1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-28 02:30:57 +02:00

renamed graphics-element dir

This commit is contained in:
Pomax
2020-11-06 11:32:44 -08:00
parent 3288732350
commit 77284e1051
34 changed files with 25 additions and 25 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,226 @@
/**
* Normalise an SVG path to absolute coordinates
* and full commands, rather than relative coordinates
* and/or shortcut commands.
*/
export default function normalizePath(d) {
// preprocess "d" so that we have spaces between values
d = d
.replace(/,/g, " ") // replace commas with spaces
.replace(/-/g, " - ") // add spacing around minus signs
.replace(/-\s+/g, "-") // remove spacing to the right of minus signs.
.replace(/([a-zA-Z])/g, " $1 ");
// set up the variables used in this function
const instructions = d.replace(/([a-zA-Z])\s?/g, "|$1").split("|"),
instructionLength = instructions.length;
let i,
instruction,
op,
lop,
args = [],
alen,
a,
sx = 0,
sy = 0,
x = 0,
y = 0,
cx = 0,
cy = 0,
cx2 = 0,
cy2 = 0,
rx = 0,
ry = 0,
xrot = 0,
lflag = 0,
sweep = 0,
normalized = "";
// we run through the instruction list starting at 1, not 0,
// because we split up "|M x y ...." so the first element will
// always be an empty string. By design.
for (i = 1; i < instructionLength; i++) {
// which instruction is this?
instruction = instructions[i];
op = instruction.substring(0, 1);
lop = op.toLowerCase();
// what are the arguments? note that we need to convert
// all strings into numbers, or + will do silly things.
args = instruction.replace(op, "").trim().split(" ");
args = args
.filter(function (v) {
return v !== "";
})
.map(parseFloat);
alen = args.length;
// we could use a switch, but elaborate code in a "case" with
// fallthrough is just horrid to read. So let's use ifthen
// statements instead.
// moveto command (plus possible lineto)
if (lop === "m") {
normalized += "M ";
if (op === "m") {
x += args[0];
y += args[1];
} else {
x = args[0];
y = args[1];
}
// records start position, for dealing
// with the shape close operator ('Z')
sx = x;
sy = y;
normalized += x + " " + y + " ";
if (alen > 2) {
for (a = 0; a < alen; a += 2) {
if (op === "m") {
x += args[a];
y += args[a + 1];
} else {
x = args[a];
y = args[a + 1];
}
normalized += "L " + x + " " + y + " ";
}
}
}
// lineto commands
else if (lop === "l") {
for (a = 0; a < alen; a += 2) {
if (op === "l") {
x += args[a];
y += args[a + 1];
} else {
x = args[a];
y = args[a + 1];
}
normalized += "L " + x + " " + y + " ";
}
} else if (lop === "h") {
for (a = 0; a < alen; a++) {
if (op === "h") {
x += args[a];
} else {
x = args[a];
}
normalized += "L " + x + " " + y + " ";
}
} else if (lop === "v") {
for (a = 0; a < alen; a++) {
if (op === "v") {
y += args[a];
} else {
y = args[a];
}
normalized += "L " + x + " " + y + " ";
}
}
// quadratic curveto commands
else if (lop === "q") {
for (a = 0; a < alen; a += 4) {
if (op === "q") {
cx = x + args[a];
cy = y + args[a + 1];
x += args[a + 2];
y += args[a + 3];
} else {
cx = args[a];
cy = args[a + 1];
x = args[a + 2];
y = args[a + 3];
}
normalized += "Q " + cx + " " + cy + " " + x + " " + y + " ";
}
} else if (lop === "t") {
for (a = 0; a < alen; a += 2) {
// reflect previous cx/cy over x/y
cx = x + (x - cx);
cy = y + (y - cy);
// then get real end point
if (op === "t") {
x += args[a];
y += args[a + 1];
} else {
x = args[a];
y = args[a + 1];
}
normalized += "Q " + cx + " " + cy + " " + x + " " + y + " ";
}
}
// cubic curveto commands
else if (lop === "c") {
for (a = 0; a < alen; a += 6) {
if (op === "c") {
cx = x + args[a];
cy = y + args[a + 1];
cx2 = x + args[a + 2];
cy2 = y + args[a + 3];
x += args[a + 4];
y += args[a + 5];
} else {
cx = args[a];
cy = args[a + 1];
cx2 = args[a + 2];
cy2 = args[a + 3];
x = args[a + 4];
y = args[a + 5];
}
normalized += "C " + cx + " " + cy + " " + cx2 + " " + cy2 + " " + x + " " + y + " ";
}
} else if (lop === "s") {
for (a = 0; a < alen; a += 4) {
// reflect previous cx2/cy2 over x/y
cx = x + (x - cx2);
cy = y + (y - cy2);
// then get real control and end point
if (op === "s") {
cx2 = x + args[a];
cy2 = y + args[a + 1];
x += args[a + 2];
y += args[a + 3];
} else {
cx2 = args[a];
cy2 = args[a + 1];
x = args[a + 2];
y = args[a + 3];
}
normalized += "C " + cx + " " + cy + " " + cx2 + " " + cy2 + " " + x + " " + y + " ";
}
}
// rx ry x-axis-rotation large-arc-flag sweep-flag x y
// a 25,25 -30 0, 1 50,-25
// arc command
else if (lop === "a") {
for (a = 0; a < alen; a += 7) {
rx = args[a];
ry = args[a + 1];
xrot = args[a + 2];
lflag = args[a + 3];
sweep = args[a + 4];
if (op === "a") {
x += args[a + 5];
y += args[a + 6];
} else {
x = args[a + 5];
y = args[a + 6];
}
normalized += "A " + rx + " " + ry + " " + xrot + " " + lflag + " " + sweep + " " + x + " " + y + " ";
}
} else if (lop === "z") {
normalized += "Z ";
// not unimportant: path closing changes the current x/y coordinate
x = sx;
y = sy;
}
}
return normalized.trim();
}

