mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-31 12:01:54 +02:00
renamed graphics-element dir
This commit is contained in:
86
docs/js/graphics-element/api/util/fit-curve-to-points.js
Normal file
86
docs/js/graphics-element/api/util/fit-curve-to-points.js
Normal file
@@ -0,0 +1,86 @@
|
||||
import { Matrix } from "../types/matrix.js";
|
||||
import binomial from "./binomial.js";
|
||||
|
||||
/*
|
||||
We can form any basis matrix using a generative approach:
|
||||
|
||||
- it's an M = (n x n) matrix
|
||||
- it's a lower triangular matrix: all the entries above the main diagonal are zero
|
||||
- the main diagonal consists of the binomial coefficients for n
|
||||
- all entries are symmetric about the antidiagonal.
|
||||
|
||||
What's more, if we number rows and columns starting at 0, then
|
||||
the value at position M[r,c], with row=r and column=c, can be
|
||||
expressed as:
|
||||
|
||||
M[r,c] = (r choose c) * M[r,r] * S,
|
||||
|
||||
where S = 1 if r+c is even, or -1 otherwise
|
||||
|
||||
That is: the values in column c are directly computed off of the
|
||||
binomial coefficients on the main diagonal, through multiplication
|
||||
by a binomial based on matrix position, with the sign of the value
|
||||
also determined by matrix position. This is actually very easy to
|
||||
write out in code:
|
||||
*/
|
||||
function generateBasisMatrix(n) {
|
||||
const M = new Matrix(n, n);
|
||||
|
||||
// populate the main diagonal
|
||||
var k = n - 1;
|
||||
for (let i = 0; i < n; i++) {
|
||||
M.set(i, i, binomial(k, i));
|
||||
}
|
||||
|
||||
// compute the remaining values
|
||||
for (var c = 0, r; c < n; c++) {
|
||||
for (r = c + 1; r < n; r++) {
|
||||
var sign = (r + c) % 2 === 0 ? 1 : -1;
|
||||
var value = binomial(r, c) * M.get(r, r);
|
||||
M.set(r, c, sign * value);
|
||||
}
|
||||
}
|
||||
|
||||
return M;
|
||||
}
|
||||
|
||||
/**
|
||||
* ...docs go here...
|
||||
*/
|
||||
function formTMatrix(row, n) {
|
||||
let data = [];
|
||||
for (var i = 0; i < n; i++) {
|
||||
data.push(row.map((v) => v ** i));
|
||||
}
|
||||
const Tt = new Matrix(n, n, data);
|
||||
const T = Tt.transpose();
|
||||
return { T, Tt };
|
||||
}
|
||||
|
||||
/**
|
||||
* ...docs go here...
|
||||
*/
|
||||
function computeBestFit(points, n, M, S) {
|
||||
var tm = formTMatrix(S, n),
|
||||
T = tm.T,
|
||||
Tt = tm.Tt,
|
||||
M1 = M.invert(),
|
||||
TtT1 = Tt.multiply(T).invert(),
|
||||
step1 = TtT1.multiply(Tt),
|
||||
step2 = M1.multiply(step1),
|
||||
X = new Matrix(points.map((v) => [v.x])),
|
||||
Cx = step2.multiply(X),
|
||||
Y = new Matrix(points.map((v) => [v.y])),
|
||||
Cy = step2.multiply(Y);
|
||||
return { x: Cx.data, y: Cy.data };
|
||||
}
|
||||
|
||||
/**
|
||||
* ...docs go here...
|
||||
*/
|
||||
function fitCurveToPoints(points, tvalues) {
|
||||
const n = points.length;
|
||||
return computeBestFit(points, n, generateBasisMatrix(n), tvalues);
|
||||
}
|
||||
|
||||
export { fitCurveToPoints };
|
Reference in New Issue
Block a user