW<3mi6Wh9@3)W z;Ytr4TqGqWg&8*kYgJfS7-N6$!-o$r`rT_>KM9!w>0$L&Py75?j6H2dwp*J5jX~vV zr#B{vSW>gHQlR#>hwovRj=}Yq_;$3d*-^`L$M+U^Iap6A6c-<^brR@fuSd>LM;^zH(WfYq1b%w%EjH zC(jvtIP?4WM1JqgipBzb3^~sMSsuo9Ss#+$f;kc|Xxcyzt9-F+Oer0(B%q28ZJFM4 z(xT}ktWPt!(;*0B0FMSq&LBL6G%60lb3|(Q_4Ud71+pzklhXCyH(_70x_^HLV&*Ep zV;K;-NOQk^%hQ!4f)8{FuyAgpjBi&JtKxOjMy1WVY=TDcw*v*756X;Xkq$&8RAFQ} zNR%91EO@&>)|(+hkv=L!aE99Kb5)hnrI!jAM+DITF!^61Qx=iAT=7|@r8J_+QB4m! zf_mRw;qsv4(}r^ce2)8n?t6H8!Uv{-5+i46c(s!1-93MvW^>bVd4LTm>$X}C3KGtf zLHZBPQUduZ1W8+_Z2PDDTH&UkUs~bRjMMRfYq%O04=->3O>aC^d2 \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/dd8d8d98f66ce9f51b95cbf48225e97b.svg b/docs/images/chapters/reordering/dd8d8d98f66ce9f51b95cbf48225e97b.svg index 60f1b3ff..92f097ac 100644 --- a/docs/images/chapters/reordering/dd8d8d98f66ce9f51b95cbf48225e97b.svg +++ b/docs/images/chapters/reordering/dd8d8d98f66ce9f51b95cbf48225e97b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/reordering/faf29599c9307f930ec28065c96fde2a.svg b/docs/images/chapters/reordering/faf29599c9307f930ec28065c96fde2a.svg index 56f9b36c..ce63f825 100644 --- a/docs/images/chapters/reordering/faf29599c9307f930ec28065c96fde2a.svg +++ b/docs/images/chapters/reordering/faf29599c9307f930ec28065c96fde2a.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/tightbounds/419415bee6ffd7598c035c42de09a94f.png b/docs/images/chapters/tightbounds/9ee5abc64b3fba71e284c70539279d74.png similarity index 100% rename from docs/images/chapters/tightbounds/419415bee6ffd7598c035c42de09a94f.png rename to docs/images/chapters/tightbounds/9ee5abc64b3fba71e284c70539279d74.png diff --git a/docs/images/chapters/tightbounds/ccc77ae1f57d7dd7ce4d5397fe1b140b.png b/docs/images/chapters/tightbounds/ed91133976018ec032d9115344debb36.png similarity index 100% rename from docs/images/chapters/tightbounds/ccc77ae1f57d7dd7ce4d5397fe1b140b.png rename to docs/images/chapters/tightbounds/ed91133976018ec032d9115344debb36.png diff --git a/docs/images/chapters/weightcontrol/02457b19087540dfb144978419524a85.svg b/docs/images/chapters/weightcontrol/02457b19087540dfb144978419524a85.svg index f8263c9e..72a548de 100644 --- a/docs/images/chapters/weightcontrol/02457b19087540dfb144978419524a85.svg +++ b/docs/images/chapters/weightcontrol/02457b19087540dfb144978419524a85.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/weightcontrol/3fd61ab3fe88f694e70f61e4f8ea056b.svg b/docs/images/chapters/weightcontrol/3fd61ab3fe88f694e70f61e4f8ea056b.svg index 45b2f9d8..c5342dd8 100644 --- a/docs/images/chapters/weightcontrol/3fd61ab3fe88f694e70f61e4f8ea056b.svg +++ b/docs/images/chapters/weightcontrol/3fd61ab3fe88f694e70f61e4f8ea056b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/whatis/b5aa26284ba3df74970a95cb047a841d.svg b/docs/images/chapters/whatis/b5aa26284ba3df74970a95cb047a841d.svg index 62ad7c58..8462b235 100644 --- a/docs/images/chapters/whatis/b5aa26284ba3df74970a95cb047a841d.svg +++ b/docs/images/chapters/whatis/b5aa26284ba3df74970a95cb047a841d.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/yforx/efcfe9b48ca4e65eef3d4bf3e4c97bc3.png b/docs/images/chapters/yforx/2fc5c57e5d1ed0eaa1655edc31026252.png similarity index 100% rename from docs/images/chapters/yforx/efcfe9b48ca4e65eef3d4bf3e4c97bc3.png rename to docs/images/chapters/yforx/2fc5c57e5d1ed0eaa1655edc31026252.png diff --git a/docs/images/chapters/yforx/61e43d68f6eb677d0fccd473c121e782.svg b/docs/images/chapters/yforx/61e43d68f6eb677d0fccd473c121e782.svg index ea3499f2..cc7024c3 100644 --- a/docs/images/chapters/yforx/61e43d68f6eb677d0fccd473c121e782.svg +++ b/docs/images/chapters/yforx/61e43d68f6eb677d0fccd473c121e782.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/yforx/9ab2b830fe7fb73350c19bde04e9441b.svg b/docs/images/chapters/yforx/9ab2b830fe7fb73350c19bde04e9441b.svg index 64bde4aa..2cd6c166 100644 --- a/docs/images/chapters/yforx/9ab2b830fe7fb73350c19bde04e9441b.svg +++ b/docs/images/chapters/yforx/9ab2b830fe7fb73350c19bde04e9441b.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/yforx/9df91c28af38c1ba2e2d38d2714c9446.svg b/docs/images/chapters/yforx/9df91c28af38c1ba2e2d38d2714c9446.svg index e6a4f7c2..35f51bc9 100644 --- a/docs/images/chapters/yforx/9df91c28af38c1ba2e2d38d2714c9446.svg +++ b/docs/images/chapters/yforx/9df91c28af38c1ba2e2d38d2714c9446.