View File

@@ -0,0 +1,70 @@
import { utils } from "./utils.js";
/**
* Poly Bezier
* @param {[type]} curves [description]
*/
class PolyBezier {
constructor(curves) {
this.curves = [];
this._3d = false;
if (!!curves) {
this.curves = curves;
this._3d = this.curves[0]._3d;
}
}
valueOf() {
return this.toString();
}
toString() {
return (
"[" +
this.curves
.map(function (curve) {
return utils.pointsToString(curve.points);
})
.join(", ") +
"]"
);
}
addCurve(curve) {
this.curves.push(curve);
this._3d = this._3d || curve._3d;
}
length() {
return this.curves
.map(function (v) {
return v.length();
})
.reduce(function (a, b) {
return a + b;
});
}
curve(idx) {
return this.curves[idx];
}
bbox() {
const c = this.curves;
var bbox = c[0].bbox();
for (var i = 1; i < c.length; i++) {
utils.expandbox(bbox, c[i].bbox());
}
return bbox;
}
offset(d) {
const offset = [];
this.curves.forEach(function (v) {
offset = offset.concat(v.offset(d));
});
return new PolyBezier(offset);
}
}
export { PolyBezier };

View File

@@ -0,0 +1,45 @@
import normalise from "./normalise-svg.js";
let M = { x: false, y: false };
/**
* ...
*/
function makeBezier(Bezier, term, values) {
if (term === "Z") return;
if (term === "M") {
M = { x: values[0], y: values[1] };
return;
}
const curve = new Bezier(M.x, M.y, ...values);
const last = values.slice(-2);
M = { x: last[0], y: last[1] };
return curve;
}
/**
* ...
*/
function convertPath(Bezier, d) {
const terms = normalise(d).split(" "),
matcher = new RegExp("[MLCQZ]", "");
let term,
segment,
values,
segments = [],
ARGS = { C: 6, Q: 4, L: 2, M: 2 };
while (terms.length) {
term = terms.splice(0, 1)[0];
if (matcher.test(term)) {
values = terms.splice(0, ARGS[term]).map(parseFloat);
segment = makeBezier(Bezier, term, values);
if (segment) segments.push(segment);
}
}
return new Bezier.PolyBezier(segments);
}
export { convertPath };

