mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-09-02 21:02:49 +02:00
Automated build
This commit is contained in:
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 7.0 KiB |
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 5.7 KiB |
@@ -0,0 +1,5 @@
|
|||||||
|
|
||||||
|
┌─────────────────┐
|
||||||
|
│ 2 2
|
||||||
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
|
⟍│ x y
|
@@ -0,0 +1,4 @@
|
|||||||
|
|
||||||
|
╭ B'(t) ╮
|
||||||
|
N(t) = \bot │ ────────── │
|
||||||
|
╰ || B'(t)|| ╯
|
53
docs/index.html
generated
53
docs/index.html
generated
@@ -38,7 +38,7 @@
|
|||||||
<meta property="og:locale" content="en-GB" />
|
<meta property="og:locale" content="en-GB" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -8149,56 +8149,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
53
docs/ja-JP/index.html
generated
53
docs/ja-JP/index.html
generated
@@ -41,7 +41,7 @@
|
|||||||
<meta property="og:locale" content="ja-JP" />
|
<meta property="og:locale" content="ja-JP" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -8359,56 +8359,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
53
docs/ko-KR/index.html
generated
53
docs/ko-KR/index.html
generated
@@ -43,7 +43,7 @@
|
|||||||
<meta property="og:locale" content="ko-KR" />
|
<meta property="og:locale" content="ko-KR" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -8510,56 +8510,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
@@ -34,7 +34,7 @@
|
|||||||
<meta property="og:locale" content="en-GB" />
|
<meta property="og:locale" content="en-GB" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="Fri Sep 18 2020 00:00:00 +00:00" />
|
<meta property="og:published_time" content="Fri Sep 18 2020 00:00:00 +00:00" />
|
||||||
<meta property="og:updated_time" content="Mon Jul 24 2023 16:25:38 +00:00" />
|
<meta property="og:updated_time" content="Tue Aug 15 2023 15:28:19 +00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
|
@@ -34,7 +34,7 @@
|
|||||||
<meta property="og:locale" content="en-GB" />
|
<meta property="og:locale" content="en-GB" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="Sun Nov 22 2020 00:00:00 +00:00" />
|
<meta property="og:published_time" content="Sun Nov 22 2020 00:00:00 +00:00" />
|
||||||
<meta property="og:updated_time" content="Mon Jul 24 2023 16:25:38 +00:00" />
|
<meta property="og:updated_time" content="Tue Aug 15 2023 15:28:19 +00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
|
2
docs/news/index.html
generated
2
docs/news/index.html
generated
@@ -33,7 +33,7 @@
|
|||||||
<meta property="og:description" content="" />
|
<meta property="og:description" content="" />
|
||||||
<meta property="og:locale" content="en-GB" />
|
<meta property="og:locale" content="en-GB" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="Mon Jul 24 2023 16:25:38 GMT+0000 (Coordinated Universal Time)" />
|
<meta property="og:published_time" content="Tue Aug 15 2023 15:28:19 GMT+0000 (Coordinated Universal Time)" />
|
||||||
<meta property="og:updated_time" content="" />
|
<meta property="og:updated_time" content="" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
|
@@ -6,7 +6,7 @@
|
|||||||
<atom:link href="https://pomax.github.io/bezierinfo" rel="self"></atom:link>
|
<atom:link href="https://pomax.github.io/bezierinfo" rel="self"></atom:link>
|
||||||
<description>News updates for the <a href="https://pomax.github.io/bezierinfo">primer on Bézier Curves</a> by Pomax</description>
|
<description>News updates for the <a href="https://pomax.github.io/bezierinfo">primer on Bézier Curves</a> by Pomax</description>
|
||||||
<language>en-GB</language>
|
<language>en-GB</language>
|
||||||
<lastBuildDate>Mon Jul 24 2023 16:25:38 +00:00</lastBuildDate>
|
<lastBuildDate>Tue Aug 15 2023 15:28:19 +00:00</lastBuildDate>
|
||||||
<image>
|
<image>
|
||||||
<url>https://pomax.github.io/bezierinfo/images/og-image.png</url>
|
<url>https://pomax.github.io/bezierinfo/images/og-image.png</url>
|
||||||
<title>A Primer on Bézier Curves</title>
|
<title>A Primer on Bézier Curves</title>
|
||||||
|
53
docs/ru-RU/index.html
generated
53
docs/ru-RU/index.html
generated
@@ -34,7 +34,7 @@
|
|||||||