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/docs/images/chapters/yforx/dd28d64458d22f4fe89c98568258efcb.png b/docs/images/chapters/yforx/dd28d64458d22f4fe89c98568258efcb.png deleted file mode 100644 index fd80cd225b228a9a82bc671a485e5730bcbcd5a9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20071 zcmZ|12RxU1|3Cg|*<_QML{b@Lr({G44T@xh3P}hdqhxQANFl3|eQa5o4UvR~Y?+0S z&Hs7TxzByR_wVsP$K%mC;d8C``}KOR*A;L=OO2L_gNj5V(H=dba*9M+FGwP-W1=9# z->i>#TZcc$OpmFlkk*KQAC*6eB$2j~j;bi?I6oZ!>S~~Kag}_sS;j#1kRmf5?fRCx z8e$(LZl>H$3J>hK{kCjfsei_{(xY8@Z<6lknT?XgvfuT!dhE=WcY^<<_y(r+qTaXV z9__86*w-jFH0M_xc$=>Ap{)Hv#au!51(~5Gx6Sf2#_>b4&As9@HHS7_E8$x2c_>m@ zQfX?2-lpwY{aTxp5%mfA>A<4Vlf36r6^&cB#}^9m)FnIDb7qG;CKqO=ij!2I`u#V| zVSOj%13Q>QsF{=~_`K;0Pn!Jx(@W8Z69212L&hSAKPbf6bz<-bU+wu5|9?MF78}c< z+VLQnzGmx@BP7zx{(jje@0e0=HTOO7iyV9^$5?Ti$(a`f7%9iUe|Kybt7}!3w;JAj(+@Z9iVE_Ug0UJ8WBpMdYBp8n-H(Y+ zJ8tS8a`fs|k!R`YcA74;fT<<4p|^3o7gHZtP*GD4rkHoMaG zX@R3Y)R0`dNPcob7+=LDgC^r29fv#bFCO6YmJgV%PAM*CC*@>c=G8fIVAh32=c8`H zW|Hm7qGMqzpNi<{(#oxMOI1S(UndsaSjcF8U(|8aat3ngbd_s#H2%k&qa&+~QPvM@iR26GZYZWh9wy8_+gC#@hSx2w9IPS%nk=6^rhR?4j+H_aY z@=kPD@*X^R(AL4hyQoN7>!Hj#QnCAzlxhgaCUbN1jpXG0zrKGtUMJ@~xz)|xJ;C)y z+GW zNj;;Zf#c&>zPgM1f5MJ2F2BKY@!~~`?urASi)=RIc+M^^FW$fZ>(g|?_@BG%prJu? z+siBAvT`dCi-1dG6&lVJ;b4 zl37Ej`)KFu*XlB|vXVD4D{hUvOWZ)mEw{0!_e^(FQxl2A#>VDf*LP{U1Peq-Svl9F z##gX8^XXF($>B%mmbr=Uj&JV+wxmzY6&4oGFHbi|L`9`em1xeo_KZ|~=^P828)=H$ zZ#6r8;-<)oJiXG#`d8npseIP2_k7fAb}%9A<43)eCr^@dawgOIxw*LTl)Hu{eN9g2 z>iVUmY;TMa-#~hoYu4afz*l6`ef6g%H|ejx{t~lzw{^E(4vAki*y3krDEI#LBs>#2 zhv7$GH!N?6ce?JRDYoGNpf=3wm?r`h16w2s6sZo08O+j#SR4d2$U~urot5=i@3kyfkH{LmKNS~avy&E0PFD6DW&$Ag{d+(2@+3RNN zZz9QfEX#Dc&lwutr1ZbPbI%^@sUtO!D-|Ub=|>YpcJKc8x#((Z*L(<*89wIVAhEhK zaZ~#2L!l`3?c2AXe;Lk4o6PFy=olkzMs`YD`&?VRm)8d2UAxXX{`iolo$J1IeR5&> zOkA_Ti)3TLpYzV4`}l&`M150J1rDyxn}syD6n0Ddg!yZ}Ih1 zPraR*dNFT`b&tOH#W(j}eEIU+B>CCQ%*>ggj#%2n(f$M3U+>kovV`;JE+84T5d$DGK%6c_5wKIzeQk*GmL(>DZ?Z@91{<69}-ffJwC=~yrZ^T{ri3i8f z*=BM(J3B>ZXBlrLzRQ;{&%|)^jX%xEsHGMyt8(Pbn!9mpH2sty&Gl#DDF9#xu2L`P?3W!=+t zK7?MWF+wq0+{NI+h3z6nWk)vC^Q#VJSFR?tFe*{BguggG_#rPhSMkb~-Gx`bE;jl_ zFqm3kl`D=Nqu^6fCM%zxJsKY$PeDoPc|yorJ@viaCGVX6Z*L#i+S&EW(c)^TRQE+` z+h8lAU#RHo$I|6(^X4unD9A72;PcME)uJ)@p?}KRKQvVJ%o)~e*RDClY~d?)n*OHw z@ynN19XdX5iguYZre=mue){a$`?Cg0`Kf2p?Pf<$KW)1#tU=rx)dNx5%?%CY8_4Nu>q9tShy`nz zF}>GMO-;46wXO0Z-~3bzu#a}jtWHyZeHd@p=;&qC)I&qLl$Ig8bhE0ye&t^8Npd@w zFy;U-D5Upt@R|@aRS4a^Bir?*^$ZQa=2)eR^tJU*FZlcWS2gh73`U=;Zf(^biz#gk z3v#}#)~#FO`<-KHmP5bnShNVS^W}N6Pg`$koo%o5vuO1dHxva@WezKM{*4zUc^Ly# zcGR?}r!vOLIj$$g(b*i^&RG2XxmnXg+4<4*?3_z)IX-^+WXW>8V`1b#S8~KoE85SJ z0b`Om&ge3eGcziNhK503_7;w1@@}%W=B&S7{u}iE>bu{lqgC#)viPE-gAI=`qd?JL zP{g<*7{&MfA{LtEx=6j{#T3id$BMgI`T6<1+OAVrhUy5{tt`#)(Nhq2DxCG5l}WW2 z&0TeYjEoFD>xTF58L3%!AJW(7z(P1{9Tfg}d0{BQd0{a6`)LVfBt;G(7B7xJ0@_fBb#`x zF>;Q=rPsd)-nvENI&ed0%_l%aTGuuHg%^3Ud2{>`Ev@!*54=f-6cyJI%i<@yuSs}h zq!(&XZ=0@h-R(`(wxb_*((oSSLIbaU`#^f?dr|jjkyuN^;+-9bRa725eM)iv{{0)) z(J@80Z?B&jZKGxk@P2%ag6~q03H$QTH=;4pHawkQzlz&`)5y1MCEK}k=f~$xqIV)A z#m(wz9MC&@xv1R*pH46^_4HZ?qdLt`)@*JmcXe|3{`qwFccy9kiLL`WXUkNn>T&?-Me?sPxaN= z+S}KJDXjX(#IO?uj8p2$t?X=@p#J;I*pP=+Rr~ttf?hT?ecMfLx_HgrzW4ig&13;@ z`pDDh^lPhgm6OxcUX_&!p9`&nx^J#=A3b_BM#e7b%$M84?je-XJ^>*iw5Dce5#iya z&6_s^dfd-5@V7jbrt`A7xnWm!+3lY{uMxXeaOhKkZ?4LtvXGM`qLeAbZ(J_maQ!u| zSn076e)q0-fmKJ}{8T?K%q&wguXxwcQMBilmX?>VUn^;8(RGZ_GhOSg_EGhrw9Znc z5I=)1Qfrl6?(4qvOL046FP4yb{G)_z=`?+BPo21YQBl!gE?LHH5fqmTV#gf( zBX$W19f}q)U8USZuPM(?-HggC9G{Y-_}kobxZ%({M`Bym;{fwYSQ3qTEl)dPaYngxDKN z!7%g*Vo&VdyVrK)y+BqgpXzwy{e2-+O!{V6lNSIp@aTqHlF2_@mc)tBv#_ML@oX%P>o-^hR`gTy zxEl|06k3gUyt!ER?3u6ua5N7O53L=jPnZ-yc`3JYMc0o0wttn;dY%ao7U#8((TOmr_2iO=S+Gyye=4DQs$(|PkA2@aD6g@9*_Oyw! zR@Pk0@ZAEk?;M}!YCiT|ymYA=^^&N?lam3ld+*bTR?KgkcRM(=kjtIzu|5Ak{M|fb z3MgZ;`Q|E35ydo4fr^q z=+lRxJ>>8S2y809F-!ExsqVE^HUN}|nfxxS5zd2A zy2V;Y%`R1j9kuWBShDu7Gre%(f^8g?xGm~&QZ)b@J(dXpkJoJ=>xpyf5-&~K_^#id zvPSHLaMZ(Y-prlHjvXU-!kc@0l*4!q^!)hI~(p7m_#A4xx&SyEiQRbHM;DUlwf6FZQG;3f3T z%riQbj~SSh{11NbD(AExYVtu9!