View File

@@ -0,0 +1,872 @@
import { Bezier } from "./bezier.js";
// math-inlining.
const { abs, cos, sin, acos, atan2, sqrt, pow } = Math;
// cube root function yielding real roots
function crt(v) {
return v < 0 ? -pow(-v, 1 / 3) : pow(v, 1 / 3);
}
// trig constants
const pi = Math.PI,
tau = 2 * pi,
quart = pi / 2,
// float precision significant decimal
epsilon = 0.000001,
// extremas used in bbox calculation and similar algorithms
nMax = Number.MAX_SAFE_INTEGER || 9007199254740991,
nMin = Number.MIN_SAFE_INTEGER || -9007199254740991,
// a zero coordinate, which is surprisingly useful
ZERO = { x: 0, y: 0, z: 0 };
// Bezier utility functions
const utils = {
// Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x))
Tvalues: [
-0.0640568928626056260850430826247450385909,
0.0640568928626056260850430826247450385909,
-0.1911188674736163091586398207570696318404,
0.1911188674736163091586398207570696318404,
-0.3150426796961633743867932913198102407864,
0.3150426796961633743867932913198102407864,
-0.4337935076260451384870842319133497124524,
0.4337935076260451384870842319133497124524,
-0.5454214713888395356583756172183723700107,
0.5454214713888395356583756172183723700107,
-0.6480936519369755692524957869107476266696,
0.6480936519369755692524957869107476266696,
-0.7401241915785543642438281030999784255232,
0.7401241915785543642438281030999784255232,
-0.8200019859739029219539498726697452080761,
0.8200019859739029219539498726697452080761,
-0.8864155270044010342131543419821967550873,
0.8864155270044010342131543419821967550873,
-0.9382745520027327585236490017087214496548,
0.9382745520027327585236490017087214496548,
-0.9747285559713094981983919930081690617411,
0.9747285559713094981983919930081690617411,
-0.9951872199970213601799974097007368118745,
0.9951872199970213601799974097007368118745,
],
// Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article)
Cvalues: [
0.1279381953467521569740561652246953718517,
0.1279381953467521569740561652246953718517,
0.1258374563468282961213753825111836887264,
0.1258374563468282961213753825111836887264,
0.121670472927803391204463153476262425607,
0.121670472927803391204463153476262425607,
0.1155056680537256013533444839067835598622,
0.1155056680537256013533444839067835598622,
0.1074442701159656347825773424466062227946,
0.1074442701159656347825773424466062227946,
0.0976186521041138882698806644642471544279,
0.0976186521041138882698806644642471544279,
0.086190161531953275917185202983742667185,
0.086190161531953275917185202983742667185,
0.0733464814110803057340336152531165181193,
0.0733464814110803057340336152531165181193,
0.0592985849154367807463677585001085845412,
0.0592985849154367807463677585001085845412,
0.0442774388174198061686027482113382288593,
0.0442774388174198061686027482113382288593,
0.0285313886289336631813078159518782864491,
0.0285313886289336631813078159518782864491,
0.0123412297999871995468056670700372915759,
0.0123412297999871995468056670700372915759,
],
arcfn: function (t, derivativeFn) {
const d = derivativeFn(t);
let l = d.x * d.x + d.y * d.y;
if (typeof d.z !== "undefined") {
l += d.z * d.z;
}
return sqrt(l);
},
compute: function (t, points, _3d) {
// shortcuts
if (t === 0) {
points[0].t = 0;
return points[0];
}
const order = points.length - 1;
if (t === 1) {
points[order].t = 1;
return points[order];
}
const mt = 1 - t;
let p = points;
// constant?
if (order === 0) {
points[0].t = t;
return points[0];
}
// linear?
if (order === 1) {
const ret = {
x: mt * p[0].x + t * p[1].x,
y: mt * p[0].y + t * p[1].y,
t: t,
};
if (_3d) {
ret.z = mt * p[0].z + t * p[1].z;
}
return ret;
}
// quadratic/cubic curve?
if (order < 4) {
let mt2 = mt * mt,
t2 = t * t,
a,
b,
c,
d = 0;
if (order === 2) {
p = [p[0], p[1], p[2], ZERO];
a = mt2;
b = mt * t * 2;
c = t2;
} else if (order === 3) {
a = mt2 * mt;
b = mt2 * t * 3;
c = mt * t2 * 3;
d = t * t2;
}
const ret = {
