1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-03 05:12:43 +02:00

fixed curvature

This commit is contained in:
Pomax
2020-09-25 16:02:29 -07:00
parent 4778f9a689
commit 8caa51813a
17 changed files with 8080 additions and 20419 deletions

View File

@@ -5,17 +5,15 @@ Bézier curves are, like all "splines", interpolation functions. This means that
The following graphs show the interpolation functions for quadratic and cubic curves, with "S" being the strength of a point's contribution to the total sum of the Bézier function. Click-and-drag to see the interpolation percentages for each curve-defining point at a specific <i>t</i> value.
<div class="figure">
<graphics-element title="Quadratic interpolations" src="./lerp.js" data-degree="3">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="Cubic interpolations" src="./lerp.js" data-degree="4">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="15th degree interpolations" src="./lerp.js" data-degree="15">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="Quadratic interpolations" src="./lerp.js" data-degree="3">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="Cubic interpolations" src="./lerp.js" data-degree="4">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="15th degree interpolations" src="./lerp.js" data-degree="15">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
</div>
Also shown is the interpolation function for a 15<sup>th</sup> order Bézier function. As you can see, the start and end point contribute considerably more to the curve's shape than any other point in the control point set.