>ziMf0*)70|S$CCGa9vY<*o2TLf6c@UR8eJ(;%& zJJ zJL_IGH~SS7%xbsFRMk}f?l@QETz+l`SMMDe2{697(zZR2@ldn2Y`qL{XlL7A5fQqy zv^1eTdj|2?wuW-a-oAC~mY~9pDD~c+o<~E$6nx(frRi)tc#vnJe2(YNojc*-;pg)! zjUOa+RM+bLZ$rU{ROdoj;*tZd;p5Zvh*w4By+R*UM?p(_812+!Wmb118QHbCJ53{w z!VMpHmHxr5e3Ft;V>%QKT5)olP>LN!-VdfV?~GE%BZr7_Eqn`Ktq%8r8_cMHb?*|D zr)oAUJhJM@GI&x;rEm6LDIy}G*m-K(UwL^YT0XWGYpW~l(pL>46Ow^+{YBE+F4s0R z@Ne6;zT16{`&)B@jgC`sA+zRSe)yl>k?S~i28#%HpR3q)PK0Pe6BFG7LutS!!>=K6 z5Or^0V4$a{+oL9&Pq|ntz%hTmfJOem0R~3K^@%4aqSWggd7EIV7Kb@;l#B zt&2l1|N3G>Jh~fmKSJ=Rt6#ke7`r=j`|&k>%YR@qM@Jg{0rac+UO(Q+ru`EVt~4Qd z?DjlS$PxS)1Sv}?yFOb zm`U}%un6^3VzudyqivxxDO+3b!PDvxl(vx|XN5XS<)f7BCBS$zo%4=*YEEI{Rc7S} z&YHd3jL;^;F1)07TU{8^E4JnPoNrmt-sH%5)Ep7VO^d~m(-Qt{!g&!MgF zEVe6u>9s7-rzI!%^JOpP`SERU*WI1klT!`6{ea1}DATk%D%G^j+d1;B)Vntq_I>}9 zN3Q)?L(z|pJAO;{ORummy?l{l3=4V>heEf6V`Y)x9yAICxY#9HToBWEl zwYcec_mo9Q0Nvz2oT1oZgb~e|wX@i6LrF;q`~K_W_F<`#XmFYz+S^T0aDc01?7syc z{n7WCBfnln4H7K_H+P8U1F6Jk&jNA7L#@A-vP_gsYvmPDD1=fmDZQNTEU_nFw{D$~ zsAvN&xo2eLm7_YD*HyN5K3-nl`Gp0O{`!#f?7qY=qYU?>Ejr_&CAjXc5zC*CqW`JE zCSm|ZV1t-xEyXfmqD4m*cgM~x%(1Uqa&vOTbaZw5t2{RtJW+BONYAcN0;RlielU8!Sr8_0xz)`50H`kWBBVuCw@d^DQ(p^1r0$!@xvb#q*vUyRo z@ST^A!YNT8DPE{Omu%MAPyvyLHylkp70kV#m1v2$XYVr4NoQ&Ab;j*D-1=D4OK-QT zsw!DWS~%;e^tO-rmQ3H8;;8XYNOLlp!>R1DGA>0$#o^A9eZR&(DF+!yrbJhx?4sD@ z-JoC~>FMj6zPP;!Ah-s)O|h0=epOewtBJX}A8I3O9BSjpIuCDpXy4V{-Mmn->miE1 z{ju5JdN@_=q!4q?Uw`d=)7F56MzMLbnyKkFXbSigi$l9v``?IG*4_~~rr&99Sqo-? z|2_XP$3(CEhGbt~U*k`w1gV)bF)?qdJ08GXT}!4X^}&cw5H^y8uM`Z^ab@M~MZ0@+8CFefv-k<(0v{(U9r4Z29zT8oq(% zAie41Gnx860>|#1hverl6vApzt8yINi=K_m@52Wj=n>cA=qzu8r4i(_EnU|tf7Z=j zoQsRg;UQ{qIQlsxSJRFx!+8+1mULZF-2clrc4;)a*KQ;k7#cEga8QATp%eZ!kLCg=!uO%>Z#ROMJG?3AizL>YP35 zkFUj1xioriAh%ukd2zX)cg@0)<{y^9eF@-L2lNMWu(yGT8Uz(CZtfDTSKHrlFwv>} zms!ZMtS2ZL&@H-Z>$6*r(H0v0uu8yjZp@DQ5KVQwu;x6I=Adm=eLWc#{6`c6D2E** zF_I+)guHBuH3%ltD$I%n7~=;P--Gp9^~I(#1bDhtdB0;YYvr}t)>bAoK9qqIX*vc^ z%}`qYUyPs2Q8$ShnL2f;IBXbzjNHX7t8t+ig^)wP(kF7&L7>#yA^+Zd#-c2YoGj;o9M1HlAQ(G0Pb8i0cm&fTT|-txVg ztm@4hYT~&c*?wC;^P3!ZD^f&ARZJFA|CwK`EPcPqs0n9?|d=&}h ziQ3_Lj%SR7B_rTA_J56|u;3WvD^V)F7pTXn2Es;B2~15S z<{&%!|Fnc)BhWCSY5lFpW)#$j(GdH4Ku4J6@$rPvq@-;?lffSGvP#;rWJ0@l)3mj< z$>8~Qq_G!3C>=sR&sK4d*uZ3 z4&x*I|L}#8kr8~@fE;(Swzf7=3;F=dK32FtH)72^efo5Zv934!PV5{?Cc!GGInS?u zPf|#cRV||CeEK(Az;4`oKX}X`SoP>p%1ezgp13DHXi&HF^74#6r=n2z>)@kh?Y|L7 zZ$|9k21Ohm%g8WR8By^JO%CVC~;QjM0lGDZ1n=Z|b>3}zQ!kM(#& zT|FtO_RzaN-3`*#pC$go6ars7g9>0^z;%71D+FjrBSuVdLKdE^zg-CcARYvv)`M)3 zK~);N`;tF{O%Nt=n$9VK&+7N?-P6lCzwZ6}_a_Vt8Xe`x4riX>-?N7nMb{IiS)uh8 zG6)e`*CJkBAP9tN650*?h^mjdX1VBr!s;|MF#D7eZ$(A1xc3+I^z{+shQdeb!-o&H zaiNNYut4CS1dl~ZP^uTfTlUG6^ZNoxi_<}iW0!Lfs;;iiflq_ds+n{C`MOemHEFWV zJi%D{+hk?8KuIuoQga{5)0M8WE$ERdFoIBiX_JPD+gjr^)WqEwx1UY>iB=u77tk#U zuUQ5redDD4|CO&h(uTjL9*Y*U>5|`VP)uLrOIrgClAfOaJpEzH$;m9P*w=iuwqHvf zsaIE5iE|=WAx^0I5Wk>m?dQ)Ne~VVV@T`8`OiXXPOmMgPZx3v?vIdFcS!A3mYTDYd z3yTGcfajP51)pZ|_3s=+WlZfDy%6-DEWokoZQHip9&>nUkM4@C`PI(R@i0IPBNJ0D zL`$z_fy_*lKzK#`2M%z%=AWEHRwHq8D;DUPe^@l0cKcA?0 z1H8Tgk2Sv}_QxhNvTf4RY#>5{+AGmfQN2$RJd}VSUcY`VcKL&l+f*GJ6wr;6ww3FY zQ+0$P0-U$9dgCYzAOh}X^5N;p`I*+^46Lm6_)z74!1B52H@yH3P?t3$hej8pLuBh7 z?7c{JaB-NQkoZ0gRZ;vABhs74GSkzQ(HENH4+MdwvB1)*2WZ1b`T{anRaf_=vHLEr z6gy4uz#^rQQgE+Lzq#4cl5;bUd=(mum{t4kxNq&T214Wl6AbDXD4;n*t7 zIh$1)X$P7^Y?a_>vG~sab;0c*J|$jGwK_#3m7OiRd(R%(H^(`_n^B|VUVM8J z22fqF#}bg06B<=L@6Bb;{Co+5&=La2u7#5bROssHcn2`;=*w$9ScCp)ZM$%?%sja+ zTeb0@?m0i49LAx#r8ot`J60>9Q5IeOT8%n$0*K*(w2f5o59oF02VX}C<_UUTWw{y$ zEtfC_QSNJM1DMcg!chCNTDPf+;Ow!)fJBL+-!T$?=G_|(CjI5t@eo@d;U5!n9jTqn zRGsCnY`74D0lt3o#ts52%0=gMr_DIBlBMNN*sNjL0!dJahrbkwVh_H9ARB4$lv;k- z>P1si=$J%s6FINjE$n8Z5v?r`DYX1XrrT715ZcUv8xpJ232W#3Y6Ad>^#gvq?mc2? z$i1DB5?=$?WFhpN(AM4neACn0>5A{%@+(SePnbqoCWTaH0f`g*71}xt8(Xxm6j}TM zYSPQqz92z+s2bsK25GIuXj5MS_hB=rqdIIQABd+t zb!^7oK|$1Vj-%dC7!r>s93&11mqGByC`n(yeS(Dk(HsJORECPbJ+hZ(_B%bJ*>%Q55bb;OKvdeF? zqSuFQ^7XFlN3L@}2s({h)-yidIk2!eU#DRCeml06S#$h>7DCczVBfUK`YD5q zjEu!vp6qG3O04g#va{tj&T@sad9e%~|?O-dGl$A0ZG@`?HR%;a=jRlPNSQ&?Rz+;Yt5 zUN1l*IohwX@BP~VL*1fx96tY-Q#Csy6!ezthYuh6s@b17X?nv#n0)humaJXhMndu+ zG}Icu&1z_<%gf6=S#4r_5hB4=*L)hd00wIp7kbo;-4_N(OEPq@UMO;kr%o|`WxSHq zctcoiTf|nh&*x4PzE7U)K$1Wl>jE4MtBL*M$y1`hEIT6aoY2$rk1o-w_kML@FU7{& zzWbk2@Qp8^nA0;d-af9dau@gM(mici#(<5lUcLHQWW(!Av*osEr!+k3}edceZgP>UaY?q_QKi0Vyp*t zoq|3SYjE;ZHvW3JyHWv2^}^mQ1bQ!hTj~hV>W{PpsS1!J;_lsAJJs6oIE9-$o}QjW z_T;Ob1(}|x291fZ-yeOCpp7VJIk3rLt4MwpXwxa5tfu}4+r(@a*3f@~N*jZg0hM>^ z$McCKAbj{dG&(Q|>O;AMU<8|?