x: a * p[0].x + b * p[1].x + c * p[2].x + d * p[3].x,
y: a * p[0].y + b * p[1].y + c * p[2].y + d * p[3].y,
t: t,
};
if (_3d) {
ret.z = a * p[0].z + b * p[1].z + c * p[2].z + d * p[3].z;
}
return ret;
}
// higher order curves: use de Casteljau's computation
const dCpts = JSON.parse(JSON.stringify(points));
while (dCpts.length > 1) {
for (let i = 0; i < dCpts.length - 1; i++) {
dCpts[i] = {
x: dCpts[i].x + (dCpts[i + 1].x - dCpts[i].x) * t,
y: dCpts[i].y + (dCpts[i + 1].y - dCpts[i].y) * t,
};
if (typeof dCpts[i].z !== "undefined") {
dCpts[i] = dCpts[i].z + (dCpts[i + 1].z - dCpts[i].z) * t;
}
}
dCpts.splice(dCpts.length - 1, 1);
}
dCpts[0].t = t;
return dCpts[0];
},
computeWithRatios: function (t, points, ratios, _3d) {
const mt = 1 - t,
r = ratios,
p = points;
let f1 = r[0],
f2 = r[1],
f3 = r[2],
f4 = r[3],
d;
// spec for linear
f1 *= mt;
f2 *= t;
if (p.length === 2) {
d = f1 + f2;
return {
x: (f1 * p[0].x + f2 * p[1].x) / d,
y: (f1 * p[0].y + f2 * p[1].y) / d,
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z) / d,
t: t,
};
}
// upgrade to quadratic
f1 *= mt;
f2 *= 2 * mt;
f3 *= t * t;
if (p.length === 3) {
d = f1 + f2 + f3;
return {
x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x) / d,
y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y) / d,
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z) / d,
t: t,
};
}
// upgrade to cubic
f1 *= mt;
f2 *= 1.5 * mt;
f3 *= 3 * mt;
f4 *= t * t * t;
if (p.length === 4) {
d = f1 + f2 + f3 + f4;
return {
x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x + f4 * p[3].x) / d,
y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y + f4 * p[3].y) / d,
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z + f4 * p[3].z) / d,
t: t,
};
}
},
derive: function (points, _3d) {
const dpoints = [];
for (let p = points, d = p.length, c = d - 1; d > 1; d--, c--) {
const list = [];
for (let j = 0, dpt; j < c; j++) {
dpt = {
x: c * (p[j + 1].x - p[j].x),
y: c * (p[j + 1].y - p[j].y),
};
if (_3d) {
dpt.z = c * (p[j + 1].z - p[j].z);
}
list.push(dpt);
}
dpoints.push(list);
p = list;
}
return dpoints;
},
between: function (v, m, M) {
return (m <= v && v <= M) || utils.approximately(v, m) || utils.approximately(v, M);
},
approximately: function (a, b, precision) {
return abs(a - b) <= (precision || epsilon);
},
length: function (derivativeFn) {
const z = 0.5,
len = utils.Tvalues.length;
let sum = 0;
for (let i = 0, t; i < len; i++) {
t = z * utils.Tvalues[i] + z;
sum += utils.Cvalues[i] * utils.arcfn(t, derivativeFn);
}
return z * sum;
},
map: function (v, ds, de, ts, te) {
const d1 = de - ds,
d2 = te - ts,
v2 = v - ds,
r = v2 / d1;
return ts + d2 * r;
},
lerp: function (r, v1, v2) {
const ret = {
x: v1.x + r * (v2.x - v1.x),
y: v1.y + r * (v2.y - v1.y),
};
if (!!v1.z && !!v2.z) {
ret.z = v1.z + r * (v2.z - v1.z);
}
return ret;
},
pointToString: function (p) {
let s = p.x + "/" + p.y;
if (typeof p.z !== "undefined") {
s += "/" + p.z;
}
return s;
},
pointsToString: function (points) {
return "[" + points.map(utils.pointToString).join(", ") + "]";
},
copy: function (obj) {
return JSON.parse(JSON.stringify(obj));
},
angle: function (o, v1, v2) {
const dx1 = v1.x - o.x,
dy1 = v1.y - o.y,
dx2 = v2.x - o.x,
dy2 = v2.y - o.y,
cross = dx1 * dy2 - dy1 * dx2,
dot = dx1 * dx2 + dy1 * dy2;
return atan2(cross, dot);
},
// round as string, to avoid rounding errors
round: function (v, d) {
const s = "" + v;
const pos = s.indexOf(".");
return parseFloat(s.substring(0, pos + 1 + d));
},
dist: function (p1, p2) {
const dx = p1.x - p2.x,
dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
},
closest: function (LUT, point) {
let mdist = pow(2, 63),
mpos,
d;
LUT.forEach(function (p, idx) {
d = utils.dist(point, p);
if (d < mdist) {
mdist = d;
mpos = idx;
}
});
return { mdist: mdist, mpos: mpos };
},
abcratio: function (t, n) {