<meta property="og:locale" content="ru-RU" />
|
<meta property="og:locale" content="ru-RU" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -8593,56 +8593,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
53
docs/uk-UA/index.html
generated
53
docs/uk-UA/index.html
generated
@@ -39,7 +39,7 @@
|
|||||||
<meta property="og:locale" content="uk-UA" />
|
<meta property="og:locale" content="uk-UA" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -8553,56 +8553,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
53
docs/zh-CN/index.html
generated
53
docs/zh-CN/index.html
generated
@@ -35,7 +35,7 @@
|
|||||||
<meta property="og:locale" content="zh-CN" />
|
<meta property="og:locale" content="zh-CN" />
|
||||||
<meta property="og:type" content="article" />
|
<meta property="og:type" content="article" />
|
||||||
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
|
||||||
<meta property="og:updated_time" content="2023-07-24T16:25:38+00:00" />
|
<meta property="og:updated_time" content="2023-08-15T15:28:19+00:00" />
|
||||||
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
|
||||||
<meta property="og:section" content="Bézier Curves" />
|
<meta property="og:section" content="Bézier Curves" />
|
||||||
<meta property="og:tag" content="Bézier Curves" />
|
<meta property="og:tag" content="Bézier Curves" />
|
||||||
@@ -7872,56 +7872,35 @@ O(t) = B(t) + d · N(t)
|
|||||||
</p>
|
</p>
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
╭ B'(t) ╮
|
╭ B'(t) ╮
|
||||||
N(t) \bot │ ────────── │
|
N(t) = \bot │ ────────── │
|
||||||
╰ || B'(t)|| ╯
|
╰ || B'(t)|| ╯
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/57e62f3f2f7526b2cf7c1b276c17e472.svg"
|
src="./images/chapters/offsetting/e7e8e1f5727387079dbc5770181187c2.svg"
|
||||||
width="120px"
|
width="141px"
|
||||||
height="40px"
|
height="40px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>The magnitude of <code>B'(t)</code>, usually denoted with double vertical bars, is given by the following formula:</p>
|
||||||
Determining the length requires computing an arc length, and this is where things get Tricky with a capital T. First off, to compute arc
|
|
||||||
length from some start <code>a</code> to end <code>b</code>, we must use the formula we saw earlier. Noting that "length" is usually
|
|
||||||
denoted with double vertical bars:
|
|
||||||
</p>
|
|
||||||
<!--
|
<!--
|
||||||
|
|
||||||
┌───────────┐
|
┌─────────────────┐
|
||||||
╭ b │ 2 2
|
│ 2 2
|
||||||
|| f(x,y)|| = | │f ' + f '
|
|| B'(t)|| = │B '(t) + B '(t)
|
||||||
╯ a ⟍│ x y
|
⟍│ x y
|
||||||
-->
|
-->
|
||||||
<img
|
<img
|
||||||
class="LaTeX SVG"
|
class="LaTeX SVG"
|
||||||
src="./images/chapters/offsetting/cf8e602eb0595cf4d9b851c6bda741af.svg"
|
src="./images/chapters/offsetting/7fd3e895c0eea0965470dd619450b679.svg"
|
||||||
width="169px"
|
width="188px"
|
||||||
height="36px"
|
height="25px"
|
||||||
loading="lazy"
|
loading="lazy"
|
||||||
/>
|
/>
|
||||||
<p>
|
<p>
|
||||||
So if we want the length of the tangent, we plug in <code>B'(t)</code>, with <code>t = 0</code> as start and <code>t = 1</code> as end:
|
And that's where things go wrong: that square root is screwing everything up, because it turns our nice polynomials into things that are
|
||||||
</p>
|
no longer polynomials.
|
||||||
<!--
|
|
||||||
|
|
||||||
┌───────────────────┐
|
|
||||||
╭ 1 │ 2 2
|
|
||||||
|| B'(t)|| = | │B ''(t) + B ''(t)
|
|
||||||
╯ 0 ⟍│ x y
|
|
||||||
-->
|
|
||||||
<img
|
|
||||||
class="LaTeX SVG"
|
|
||||||
src="./images/chapters/offsetting/af4b584bb280cc941603255f62c9cc1a.svg"
|
|
||||||
width="209px"
|
|
||||||
height="36px"
|
|
||||||
loading="lazy"
|
|
||||||
/>
|
|
||||||
<p>
|
|
||||||
And that's where things go wrong. It doesn't even really matter what the second derivative for <code>B(t)</code> is, that square root is
|
|
||||||
screwing everything up, because it turns our nice polynomials into things that are no longer polynomials.
|
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
There is a small class of polynomials where the square root is also a polynomial, but they're utterly useless to us: any polynomial with
|
||||||
|
Reference in New Issue
Block a user