`JkB091`UhG+-5U`q8O~W?yL29U69Ukpd86XQ{(T z_1S|4F;dnXAT)r%#aeX(CrsYUd6Cgpds8yK19=1fSx0EI9XlB|+=bJH!uV(D?W?~0 zw=rj4l<@=MAYg{W0E7{-v4I^%t|5`~#g{BC12$2!5|6O1t`0c&l*RtV_FX%7dgkTX z*Gwl+xER2VAY4$`<{LL{vWuf@;Xgyoga8FFI^eX_0~htvr&;dpK6@M8XPdYFXRajft zOwc~uhluEC@O_fEpI<-L04iYhI-Iq8wx}!wRR{_}CH6z6aB1?#ESZ2%PN1nZHfm&P zi&N&0S&eDL$rbcQ(0%`0pbVA1VGDyY;cMXXdxJzPs$l*Ab=lS`i9{H(DpQo$oPcEbx-D&zgUCnfbA`R${W&o?hp{@o$Re4++dECq&D9yzhT*cIg9+)ivj(Fjs+}& zn%~!YT)_t!3rho0a>AN;S74?4R7cpW@woBSsG91zFTT03o?ETU6jtXq;PHTt>P`CBm&(J-1ULhzTz_()u`PxGBO~APH>4m-a=grK#kT=2&-+J(1 z{0|XJK4A?G&R^5bRnJam%IQ8jA)#?#bbZ~vWoHPN^LzrEo^Mz`sekln&|;{#5w7;( z$u5y)tdc$e$7&EqOLoI!f1(qLAS&of5NBA@bkzABz4Mh0AKpaxLO{}moW^&)<;s~> z*XuN4K@%>rDS#oI+g8gf_L6WEk?P_5LoJ~6CM)s_hOEe6VfQV#R;wZsAzyIh94B+L zZT}#83BpHudzkwQULNs!6V_+P8wNyg$SO#5K`3*C_?G9|Mf<>6p6622!+?y8-O#ha zHd-FNZKJTf4>{vJDhZ)OZ98}NE`6)Hgtjb1U)Vzafq_cdM&%BSk;`F(T>fvyelq;G zXq=RI=MH0SeZA@G@`BFYaPz&fUwlB>gLI8tHem^TI4b{B;(r`Q8l#IB1wd4jJb~Re zZroS}C5@U*1ccJGC%Er=@63z?GZrs=R=Jmf@^Ahd>%azchEM%+nuU#xD1L-1mnOu= zAwDlD2zCUN2l?}_Tq+)gUvMxDs(iqh0}V%}IN!i0WNsMP+5L&#i=Bkp8SIUa z%*pgNy}~P7h~YrbeuVk|L)G;lyS*>N`OYsbnL*9Qo$15*s?gjJHpk{A-E!)7 z*VWz0K)WzMU)9{a8L_U7HDaiUw(P!%X%!(Mi?alX zfG6kpfVqV|p;--q9;h=X_4HnXocgF9qj1qbdv*&t^Ca8|Gbo$Hk?$&YiMaJvZ$e7Z z6t4E}3y1ZSkom(k-G-#{+s5-El0cRjtM_`aIQd0HLLosj>?=;=@-^AYOa&uh11Bfv zy}kTo%y6;_0Df~R^eE#gd0ets=- z7%*df`}*MA^gh%PPBkAms6Juc@XO!;sI^j4RFm&<)ccD%uC3IUGVOJ zE`*~lb4`F_*UJoM6<#g7f6Nck3~MSwZ#L+TwG+4 z45(8Tr`f6C-T)TX@|f1F)F_Y~S3^(|qTc3PwAhD9|AO?k81$QW=|B4XKG6z&2I_#6 zYg6PDB3&>E=|F)5tn}c9GN25|!6M)-nZYU;8yZ6>UO*;(poiy1=(+9x(Dgqtwh}G135#0q zmLUxulpuv#laB=o5BaJ#OgD(Nx)O92iv`mYlhN5yyJq`rP2R*}l# z!zK$q2eFtnxQ47WR+p!b-;Ihg0W2pzfO*T7074JhzyHCQ&Wx|>F@IU2Ctw%Qb8~BM z9^k+6VnL_r$JgiLc6}-Y3yPvLiTEEou!UM!!@s2X#;hi#l>N@e^|KQ;Hx4W zb;?9Z<2_E4pv+j4?`LRxY0QhL*N_-tm%PmUIp1VER2Id}0S-72#y~Iy1y&k!rPmdZ~}#>G0C8e9otYxMc7oSsQg*+YYr(0~wWbMORbj zE|`kV9E^fgiiEo-pR#XGn}j(1-<0Kdo)70UjM|Oxjz;xJ>yxSWb2hyYjcT5rOve2V zC%cjGdgt!l-caz2Zj1;N#tM>c|F^U{?EN2ejRgKqfa;{5I4e*aW8GcBjha`Dv=xQ1u`$%Rl%xMuqyDlyJ5Slp4sJ_+;Gb4;G9WCB@Qf-JM|Xt;GAb3B)cf|=LCC9d>u zNjBeKWgC!$={q=zFzq+u9*u*PNl8h879I&2wyyQ2V)`j#Wn~3UiA)6x5~FK*b#QB)1PM$jl zrIZ7@tLf9LU1b4^USx^bLceu&Z}vUykFW9YiW7yE*mclWa&gM0;JmQPh?dcjCLawE z3STgLkaKu{1hynW%+cgcK#oGL%5SaxIDGN*_#xPX3*~RxAbvFC_#kAVnm2EPLN57J{#8(L7>yM=x82&RJ5KaZ zt(MWoY!%Y9pq|w8gVDx4y}d6S)xC3W&wlZtrlLZgcF+HbO54Y2c|n+fT>lVg9ipu7 zskB;5D2$Xy*QVrF)DOV>8g5Hx<9ticBn4q=a={HzEWa@wj(7f)z12ke1%C@4um`%A z`=}kScMQjwju;|VfbKc-)cUh$v2C0x%dH0xh7Y=G}^H070Z3y8CZa5;-2C|H_V@thdZAOk<2qS9c>1b%6*cLLvC$htntN{!{$~7z0!rkSJ9~mhW9Ffq?4upW zdH*SZ(V5OPH9e59iDga@cBAqemYrDy9ZYuC%%!K;7;@dx{Y-M~YQfV}X$ZsZ=tTGx zUWsP>lQ9!JqWT35WJp?cyvue14f_#iQ?|FM%FcO+|;wO8Wm9d8FWs95c z|4FKZI3r_5OkBWNM%;-|0N8ar5XBzZ#gkq{O-u#BlQB!CG`)nWms?Mt3ZZ0ZwLf^b z$XNXtNRft1hMwrJXhW?@N#69@HJ|%Bpz0!lF0+4sUdu*tWe^HN+Q+(^?UDkP--CQn zEn!9=1P5H#`n{@lJXgwe8*5PSw{P{T&ZhN`H6M`W>IH*ol@}iKp)~nzRv(WKhTu~= z?HjJ^}huROH;Q&wqU0mMy*}1W(;I5t7d z1);7B?cDj|m}q&**raz=UEL<=wJ_SBrlqwUdjLx4Fo^tijI6yN_HcMqluw88P1vRs z;zAkBf=Js72nZlN(dOu^L?QvZsX}~3>MkSt7uH*8ctXNvbW8-|`|$)6L0(I=0_eSx zr>j#u> z-(BU{n(p(2!)qNa*ag<~Dl>xr zgt9LRRQywUcTELYE}~8Mj*SIji*7~QPBomeg&qeym8OCKmjicf_@)15vD;m)aO~kD zqCVaL+HSu-nG-`r3C%-t0!qQYO}fUgOAvu16g4>szPEq2F`Lp$Eb}11Oo#D#h`wm6u}>e zMQ_#*h)R111_T*;$A7Ev$Zo-qnD8Nn02Ovj<`5n-R@|tlw}odELnMA0;e-*KUvu5R z>+kS(L8PinBFsDaLqp;fRJz?eP%n# zL&5Q(ba{;*pZsi<{Q^;XNKQoUgkEUMh*b^;_mE&@3+g6FJ)3GM7bO5%fqv%c3{+r_ z*d4Tg$5NqJGxK`P^Fc!1xPD!SC4=c+{5EWBy>sVk@S`1xl$H@kBLzL1f13pQb?CpR zvU76iZOW#|LU|4Z!m|c(_tJ1jt9q{jsBla)l8lw2DKYOs8>i{1Wu7 z$Eb~mhsVcaJAQUw%a#(FniC09W{?XBAFkAK%oki@Bt;0ry$_nGBO#qQ48K$CFrjQw z|0f~siQHD?tF81D7RT)NX~RnZ>OT+4g1J=+2*>Kw29zyKXMVi4b8z_JsHc=)Jv7b0 z$r(h*P^_$%-FQOo#Y7_kOhf_*-5jBiDMaX#;3OG5IqZMdBvowWLt1234P#QlfAbA6 zXWtETeKvUOMnrUxKee>9l!0f$Dr!VSO&zD86-@t=OHNb+VgP^%S^D4E26gp7)dp=7 z(?y`X9JhsQWmEN>gyBHIV~qb@i(|zc2|&(u)LmaFLI^+0&*=$kXq-bxsMKkK4z*Ze zZJ7x)PeNUZqQOC*U}HFYeKXT)XL+NVHD0I59z`fN)h#UyU0q!