// see ratio(t) note on http://pomax.github.io/bezierinfo/#abc
if (n !== 2 && n !== 3) {
return false;
}
if (typeof t === "undefined") {
t = 0.5;
} else if (t === 0 || t === 1) {
return t;
}
const bottom = pow(t, n) + pow(1 - t, n),
top = bottom - 1;
return abs(top / bottom);
},
projectionratio: function (t, n) {
// see u(t) note on http://pomax.github.io/bezierinfo/#abc
if (n !== 2 && n !== 3) {
return false;
}
if (typeof t === "undefined") {
t = 0.5;
} else if (t === 0 || t === 1) {
return t;
}
const top = pow(1 - t, n),
bottom = pow(t, n) + top;
return top / bottom;
},
lli8: function (x1, y1, x2, y2, x3, y3, x4, y4) {
const nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4),
ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4),
d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (d == 0) {
return false;
}
return { x: nx / d, y: ny / d };
},
lli4: function (p1, p2, p3, p4) {
const x1 = p1.x,
y1 = p1.y,
x2 = p2.x,
y2 = p2.y,
x3 = p3.x,
y3 = p3.y,
x4 = p4.x,
y4 = p4.y;
return utils.lli8(x1, y1, x2, y2, x3, y3, x4, y4);
},
lli: function (v1, v2) {
return utils.lli4(v1, v1.c, v2, v2.c);
},
makeline: function (p1, p2) {
const x1 = p1.x,
y1 = p1.y,
x2 = p2.x,
y2 = p2.y,
dx = (x2 - x1) / 3,
dy = (y2 - y1) / 3;
return new Bezier(x1, y1, x1 + dx, y1 + dy, x1 + 2 * dx, y1 + 2 * dy, x2, y2);
},
findbbox: function (sections) {
let mx = nMax,
my = nMax,
MX = nMin,
MY = nMin;
sections.forEach(function (s) {
const bbox = s.bbox();
if (mx > bbox.x.min) mx = bbox.x.min;
if (my > bbox.y.min) my = bbox.y.min;
if (MX < bbox.x.max) MX = bbox.x.max;
if (MY < bbox.y.max) MY = bbox.y.max;
});
return {
x: { min: mx, mid: (mx + MX) / 2, max: MX, size: MX - mx },
y: { min: my, mid: (my + MY) / 2, max: MY, size: MY - my },
};
},
shapeintersections: function (s1, bbox1, s2, bbox2, curveIntersectionThreshold) {
if (!utils.bboxoverlap(bbox1, bbox2)) return [];
const intersections = [];
const a1 = [s1.startcap, s1.forward, s1.back, s1.endcap];
const a2 = [s2.startcap, s2.forward, s2.back, s2.endcap];
a1.forEach(function (l1) {
if (l1.virtual) return;
a2.forEach(function (l2) {
if (l2.virtual) return;
const iss = l1.intersects(l2, curveIntersectionThreshold);
if (iss.length > 0) {
iss.c1 = l1;
iss.c2 = l2;
iss.s1 = s1;
iss.s2 = s2;
intersections.push(iss);
}
});
});
return intersections;
},
makeshape: function (forward, back, curveIntersectionThreshold) {
const bpl = back.points.length;
const fpl = forward.points.length;
const start = utils.makeline(back.points[bpl - 1], forward.points[0]);
const end = utils.makeline(forward.points[fpl - 1], back.points[0]);
const shape = {
startcap: start,
forward: forward,
back: back,
endcap: end,
bbox: utils.findbbox([start, forward, back, end]),
};
shape.intersections = function (s2) {
return utils.shapeintersections(shape, shape.bbox, s2, s2.bbox, curveIntersectionThreshold);
};
return shape;
},
getminmax: function (curve, d, list) {
if (!list) return { min: 0, max: 0 };
let min = nMax,
max = nMin,
t,
c;
if (list.indexOf(0) === -1) {
list = [0].concat(list);
}
if (list.indexOf(1) === -1) {
list.push(1);
}
for (let i = 0, len = list.length; i < len; i++) {
t = list[i];
c = curve.get(t);
if (c[d] < min) {
min = c[d];
}
if (c[d] > max) {
max = c[d];
}
}
return { min: min, mid: (min + max) / 2, max: max, size: max - min };
},
align: function (points, line) {
const tx = line.p1.x,
ty = line.p1.y,
a = -atan2(line.p2.y - ty, line.p2.x - tx),
d = function (v) {
return {
x: (v.x - tx) * cos(a) - (v.y - ty) * sin(a),
y: (v.x - tx) * sin(a) + (v.y - ty) * cos(a),
};
};
return points.map(d);
},
roots: function (points, line) {
line = line || { p1: { x: 0, y: 0 }, p2: { x: 1, y: 0 } };
const order = points.length - 1;
const aligned = utils.align(points, line);
const reduce = function (t) {
return 0 <= t && t <= 1;
};
if (order === 2) {
const a = aligned[0].y,
b = aligned[1].y,
c = aligned[2].y,
d = a - 2 * b + c;
if (d !== 0) {
const m1 = -sqrt(b * b - a * c),
m2 = -a + b,
v1 = -(m1 + m2) / d,
v2 = -(-m1 + m2) / d;
return [v1, v2].filter(reduce);
} else if (b !== c && d === 0) {
return [(2 * b - c) / (2 * b - 2 * c)].filter(reduce);
}
return [];
}
// see http://www.trans4mind.com/personal_development/mathematics/polynomials/cubicAlgebra.htm
const pa = aligned[0].y,
pb = aligned[1].y,
pc = aligned[2].y,
pd = aligned[3].y;
let d = -pa + 3 * pb - 3 * pc + pd,
a = 3 * pa - 6 * pb + 3 * pc,
b = -3 * pa + 3 * pb,
c = pa;
if (utils.approximately(d, 0)) {
// this is not a cubic curve.
if (utils.approximately(a, 0)) {
// in fact, this is not a quadratic curve either.
if (utils.approximately(b, 0)) {
// in fact in fact, there are no solutions.
return [];
}
// linear solution:
return [-c / b].filter(reduce);
}
// quadratic solution:
const q = sqrt(b * b - 4 * a * c),
a2 = 2 * a;
return [(q - b) / a2, (-b - q) / a2].filter(reduce);
}
// at this point, we know we need a cubic solution:
a /= d;
b /= d;
c /= d;
const p = (3 * b - a * a) / 3,
p3 = p / 3,
q = (2 * a * a * a - 9 * a * b + 27 * c) / 27,
q2 = q / 2,
discriminant = q2 * q2 + p3 * p3 * p3;
let u1, v1, x1, x2, x3;
if (discriminant < 0) {
const mp3 = -p / 3,
mp33 = mp3 * mp3 * mp3,
r = sqrt(mp33),
t = -q / (2 * r),
cosphi = t < -1 ? -1 : t > 1 ? 1 : t,
phi = acos(cosphi),
crtr = crt(r),
t1 = 2 * crtr;
x1 = t1 * cos(phi / 3) - a / 3;
x2 = t1 * cos((phi + tau) / 3) - a / 3;
x3 = t1 * cos((phi + 2 * tau) / 3) - a / 3;
return [x1, x2, x3].filter(reduce);
} else if (discriminant === 0) {
u1 = q2 < 0 ? crt(-q2) : -crt(q2);
x1 = 2 * u1 - a / 3;
x2 = -u1 - a / 3;
return [x1, x2].filter(reduce);
} else {
const sd = sqrt(discriminant);
u1 = crt(-q2 + sd);
v1 = crt(q2 + sd);
return [u1 - v1 - a / 3].filter(reduce);
}
},
droots: function (p) {
// quadratic roots are easy
if (p.length === 3) {
const a = p[0],
b = p[1],
c = p[2],
d = a - 2 * b + c;
if (d !== 0) {
const m1 = -sqrt(b * b - a * c),
m2 = -a + b,
v1 = -(m1 + m2) / d,
v2 = -(-m1 + m2) / d;
return [v1, v2];
} else if (b !== c && d === 0) {
return [(2 * b - c) / (2 * (b - c))];
}
return [];
}
// linear roots are even easier
if (p.length === 2) {
const a = p[0],
b = p[1];
if (a !== b) {
return [a / (a - b)];
}
return [];
}
return [];
},
curvature: function (t, d1, d2, _3d, kOnly) {
let num,
dnm,
adk,
dk,
k = 0,
r = 0;
//
// We're using the following formula for curvature:
//
// x'y" - y'x"
// k(t) = ------------------
// (x'² + y'²)^(3/2)
//
// from https://en.wikipedia.org/wiki/Radius_of_curvature#Definition
//
// With it corresponding 3D counterpart:
//
// sqrt( (y'z" - y"z')² + (z'x" - z"x')² + (x'y" - x"y')²)
// k(t) = -------------------------------------------------------
// (x'² + y'² + z'²)^(3/2)
//
const d = utils.compute(t, d1);
const dd = utils.compute(t, d2);
const qdsum = d.x * d.x + d.y * d.y;
if (_3d) {
num = sqrt(pow(d.y * dd.z - dd.y * d.z, 2) + pow(d.z * dd.x - dd.z * d.x, 2) + pow(d.x * dd.y - dd.x * d.y, 2));
dnm = pow(qdsum + d.z * d.z, 3 / 2);
} else {
num = d.x * dd.y - d.y * dd.x;
dnm = pow(qdsum, 3 / 2);
}
if (num === 0 || dnm === 0) {
return { k: 0, r: 0 };
}
k = num / dnm;
r = dnm / num;
// We're also computing the derivative of kappa, because
// there is value in knowing the rate of change for the
// curvature along the curve. And we're just going to
// ballpark it based on an epsilon.
if (!kOnly) {
// compute k'(t) based on the interval before, and after it,
// to at least try to not introduce forward/backward pass bias.
const pk = utils.curvature(t - 0.001, d1, d2, _3d, true).k;
const nk = utils.curvature(t + 0.001, d1, d2, _3d, true).k;
dk = (nk - k + (k - pk)) / 2;
adk = (abs(nk - k) + abs(k - pk)) / 2;
}
return { k: k, r: r, dk: dk, adk: adk };
},
inflections: function (points) {
if (points.length < 4) return [];