=P_#)s2(b}-54th~ z7gz9?A{+aN>--2i%rAAXg+h)-_)uY54}0KwMeHL&bbt$&;P#UeQ!7M*50_1x*+w}L z4Q8rMSm-N0meqJ%Kkt1(K*|gf3PGfiz72z#w1Gs({V>P*;k$zs)&hjg#$Agftjd4F z5E8CjAu%z7Q_uNGB)W~ndjVLXpv=!Z({M;oU^w$n~XNILNI&lu3gl`QiVz;cIBfOX|qjBIkd4`eusk+4>*4QlhDBM&S6W- z5$yz|-7&h>vvpq*ExItcr?ac8*-%p)^i&zQc`>Lv?CauK1tI+F#IOgzQ#}t!p7;(n z4;8{|JvXh6#4oQ+Z{M-Q3 z888@{zoW~@Im=Zrex;zHQStCNh<4ozCe;b4yU9nQKc}CsCzX|{i{F^pAHo+e0L>zV8xR}20>euk-Xf+!S9BgjLs^j6*!jRdcQ!5je z)h;eqUp7w!`cTg$pOY4!HK)Vu3l(O$FpgCPOYC<5I7-*3S8k7zKV89%j69Eq#&t`- zB!$&Sr%nsgd@TC?hKAX8DP@174|7BAOJoxGR+^66_!nssY1Z8Rxm`cPJ^j5HlZTa4 zhS=oC0xPz{E1#4w2P62jjb9Mxi_|j{EN%Hj&F0r^1EcBF(WT+pvA5k#1_t9FhV`oB z3Dq696LG`_Y()@3Z*b(Ex6<7Ma*|3EZ~mnt-|@X!50Q}FJeeG3 z^VS-K2&sX@&YBH|R8+C@PddMHlX`l3CO;H*m3ECj=#%Vid2C4}+!;I450@>jj`yAn zy?t9mGrs?a5#6mtd+n)F>0v8NP9k+rpam4P+s#7+^#Py+dvCkE@1WVzB3@adHnsYs z%}S$_mxX%>mCKMRj50efr>exRA1~`DpE(sN4)aP-Bj(*_W<5lDpUoDI*Usbi+x0iS zs80Hk)_hLygGpzxJt;U{LE10Kqe+Yg*lqHwQ#T)Cd6*7FMt(OjIOaI2gY@zSg_Rkm zq@*O8tA6K|{8#f!#isDW5l90+9L9WCf>;w%j`Ip-W+vtrssTXjgOB$QZg7JLF&`uj1$RX!1Hlz3m#g;Y(xus2 zkrq`8<+A)9?Zck7xZ0Wdg?qPtKCk=Y-Kx*}lvY*(W#z|mELv*zU;8-T99DVI<>!Fl zl8e1~LPxXf%y43dN7e};B7%&Rnc1s50w@$ju*R2`(|4j`i4Lbz4@l>YoFd=OorpYY z9Ks-y-WyEK$vX%8-jtG*)M@=dW)+4X;KsW&+6H`ekW(NgYKS%{-Q~Q2M93Q%M&%q} zZ#D4;T!~r+HJcA}MTpZ7G2zwO?3=ylU`P`jOLk6H4XK9NxcH$2bHA@DX&waK2jxMR z+A1JW_sFkQBCzQ4>Hf9LoY|X##d$hb7N$Cg(f=s*Sseu%k#EzB3wRe!4!FdV#f1tr zrzXp#*>lh^2rUc|P$KmN?KB5rRrDE@o_DFo*f5l{33bzIZ@g0CyOBr_AVT6@ILFiD zjJdhF#gP^@sBqiTk!@^Kd@d2$6sRWN(a|0I65=2xZYeG;m2z{#T%7OC&D?VNCNI9U zB JLW^cdwBY9Ei8MXLL@zrhyDfJvx?xmh>gL+qO(JE32*dj;8oIi=7{IccI?Y!f zIJUYxKL&gQIm6>w$T!pWp-%=1Hn_X#D`gnA$SEkOLzo3~SZXpdGVhwwy~Ep0By`T6 zO&dw%XvoXSIX`f1K|A5O;}~oI*w`BYC^4EEF)&OGOuaxBPCg;T4$^;V+V!V_uSpD` z(>HVz4X82w6BBEVG1p2S;vE{MgEwY*YzANZt#zC(V-;&~{`_mG!I&+mPV?9FH`Be1 zc}p&EBqLW09*ntnzK+^;KZ@g*q-LLG5b?4g^Rg+KmB{)RFV?|QUhD2E_g0##wI{n9ts!^M z?c|@h@N=21OE&vWqg9OfP~*J&Wz+ae9@7VwhwsZa%MP`Dgh&Rtprx}j81X35AwUj{ zCy?YP_BrK?HFep04msI#H6%WHLXPR(wG0;*mjJ-9xvN483*c=(dT9P8epEl*m4BE+~2a z-0Q{paMm4i&n)-ef7EvQYkArLxots$acEd@@W=1=YLeDmvkNOLh>uzs7WNZ5M!JRE3s*vt1BshY@!ZtWpC@l;RKW%(< zx4CQEO3{V57;rB$YirF?W5kCcWWq;2^5X5KeTz#=xzC>mK@!0j!=vo%%_JjhJu|c9 zuS1_J;B4374M>7JcC4#1d0S8*3Gvo>^2s4LpY)aGYsrzuwg8`2E+1Y~5lSVBg z4$f|FD%#piNG9i$mC;1L^2X9CN#4n0Hr}tz^0Hv_$gf}b&SsuDqp!a>$RXPQe3vnN z)I9ynz;1FiD~-Fl&21hY=bFDU-F&RoW;Sk<@I1ZCydwtI``*Y`wd`i&Gc$MbOx$II z4s^W}?KV9Aq*eSR^QT|Gq=EthOaLQA+U$KY}>zucPs z(%YSpo*o2HnTy&6;9n06!W`MmIl3~o7Mqa}L(C$1c&xr@Ht)8*{d8f$WqzT&(w~!$ z*RCLed#dhWWkrQ599q(?ewn&*{$JPSn`+9v?J0j}p4m&tGnK?PJLDVBg2#+2O z$Pd~9VH-F0TEmRKgFG)^ZGV@@>kxncaM=hOhQkcO;+SK>DM(029O*xN_%H<(m6DRu z?Z%zmOdAy!pLSm#8yh2}%F(g0!O$IeCg+2DS66uuAs?QYh^{|;()-gD)f+cT8+Vqo zX<~YjXYTqs+pAZzIwRbgAXVt=>z@~6M|xvx$Z<{07pA!|N0jdwK=PJRQ1ENJyfT@) zZ{I%T^of@kAfR#}{D(am85!0+@=E+60MG$Rb3u;eHq_2 zHXh16<2B@B89d}dOrs-LzHguQJp*{bdd9|nm6dCLm2(&y;Ns==>X&KuULrz`G_X+(Hz+QpN3lnT)I~^|`O^l-Jiox=k)E zU2KaH3jFEqLJSD|`T1RIusw^1hn8&=^6C0i@e(6PMeTh_`Z!lx_62zFB62(cH zSPTi`9T?&kcv%2ma#45UfV{j|P~A2sx}UTXH? zIUUv20^hJql;venC&<5PH965J)CH8H>~$@dS3kbG>uU|{ORsf{=*!)_PQgq_*85V0 zzel$2H6|l6D3>NhNZ>G1CruH~v4|=)@BZeRI^@dQG|}xAaOX^Se);yOM1V1k#dY2|nF}Nq4sWzM zQW$3n^aeKTR>FqxD7vd>!WboKQELaQb<6pLm>}1sv=tvbe@qUcrbLMRItL@OpM=_S zqaO(dhuP0sD<1jYeD9_)^1md$*Zpzf8-@Ujk_~wUn&$uS1p)s0yhCoKmx5(8`dcqE zR;`~UHqxn#U7RiiPrX0unWfhnC^*Oi8DnBP`LS+JpuCql8x>o=3 z2j1=5w>daDF*k3L(9_dzMiDW)T|Y`8!RSS7HNLK`WyB_;zh-UCQ^-|h`n1c7f&=yd z;~*o=q^rdE{l_AXizJPWjf>=$(6|xX2aJ-1O=IrTZd-0Ws~znUw#SDqK`qD|&)MY{ zp+CWeBERW!k+J81+Z@-gbhq6)j~h~hIt6Xz`&N;k?tkp=HWz2WY-XfSii;XF`Qa{4 zFC`L78J&YKogojE_+my$x0`kBevxe@hVd_7zC@wC3ir-)zDe1w#p68G-?)mJ+TU7! zlp_;lD6n~uF7p&C_2hot!p3bHv6uUj@NmQ7ri>dVxAtS7?!|H_C(hA9P{y{*f8Gld*38A0=ERPuG?nSsi$Y|4P)f;;5E&)9Zp?aoAR4bALbiyLayv zO-HapKkzkPSiW97f2S$YoKW3|oyy6`PfFXfCs&i5fL7qm2u+pqO5;?6FJ0Y4)f2wz z>guVfDU`ap`r-a^5z2e)y^ZO3g`KUvJ;v6S|M6t)k!=3a!A{fI*g?XAww4wOB_SbU zyV%2QaH1O&Y_+&UN$FYqWcA|9SfXbdmV{Y-v{_jx!&Og6n`Z{M4r2EUg*?T$x$_NH z0|OksA6>&Srd#$8j)|ds=Ih%FS5$H51M?s=6^~dK_&HeK;;5A>Xm6ds=Ly$gQC%d{NMe zg@_>$yJVO!S^SCI&6|;fN3~hCd8(;DVJWI6hzS?^4tz)&g=&5rE=^5&7Z>yE*Ls{E zDl!VxgUgJxCD=#uTON}-d8NeKc${5c8;1luC?gN>I5O`9t{?QnB%pb zpI=X*0*RUA9zW)N_3Bk*WF$&jx{lpsWwNereKJ!n>{(5XXX!#X4f-@{YG&ry__+Sp zBmSTfm$FGCxS4O?zAg4;;eT-ae)`FiCoV27^?iMBTQ-rH%O|_62 z+mUH<51t_QBYF3I#ZXjRTboA0g&&KU@p+bVoXOIcT$gV#Iw;f`Y@+5rZs!%-OiHQ5 z^G^pm!b76aB42PJwtu>4; zN%B1u1yoO_Jn?wdlOjp=RFB>bX&~E7ydQnkPz0@)NI_#7mRXmc%7O6jbGv)ua zoNBz(+8h)lIA_C*HugN4TUwZ}UM0VA3T1{I1^9ra!TUOkp1zstyVquzPY;*~iI4uvh z?rqM0W)OTxftrG~p%Ho%|2RbieOLJLxOYK;b>3&!