// FIXME: TODO: add in inflection abstraction for quartic+ curves?
const p = utils.align(points, { p1: points[0], p2: points.slice(-1)[0] }),
a = p[2].x * p[1].y,
b = p[3].x * p[1].y,
c = p[1].x * p[2].y,
d = p[3].x * p[2].y,
v1 = 18 * (-3 * a + 2 * b + 3 * c - d),
v2 = 18 * (3 * a - b - 3 * c),
v3 = 18 * (c - a);
if (utils.approximately(v1, 0)) {
if (!utils.approximately(v2, 0)) {
let t = -v3 / v2;
if (0 <= t && t <= 1) return [t];
}
return [];
}
const trm = v2 * v2 - 4 * v1 * v3,
sq = Math.sqrt(trm),
d2 = 2 * v1;
if (utils.approximately(d2, 0)) return [];
return [(sq - v2) / d2, -(v2 + sq) / d2].filter(function (r) {
return 0 <= r && r <= 1;
});
},
bboxoverlap: function (b1, b2) {
const dims = ["x", "y"],
len = dims.length;
for (let i = 0, dim, l, t, d; i < len; i++) {
dim = dims[i];
l = b1[dim].mid;
t = b2[dim].mid;
d = (b1[dim].size + b2[dim].size) / 2;
if (abs(l - t) >= d) return false;
}
return true;
},
expandbox: function (bbox, _bbox) {
if (_bbox.x.min < bbox.x.min) {
bbox.x.min = _bbox.x.min;
}
if (_bbox.y.min < bbox.y.min) {
bbox.y.min = _bbox.y.min;
}
if (_bbox.z && _bbox.z.min < bbox.z.min) {
bbox.z.min = _bbox.z.min;
}
if (_bbox.x.max > bbox.x.max) {
bbox.x.max = _bbox.x.max;
}
if (_bbox.y.max > bbox.y.max) {
bbox.y.max = _bbox.y.max;
}
if (_bbox.z && _bbox.z.max > bbox.z.max) {
bbox.z.max = _bbox.z.max;
}
bbox.x.mid = (bbox.x.min + bbox.x.max) / 2;
bbox.y.mid = (bbox.y.min + bbox.y.max) / 2;
if (bbox.z) {
bbox.z.mid = (bbox.z.min + bbox.z.max) / 2;
}
bbox.x.size = bbox.x.max - bbox.x.min;
bbox.y.size = bbox.y.max - bbox.y.min;
if (bbox.z) {
bbox.z.size = bbox.z.max - bbox.z.min;
}
},
pairiteration: function (c1, c2, curveIntersectionThreshold) {
const c1b = c1.bbox(),
c2b = c2.bbox(),
r = 100000,
threshold = curveIntersectionThreshold || 0.5;
if (c1b.x.size + c1b.y.size < threshold && c2b.x.size + c2b.y.size < threshold) {
return [(((r * (c1._t1 + c1._t2)) / 2) | 0) / r + "/" + (((r * (c2._t1 + c2._t2)) / 2) | 0) / r];
}
let cc1 = c1.split(0.5),
cc2 = c2.split(0.5),
pairs = [
{ left: cc1.left, right: cc2.left },
{ left: cc1.left, right: cc2.right },
{ left: cc1.right, right: cc2.right },
{ left: cc1.right, right: cc2.left },
];
pairs = pairs.filter(function (pair) {
return utils.bboxoverlap(pair.left.bbox(), pair.right.bbox());
});
let results = [];
if (pairs.length === 0) return results;
pairs.forEach(function (pair) {
results = results.concat(utils.pairiteration(pair.left, pair.right, threshold));
});
results = results.filter(function (v, i) {
return results.indexOf(v) === i;
});
return results;
},
getccenter: function (p1, p2, p3) {
const dx1 = p2.x - p1.x,
dy1 = p2.y - p1.y,
dx2 = p3.x - p2.x,
dy2 = p3.y - p2.y,
dx1p = dx1 * cos(quart) - dy1 * sin(quart),
dy1p = dx1 * sin(quart) + dy1 * cos(quart),
dx2p = dx2 * cos(quart) - dy2 * sin(quart),
dy2p = dx2 * sin(quart) + dy2 * cos(quart),
// chord midpoints
mx1 = (p1.x + p2.x) / 2,
my1 = (p1.y + p2.y) / 2,
mx2 = (p2.x + p3.x) / 2,
my2 = (p2.y + p3.y) / 2,
// midpoint offsets
mx1n = mx1 + dx1p,
my1n = my1 + dy1p,
mx2n = mx2 + dx2p,
my2n = my2 + dy2p,
// intersection of these lines:
arc = utils.lli8(mx1, my1, mx1n, my1n, mx2, my2, mx2n, my2n),
r = utils.dist(arc, p1);
// arc start/end values, over mid point:
let s = atan2(p1.y - arc.y, p1.x - arc.x),
m = atan2(p2.y - arc.y, p2.x - arc.x),
e = atan2(p3.y - arc.y, p3.x - arc.x),
_;
// determine arc direction (cw/ccw correction)
if (s < e) {
// if s<m<e, arc(s, e)
// if m<s<e, arc(e, s + tau)
// if s<e<m, arc(e, s + tau)
if (s > m || m > e) {
s += tau;
}
if (s > e) {
_ = e;
e = s;
s = _;
}
} else {
// if e<m<s, arc(e, s)
// if m<e<s, arc(s, e + tau)
// if e<s<m, arc(s, e + tau)
if (e < m && m < s) {
_ = e;
e = s;
s = _;
} else {
e += tau;
}
}
// assign and done.
arc.s = s;
arc.e = e;
arc.r = r;
return arc;
},
numberSort: function (a, b) {
return a - b;
},
};
export { utils };