>dE(Co|J#@S5#E|_f^oLEgv_e zMnn)-*VIJ4dNn?`{`7E`NyKf_Vs^+Eo4Bjx*Oeu0^p zEO>Z$#b#Z!C{^L&kf5Mz4<4|dK69pFcD;Uf{X+Do6p<$bf80iSXUa#+th}Eb+=}py zPk8(Gt#*U}RQkJ1Rim5VGcq!qYnW(1XYHJUE>`{FgIKn4^K~N=6O*+TY9oQWuQ+0q z^6!*lvB-x%qA$OhHxMsqMb+2eKlUZ1rbhCQyu2~TpU=-nkF_jc6TmXy-X^n28z|AY9lFEGz3l=sFdTo?mmbtc#nQ&||HbgoKg#!_l|QS~At<M~4!VEi{9DBYQc(}PV5W1`dNMP#xk04x> z?%lgA%*?00fB(+G#bqjb6*GKGTN{guE3ehyHUNaO=h2O_W2EF$4OGL^)6*n){!sYL z(eN_6jd|6zJrC$6{(t^DyDKsMqYV6K&YYQETKZ$7gAKPgu&+-;S68>p%~udQkvvvS z>)b8)r^0sn^w(?8X_D(sj+5k+ahPS5v7}@A>swo~?Ck7@KR7LG+Q`WTrB~X`VioWK zKHxdOIWyE&Syja%AV7ghC*h1yYD*w(3{MiaX&f0zSQdcW;h^c#QuB?BBoPr2xxm6A z6L<$+u)ps%svidZzriBgo_5VeqPe;G0y{hQ!sq0EV>7?SiLNAJV{>zPO;JCR4A#uV zcFTKE8-|B<*1)~cF^D_A&I4d0t1R~(ZdEf|HB<6F?FSDY6u*Dp27NIXfml4} zx3oTIPIzpneiQ;MxULYWIQ|13V=>D*H-$K#_UAtYnH+ zbWnV($IEY1uhYWAmX(v6iB^}oUSwDU{bb^2{D;nnP?u+cMS1!i&S6J;w0hN{)O?M- zy`&P1MXJ{4`!{a?7aa;Rkp;`LH}xuIk$tUtf{jWhvQfT7w)yibox{TC7U4+`Unq_l znmKAKAvw#3n~bZ|A77SJtt2*Y2o}3Qd$E1;Bv7y5vD4kwZ4XP?Ad(C&wyUsp+S;%u zCMFcr)XWM9F=cjpzaBU)4~7lKkzf?K;+tXfbiEQKHz}dHbLUR}I~fIK0GL0&R$=>G zyN1BvvS)_)4n5v(jF zG~~8-)?@sptpsoi@lTyPCE~GLe2h*Q$lDH?Vivf`^XJB(tEi{52r0*9OZ>I$l=El^2&a@12> z9k@3W(rV>ZQ1zpuw79sqyNj6-J@0Ld;JTHIR>(ITc77UY>F6|dbrEXhQfzN;>*vVg zFuUE>(0B&F&EsI@{olfcB^9n4 zY(kI6acpc>wcD=l39?1NV{G)tr;bcY>bOJHya_w3p}#*GDN1b01=_QdC&$8vhll)* zi#HvA43j=R-ecF$(BOCdHRo)NpRpszrccEtBqS6R8rqa7Xf-uI9{`}_^kX(e7$XAX<7oh|AUjPzM@Ho%0E;9Fwz5iE=4M?0e@sQyzwo?{_soN2FTN77 zJKfOGkpJGwSyPnok+n4`9bM?$+a>L%mC5WCXtlJdZYyV>s9LQJ<*Pd+KzsNVb(`O8XKqM>Q%cHx7n)?<&# z=Q^62NF{IV>MB70gfa{`Dp2UX>BsJ!b(e?bv=WT!IqSI0KSZA%OC0ZYKgDEe7(>UW z5p(1ix-9q>aH(FwK~GDLbc~XJp+QyS=g(>jscd6(HqAk#6<$YTeSLk!_dk&(6E`{h z@?Z*AyJOW`m|nx!O2sEGP6yR;aiT`t8~e$Zm!Iyt9PceOENqB&N36J5yN3Ib9OdQa zHoSe%VY@OaC@U)~FtIWe8Gi&FBwIBpV02XP$JqObWv!qnQTJ_b4^L0Jy4X+m;es}? zlYrC18}r|*M-2}TPa)^$A`1&)A;&3^;TIE;h3&5NsonDW`t-5fcb*y6xRrmOmuWt< z5TJb};YtQ4G%TXGQ3n&0&T;wjbrlr?PA)FHsrpkcuC8{;eVPeda8$kz7SLs6W+MFQ zI?i_%%?odMA8sR=*2J zK*V!j;6-$FiS0B7ej1BcT)gVjfCviFK_17%#$LR5@ibJCx|3sZL$~j&g_?bdBdex; zFLE_=Fx*ruTwDO3f_%ii4n>fk@J;KrD0W`aBVZ7tu&LRK?WJV(W|UU}^+F?e?r`72 z`i`F7MJXx9;NalJp&}-?ou6G!O3f%rYHFGEn`uUMUaE|7N?B#gT+FgXO3KQl=g;E; zp#WNyc~q74o|N1la|*E$CN92>4 zpb=#d!;d$;5_Pcs)=v3jxTI+@+d455F2GdJ=vT$Zj|vpj)GXrSNpSC{E^}~rmzQsm z_lwl~Hu@n-&Lc7BA2h%Yrh#Qfv#Te{-a5VL%GpNqPXkd$lP^-mBt&n_?e{f0of7(X3lbD|=h(!qd z!^p@a9Z4YzFbvF!l#wwU`X;iMe0+TLb6z{RCAXuuLwNc5NeT-K;UX5qC>u*=+aj92 zer1q!-}abs|GR0>-1?dw6>r|)(Q+t-_jrSCO7J16JlZ)Mf1rN%WfJbZzdm+0>M z$Nsw9^I{B*KH^V)Uf|;+K0ZF~@=C=c#{?B>X=&Z-j7N(+`AL7gJ4^hWUi8KCOI`U; zqp^Cp)b#Xpc=AwLp*U~;Xk&WXTwyocQ)1d?R;P|{gv8v4irL}W_M;7hgH&*;0hqNyfvZppTx=kgKJ-?MW|Q2a$<Dy`XTZpG(U`?8eZym?a(B^5M)=@I~FB4T3i#ElA5ZLDUXoJZFxd6T?L zhK*uuZ0vG!v{T}-XJ6_ieFx|4=>oYcqv8?;y%zUuY$j=BhMKib?Iwksto* z;KRYkzxwKsQ7sv%sF!OPAGM5?niFTMr-nlrmJ&2HFkk>EI2KdHEHOFQJiD85&8Mt`qeH`%Z@nskH;%~K&V0Fj)b;8 zTG$#wOUuh>_w7eG{+L%{P9Y&L0xiOV!-q#knAzB{l7y@=s;Y!=t{BGP4JO={3#j-= zy(pkIMVjZnd2{XBH55`rm%d!CsH$>Ee$kND;qL@8E54VPmx7Yg=_Y>IQjV`*zdoCz zmfQ$!`KZ(Md_a0jkzZtv7<8ThB8CvOY3r2q$sV!Tlb@YVN?88c_KuH6%Pij%6tvWO z9#p9LFMdRj``Vf<)O?8z-2@dZK-N~gILuw3k~IGM))5sSA9OoUJ7MeMP;8G@c=-Ci z^%S^((cH2!3b+8brGSSK8NFl}1!cf#K~E+a*3N2YdS{`iDR0=V0^{ zGkfp#XR9LRmYch*&fyHQ+*mO&F*ta5m@9?e>CVmc|DkCg!uCFs<$E$m{CTyaOT0nW=M3 zhR;73lkN?_|4yNlv$M0Dtn69nV7GL1+ML8>@qyPEJv|bPxl2T@YOZoBR(R1(y z09?pnFwgEBuUHY+P_oUxT`Ly_n&DklC9a{VS*hl4!F>5LE;*YDpmOEB?kwm78{2S- zXF-f_KR6YwI^dV$efiy2*vLZGJELlATj z$rDtZ#r7oUG*WWOlDBU`Q#lQq3`h&DPGYam17%3{_=T%oWLPjTxWUr`M0Lo{%#TE- zm7hSnP(K(n)ajkcr)|o7HO)>+a;i4|!Il5z4$uVV&>(Yp*VRd55z>B{rx7p#59Ag+ zdf+uTb#;T_(NFnP8%~L_X6C%lrFURLTawVw;OOY+yw1sSNXBz*hRtgWRPk^l_2iKQ zL6!zCeBHf!m%$7gffih(Xfx6wJJ3XLG1xJ36ka2Em^ew4WL5B{nZ{$W{7QTpPNlIs9_-aY<`SEAeLBxa_{ z8)y2hJtkiK2`{jiG0ISA1D#DVTsnYTZB>%RD1q8#CpjvVMs9^# z8#e&@OKfa2-{Oo0KRxg)TZVK1+hm=`ae{rY7O`j{?ziOpm! zq0hCnQVGJNg&hltay``~1=8pz+duB8yb>Wb@>oBYt(M#lZ`XkVpGq*XHzh0+>Kcf^ zeRCcLHnI=$*QvO5y@{oEQ6N*St*`f5dlBb=!R5l(y1!wS=XtP=2&-f7tbH>xO{-=V zFOfkjXzJ~~#qLVG-@Ur-BJfgG;IxJV307mV;$2EibtFVGqjsp`l~Ox`^jd3Ga|ikXWGAHEZ&;HUW5kc_Maz+D*Q-*;yQcI~9yFk2&%qB~habcN zwgvPGkR(1epCSBdv;%BHZoM)b06;!PMSNV=J%ooiXogg;{mVp5QqN%5tT z$1VO{`CHzsj8~Fd4d(mY~t3NvzEZmnrc4{QW_=!h%)z4+|q4 zx}3n1*p9viL=BX_kDZ;ew{DR_WlsjdBwxRh4E(uzQ17?iS`=hw2S^!^n!E-zfZww3 zlCGYf$xxxe=JiBV$I4=#r9VjkGg&am$Z#MmUdG0n0Jj9Vf2MYCo=!wm^m~>8=qG43 zCnqOF5_a2Kx*FrMG|w9upBYd3;@jBEIBaZnV$eVajDi-3)PbSF3hIOd;UHGsUZ2Ho7a zBbEob{T!XO1Z6;*li~+GA%veO4M3c^~TRyHE^Tw^u&+AsZpohLkQWZ;?V3w5~ z+5Z-u=fx;%szBR8@C~3slg-86;c_eL)2B}pWN@5f)Q|bS#|i-yH%v}4A=ebh$jBWj3tVorJH}9uPsp1NEaB+)+aN8V!IyKUP*MK^*UU z4xW%Ptd#D%N9O^E1CN*RHN+#QMfWmLQ&al|2C|5Xo`=^6ew6N8xov0|-r1>g-^{G> z(-n>*|)#9WC z-2@si$*-W98I$L9!bGW_+vi~mLVuK1{#$|_`_(oLIwkCCnbL)&{fIEpmft`Wipu8q z{+yPBdK|{uLVKRE0kDPh1~|C6o8gb`e$6S4*Lu=51rRpDb4J7~P~jy=n{FCKz+Od= z5>`^G6u{smp@N;LPxpt*EXk2t0Z`=o6-kqM0Oa9zv#rK0A(UD#Y0l$A^&be5yKD3P z^TGx=qB-oJ2ex=-x_B5-mo8nphm;Kw+Y4@+i|cczh;w@K%Przo7P#U%Zr!};eR$}B zD0jQF5zGT7!Jnw%;;?U`T4B%wTZz3fIFh}AX#$c*p@sz4e*#zu)5Cd_bnO{Vs zNr92hiLsi@eNK@KU7u~6%`2*H1WE)ut&G$lrirv%k1$yFG<;R+hbJb|ei<0Jo~v~l z^>eb082)OiA?pp{!Z;M*YyGKQ;5;By3zWpBk&()hFykEcGbsDI!?z>!umk7pT}|l- zngrhQ#C3p(#T=tVcT%9mISuwPD41z*Mr<7&{d|4TAhq(x4+3*@bEv5ejg8M@a=Bz! zqZCxkHsw=6D@oZGWG=AV-?a1#2rz*jP9yCl0rkK+Etj4l4@~lvvG;b%gFNFOobbUH z4FE$LzO*=RI5`P|C< z_k&&mbQ`y#q5^p>sz$p0>0J2hB z+I3%G+Vb$e^`Aczf!4ip%rZG190$7@&}M9HO{2C$%hYZ-+qdNOIPDUp%9wDb_f z!U!;?(8^B_*RcWVh5_c+xMgw?xLYg*-nrw$4fR)&?o_~KTL8TKFQm8=@zrdS?QgH( z0~dzVjjg7p)|FBeA$ z>2N>4v!Fps>gE~WM662&a^dvBaAmZf`%HEH8^xP4GaiT6;DYA83Jo>OJC6~YVAY^sf*{2&mFfJy4r^2?x8paReXp^HpRRJsv- z-ng9KmqV)uHb{t}=dYUG`xwa#QXAp`G%7OcmzI^udU!}&xpL*EhDIacRsVOH zHdSB^LqQRoI0=rF|F*C&+a)|H`|u&>vuDo`m54O&FUCs=Od_dE0>O}w`)UDJ7y+=Y zdS}Aj?CF4CY3WrcK^MSG`b~w|eC1R|*?>!c`H85!$O=F%z&4o-ec|cR7Bym<5Yh<& zmJJZh}1tc&RE@I1w*c>+I559Wil|xy?S1D;(JL4{c*%q20e7hpbi@l}!4?|=SIwD8aLN)NTXsa2 zLx~OxQ!QQiZjU3u%6bkt{2=i3&k0svE6$dJnih zFXMdyMOA$Ga8Xh+d0FdutVXV%My^0bl?u6u3R2FdrtanImYfEaoeGhW?|rdSfwP4a zQV^qXp)Ti_oBr`{jW*;~#ulqzSvNS!K>QK?X&S^0V2&mibZc~olB#O6U%y5iuU&8o z!1&MG*mH2WXKLz;@HmK+03A!uQ`UncmTeaE5|yWImyCrb0~KahU60lo`|MOqpT?5- z>!@3Xyw#>{Ll&Hxs^0lJeT?U=s5pC6*Fz!Q!K_7>MRLTN!nUMvj z7xGZXAaZNHjLf-`*x^4^a5pf{&@EVK!Z_;R=?EaGSde~61e>6@5u86#5)u>uE#zE) z&*yVBq{IK})vLEaym-(N`~3pfFM)qz6Tq>idV#fcYinqnhOX$b)_|?`lB9sN;25Na2+WFQe(VT17`zZ{_s;1CcX)n~pl0j{K3fo7AI90C*& z+(BvxV(B}@pLeAd7Z(R-1kv=~2-glZ#lAF{SQ1 zk5To&tqSs92F3o>xn94%#7}_SYoIYrVmpLW0TzN7*ob(5u$>T_s`XxuJ)lHnHGg9U zZ0-I_Jn=%-v=6PUKxB~uE-Lc7V|hO|l>cb@#~*+2gBFQgW*Ki}S#X2eHzeEza`ocZ zs`rnhFY1A^476Xy%#00OY=lPkSl}|NbHYWZrZRyh69QQQ6(~ueG05 zt8XJIEyDmAGmDAQ!T|)5x$H=Q1Z`gD!lJ^~M0^CW+Na>4G!s1LggXN1xw*Bqv9&cI zt5d;hcXzjbY>e*Hr%zBGkp%DDQ#koktE&+srRJKqFr!^lRCSCJE+oKnVGT?!bM;aE zySdPu1!C@+mY+|6;BQHHp%qPxn0D@RL;8*Gs`D4-t8X#%1To1uG zxD430dTkJvWCAkTQ)E=9T|N+d*vXtSHNDI^^!BTH%kppu3j)uPTp%dU-TKn^e@NHm z;6BK>j8&6``#O@=NQ!j0FG~Egs1-K*cTt3gP zgKS^ou%MQ2R9CAiGxvc}PdM0xIHworkd?I0eUJnVkiHM5} zxAK=AZZbshCJFJu-G(LQ^eW)?3Jzx5>s8fWg6;-P5>h4ixL7k-{?2;{4dvR({nlX7 z%5X&9m1xJ8nGqvf9Y`}{sacl^7ej{3;NT!U*lQqY!UKcFBLBbe#`PdWgE}t;2;#{B z)2C$h6U?V#8x4=A7k4Hw_~7UR(#~D57#!^Eu0!0{55o*MSE(ky3W<&QBxKiMW3ybj z@}jVoIp4&IQ+|vz8j`Arq4X#Vqf7QL)iuQMa*Ps0_J&7C!9-(r14%d_E$spVO!t0$ zgC43vzhI?uyuZx%GA_;(Gy~)p0H6Z}f%k&2aNM%iW`LY>kZ7gz3M~XPAR8qkJjdeJ zu&4DIh%(ys*L|S6#W8rsQBb>PW@d_=mbHPC754YybE*VYRzP_K1!4{4u8U$~iBN$O zrX1Io0okrY*S+^^?$e{J>zn^^+?vF|R_<&V$kSPeFbfOtG>7?4C=w=eBFXKdkQxV2 zAy+r2dQCwA2ZUk>uQWJu=4X*GaE;S&4#8jR-6WhQFptAO0mBNZ^kR9l)rU^?3xRyM*qO~GyjCUyhBU{VT-X6+3>nSYmMe@YNIRk{+cnv+ma z_yHgTT8xxOhgbRNO2_YHU=gk`& zNFKXP`%@1;Or(jl?9Wbr_l^qi@~jwTGDP?x(J-~K2ZoPA(h&rtkT-W;od_E;bPofo z&Jwe#DLOJTBA{m?x9cGVn=LXSAs7yIVZWs?Ee~_+P+A&GOqKR|x z@!7m;?cHM2rzpDom-YE*eh4yJ)!fC0F7sX6-h)pyv^Xe01$gxK^Cd`()YjH6j+W!n0Ip&Z(*LF=K6~y+>TB+2r#yt?>rB|=jUN;!BMt1wmIcMUISq^#;Zm~A-TF^ambd!5C@Yi#b2RIW_d(PFhzxj`Br`F$dY3oO z^^zi`9cp5a)5dGuKebI64vLK0+LUF-G7Jk_^UbedVj|D1KZh71Yi~H13=w^Rmh5e*^Az&0Y&!v@Af_#y7Vz*MJBk2oZ|9Le=*NoPl`czXbjY%fT;$ ztbV0h&J9>u83#y&Ao9`jU;)B~pyXwcyWKg2bbu=r%n`s}VK^ut{$!V|Rtj-A^d;$| zO>!ZdiRaIs6Z~0un8lj*wZc`{WNzQ41UfWg5fTrx3x8#SeV4ToZy-yOfA>8RvH?OU zxd5#oF_J}!Wld2erw2gryCLmd0#qxAmP3TW7hY(W{Fxl!a-$%uH2^?FF#x(!cJ2&X zF<<=~VDNgdWx~vYaNqvNg|fu_uE!#pMn(}(B$3LsyZZD5UszbUQ1hZ6Wxf%wzOJr< zKdvR^f0A#sw{>*-wTPzuKq3Pj6qLGfMoFce8fLbzEkU+8J|hI14_gGp7ysLS>I;G( z2Q?