View File

@@ -0,0 +1,27 @@
import { enrich } from "./enrich.js";
const noop = () => {};
function create(tag) {
if (typeof document !== `undefined`) {
return enrich(document.createElement(tag));
}
const element = {
name: tag,
tag: tag.toUpperCase(),
append: noop,
appendChild: noop,
replaceChild: noop,
removeChild: noop,
classList: {
add: noop,
remove: noop,
},
children: [],
};
return element;
}
export { create };

View File

@@ -0,0 +1,30 @@
function enrich(element) {
if (!element) return element;
element.__listeners = {};
element.listen = function (evtNames, handler) {
if (!evtNames.map) evtNames = [evtNames];
evtNames.forEach((evtName) => {
element.addEventListener(evtName, handler);
if (!element.__listeners[evtName]) {
element.__listeners[evtName] = [];
}
element.__listeners[evtName].push(handler);
});
}.bind(element);
element.ignore = function (evtNames, handler) {
if (!evtNames.map) evtNames = [evtNames];
evtNames.forEach((evtName) => {
if (!handler) {
return element.__listeners[evtName].forEach((h) => element.removeEventListener(evtName, h));
}
element.removeEventListener(evtName, handler);
});
}.bind(element);
return element;
}
export { enrich };

View File

@@ -0,0 +1,108 @@
// TODO: FIXME: finish writing out this functionality
/**
Scope 0:
check for variable declaration/assignment, as well as function
declarations _without_ the `function` keyword
Scope 1+:
check any not-namespaced function calls to see whether they map
to any API functions. If they do, they should be prefixed with
`this.`
check any not-namespaced var references to see whether they map
to any predefined API vars. If they do, they should be prefixed
with `this.`
**/
function splitSymbols(v) {
if (v.match(/\w/)) return v;
return v.split(``);
}
class Lexer {
constructor(code) {
this.scope = 0;
this.pos = 0;
this.tokens = code.split(/\b/).map(splitSymbols).flat();
this.scopes = [];
console.log(this.tokens);
}
parse() {
while (this.pos < this.tokens.length) {
let token = this.tokens[this.pos++];
if ([`const`, `let`, "var"].includes(token)) {
this.parseVariable(token);
}
// skip over strings so we don't treat them as active content
else if ([`'`, `"`, "`"].includes(token)) {
this.parseString(token);
}
// figure out if
else if (token === `(`) {
let functor,
i = 2;
do {
functor = this.tokens[this.pos - i++];
} while (functor.match(/\s+/));
// TODO: maths is fun?
console.log(`[${this.scope}]: ${functor}(...`);
} else if (token === `)`) {
}
// ...
else if (token === `{`) {
this.scopes[this.pos] = ++this.scope;
}
// ...
else if (token === `}`) {
this.scopes[this.pos] = --this.scope;
}
}
console.log(this.scopes);
}
parseVariable(type) {
let name;
do {
name = this.tokens[this.pos++];
} while (name.match(/\s+/));
console.log(`[${this.scope}]: ${type} ${name}`);
}
parseString(symbol) {
// we technically don't really care about the contents
// of strings, as they don't introduce new variables
// or functions that we need to care about.
let token;
let buffer = [symbol];
let blen = 1;
do {
token = this.tokens[this.pos++];
buffer.push(token);
blen++;
} while (token !== symbol && buffer[blen - 2] !== `\\` && this.pos < this.tokens.length);
// buffer = buffer.join(``);
// if (symbol === "`") {
// this.parseTemplateString(buffer);
// }
}
// parseTemplateString(buffer) {
// // console.log(buffer);
// }
}
export { Lexer };

View File

@@ -0,0 +1,37 @@
import { GraphicsAPI } from "../api/graphics-api.js";
export default function performCodeSurgery(code) {
// 0. strip out superfluous whitespace
code = code.replace(/\r?\n(\r?\n)+/, `\n`);
// 1. ensure that anything that needs to run by first calling its super function, does so.
GraphicsAPI.superCallers.forEach((name) => {
const re = new RegExp(`${name}\\(([^)]*)\\)[\\s\\r\\n]*{[\\s\\r\\n]*`, `g`);
code = code.replace(re, `${name}($1) { super.${name}($1);\n`);
});
// 2. rewrite event handlers so that they capture the event and forward it to the super function.
GraphicsAPI.eventHandlers.forEach((name) => {
const re = new RegExp(`\\b${name}\\(\\)[\\s\\r\\n]*{[\\s\\r\\n]*`, `g`);
code = code.replace(re, `${name}(evt) { super.${name}(evt);\n`);
});
// 3. rewrite all public GraphicsAPI functions to have the required `this.` prefix
GraphicsAPI.methods.forEach((fn) => {
const re = new RegExp(`([!({\\s\\r\\n])${fn}\\(`, `g`);
code = code.replace(re, `$1this.${fn}(`);
});
// 4. do the same for all GraphicsAPI constants.
GraphicsAPI.constants.forEach((name) => {
const re = new RegExp(`(\\b)${name}(\\b)`, `g`);
code = code.replace(re, `$1this.${name}$2`);
});
return code;
}

View File

@@ -0,0 +1,43 @@
/**
* Get all code that isn't contained in functions.
* We're going to regexp our way to flawed victory here.
*/
export default function splitCodeSections(code) {
// removs comments and superfluous white space.
code = code.replace(/\\\*[\w\s\r\n]+?\*\\/, ``);
code = code.replace(/\r?\n(\r?\n)+/, `\n`);
const re = /\b[\w\W][^\s]*?\([^)]*\)[\r\n\s]*{/;
const cuts = [];
for (let result = code.match(re); result; result = code.match(re)) {
result = result[0];
let start = code.indexOf(result);
let end = start + result.length;
let depth = 0;
let slice = Array.from(code).slice(start + result.length);
slice.some((c, pos) => {
if (c === `{`) {
depth++;
return false;
}
if (c === `}`) {
if (depth > 0) {
depth--;
return false;
}
end += pos + 1;
return true;
}
});
let cut = code.slice(start, end);
cuts.push(cut);
code = code.replace(cut, ``);
}
return {
quasiGlobal: code,
classCode: cuts.join(`\n`),
};
}