=rC;x+X3J6OX0|Qkb|LIGj*|bC(4Y~l-g22b+s(NAn$+=;p3ee2^PmT{=3C>?R z3ueY}vGEyhZf@A1B!eX%TIYZ#*g80X+>2Mg3a42{jNs{VAO*0fl=ZUF5{f^8@Pl`IsPxY%y`^Uvm8+xp_IJa3@djV1h z%E^;rx+pFEZnjtI#tInAfp<#Hz)PG0&Gyg0elUqzv0LRDvLZR^Ovs8LV=F+hKw6%; zUxN#%`w=I^R3XHGXpG2s4xqQv*3p?E$gV@(2MS-(dloJ8cW~kD#8`HtU-36+B8a^N z^#;*#KG4U*~&JY2Aq@b)U1DOKQ2*0<}VHo>d zjT`w1V1KoDbiiMWnOj;01783eD(&@aS(_E5ERE5vm_>pneq>9;@)?DLPdg0)82ITJ zf`HHXe?`;4c$)#2y~oJ~g9!YfWdm6NVfuTPDlMA%gFQ?gAifJAcQ`sOTLU_ku(f;} zm5eWv;M~;H!-Lvo5XgQO#s5#ib+e4XBhSExV~J!nAcV0td2&o$U5o!s*G`bkXhuFoP9V}FgLLH5EM`AJ+cJ{9QyU=agP zv2AZ^Is=-lzrv+w;1}rRgGf)C$Q}khIbtbwOC1m(ZX-xaXHTCRvLrRR;%FGJaET0@ z$R+^ZaMhME|J2--5E&M>*VntVgs|U2$888(5Hd#O z^zR19T_T%?(Tj$hRIddtf^6hu(S;gkQiHXyUyHV6;QtAdt%XB zs3wmnX|m{I@k1r|t6CL|=lNN?Z11T7Dm4`R{qoBbgq(Hg-N0h`4H67l*uH-hdM zXYqfZsHrM!BI^TS?Ih#qC;*QVoUx(-(Xz_KJ!C8bL|9Ov*T8!)S)XYsF7DY|X~tph zPTN3+gH!OxO^W|Y27p9Y5T4W6yon$;;H5ND9wGq*=bwRAY`QkpfV|;IMx$SRGTe0r zOc=sgNw-8S9(g}V4T!@BLE%~O6fnT0!(NayqLZl*^S?m5pO&1wb#|Th1%J3jDEFkYlIj=KMhG1P3=Mv@8jH(q@?OjsU0wGr|&Ey1$i=#IzSL$Pi-- z$%w!aLqsLGZM$SD=CfkFDqt|dw)SikFb0dy{nN_-&YRYQJd8piayr;TQE_pB5Ew<+ z_r6-?9Z9#%Yrs1H1kQRA;c_Y}p^$`tXvx&_a_Fs0IcA8h!YTSD#)J9D0uLKT%J%&% z&w{?@i%8O_HE5Jblpd8B9#keE*7pjzQ5esG_)QCdLfVsfCWym;nSqS&LM#jdE}aw6 z53@*FYcw$XB{-nyqxQT5+C;-X*_bvZDJgbYIvsK%}dgP<@* zxF{tmcL9m8v8%}f@^fAp^+#M|lwQrLky#iF4ueP{GM0z}-Sr$hJ3Go79D`;Py92VJ z638@j-+6l$2po;z!!P8MaSE5TEa=bx^#GQ5>`n)Q%q9%rD+COmgyk|EX7%)b(rEC{ z!En-uW5!+eh;2uq2p%Dy3!t2zpI;1la%46kPrKmZ;oR^bDLLxnr%yH$`jf#(iQ^M5$Ojvq&Kp+C?;lL#z zJ>m_JKDm71i#9JWFHFe>!kD3_r)TtPZ&0w^t-Jx45Agx<8mSa~wY#T5e=dV@0G7U= zxvv0_K*k{*f|^f$j$a2T0fyum06j1P*;f|s6A}^821!ql3;f`f$VGvi?K$rn5uPG& zm}E=?HVFy^)1P#8MlkmP0A^3e1(J6M=^Vc_x!@?J-F9wC;F|4++XKh%I`^pT*#GjNXn%dPpDgVne;J>7`Qk<2?rKj@kJ*rpKu%U~bQ=>qd1P7%(x9&gyqE*h(%*nu z>M?5yeg8`;p)SOEVWI&{CQ$i`9lvX+BwX?TX)PN>YUN<80RSJOU1=a2NER9e?i?R2 z-oA-Kacr#B@2$@=J3BN%Y>kA9N-k9(_&Q>TLsh_oK)-(7#F>K~_sq03YE*qwCc$i5 zYG6`Q{C=qq2McOd+c`9PU~U_Zp$#$c-4ICNKjUyPoh^I*1UT+6qfTIh-65(A0AmTD5%xj zqgMJkayZ5b|LUvo5C~rRv-;8C0vAB}TwCir!!(&V2A&p7#NWtDqI0975^`62usVT4 zxw{{*zuOwz(w;l(ayu$y7J zj~~h#!SBgJ#I1$_sP-wLSr)%V`J|!vO)p)?R|z7dOJ?uC}{`p<$=#v9V+G*}SPgNnsO zLP>cJP9%iKPa#uE&!0C#yI%*Z0<`|b5Hd`sZW2B@e2xOBuNklpei)SDWcgxUx3nhA zDi>6elq`ADdlA`0z~K2UdeY2He~gyn!-;!*=yq~^1ZX?}5+M?jlIzeyPrDSy?EO!> zItbQ<>50eNAFV-nRH>ed2f`M$FIG(Bs2;AB6|01#a*0K+ zFPHuBkM0O5Mk=boN76Qz=S%lpVJc;Fw3`y|91^O8YRql$fdb|^Y;A4pVP@?2cm<%# zT__sJd=f~RQ=tE2KyACz0fS-^F3)3`k`n3g9zXUimv{O(ejY%Em9q>dX!B1dT(ObH zw>I5$3I$^zZA$}r2s1;b;~*&`4|y#xl#xgZjDgJ>o$ONsf{5U``%WMjl1U;S+au=c zuR3Pe6OZl>YjnPPMUQkBOG`^R!Iu;HxAPK@-`A|`HPFo3eNAQZ^nffhjBKcHZp4~M z<)wBfi&H~f-z@_Yx@+x~+sB7;VYL3z$Gd03!^0~8_kq@V&)hr^!4DTm(jXbKI8w?E zZu@xlHV*TArh#~!7|b?va}yvkz}E5*U6D5OX$zot04G`h;=Tam0eDc>!;Dt{@8cRC zR=bWu?TkuF!iV+;X|4M1?$uyj_;`(nhd1^XD+%{tE6kk0AYHNDtlTCnLrXmT1_(D> zx2gNna1|bGWJa{Lwq6tw*$o!b3mJ(tS3ar+X(WH!fiVIbY?{bHN1j1hFv`j@#N7n&Lw6tKhKCd~vSl6}IE#kfXH{X+GPD8GE)9UT*1$idw(3Y-k zSlBC_{Rgg)@hm;6mh9dEfD&c`%Q`Uc;z!cw-5((UB>hc({-a;IAhW}y8YvS~1f--< zC}fTRd>j<AD^szHR5o8 zN`t+IZ8X-)#`}?@Dk~O0Bv}0Q%ZvwAFS1|ifAW7SETnX45Wty+lKD5a7hJ-HmtZ{kFr zMfv$_A3p|3$jS0iDZbc+4+B|VTGAysTUb=I07Jg6M-hw%n>D=_a{&QZQet8zW?rT9 zYis;Pg@tS_xxU2HT56c(7V*@~HmipZ$*y$Ij!aslO2+h0OnjDmbi`!tLqndI)L zL+-zVcZfrl&?nN}b$?8l(?vgfc6$5ZsI$|<-o6paDcam;NK%lks;cT$YHIh3OSufe z2E0S1*?Nk;S42cULgbL10IN5V z^qCv(A3GzhvY*bakcd}(<*nPLBf#2rtN8^=wP|QeBizCt_uW^6K23%xZ(e~6)o|J> z$&K}qjk^X0M~}uI32kg{mbG6lU#V$5yR&iXTI1!KGzJrvkc;T6){h^*_;f#`u#nfa zIyX0%0P9RbmsyNvEj-#_rb+&ej@?}m*kQNK&2vWA?>ko|$0xuCDm*YZ?{9AQli&@x zsQ5xQD=UjLN5#-W1$ANiC2W{=R~MJG+FB`E1_st-HTDQTUS16m`fLybZ`(h(f4^sM zPxQvcDB>XlL&NOKN>M!{BlgVRcyGtltAc_zwDV%X$(}2TjimxAo{^Qsy7i1zRDcZ? zX-iH{UiSXIJVewSZEdg3&dxrR-?xj6i&HEbif)>YY@;W_eqd(y!mua@9LC%BfVo&bENV_;$eMyaGyp^l_RiiVU;O(C$>y^slWj(WPf7plG%nux80)UqrT zR5{G-cNd{hCHx60W##2r&d-^;zB|6?|L!5g7Lp-moT1B2B_<)EB`!A(F8Sj8{QSsp z|7Av(q!$a=FvN&LUAx*758u4a($J^id)GD7)9@{EePMe$wsE>RBj$`xecWUEt=jh~ zYm=*6+SAU_o=yc AfB*mh literal 0 HcmV?d00001 diff --git a/docs/index.html b/docs/index.html index eb0e74e3..b2c49c93 100644 --- a/docs/index.html +++ b/docs/index.html @@ -31,7 +31,7 @@ - + @@ -500,7 +500,7 @@ If we know the distance between those two points, and we want a new point that is, say, 20% the distance away from the first point (and thus 80% the distance away from the second point) then we can compute that really easily: