1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-30 11:40:27 +02:00

finally fixed the sub/sup thing

This commit is contained in:
Pomax
2018-11-16 14:33:29 -08:00
parent 92f290f3cf
commit 9eb0692e1c
10 changed files with 21 additions and 11 deletions

View File

@@ -24,8 +24,8 @@ If we then rotate the curve so that its end point lies on the x-axis, the coordi
\[
\left \{ \begin{matrix}
x = BLUE[0] \cdot (1-t)^3 BLUE[+ 85] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[+ 12] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[- 156] \cdot t^3 \\
y = BLUE[0] \cdot (1-t)^3 BLUE[+ 40] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[- 140] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[+ 0] \cdot t^3
x = BLUE[0] \cdot (1-t)^3 BLUE[- 85] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[- 12] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[+ 156] \cdot t^3 \\
y = BLUE[0] \cdot (1-t)^3 BLUE[- 40] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[+ 140] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[+ 0] \cdot t^3
\end{matrix} \right.
\]
@@ -33,8 +33,8 @@ If we drop all the zero-terms, this gives us:
\[
\left \{ \begin{array}{l}
x = BLUE[85] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[+ 13] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[- 156] \cdot t^3 \\
y = BLUE[40] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[- 141] \cdot 3 \cdot (1-t) \cdot t^2
x = BLUE[- 85] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[- 12] \cdot 3 \cdot (1-t) \cdot t^2 BLUE[+ 156] \cdot t^3 \\
y = BLUE[- 40] \cdot 3 \cdot (1-t)^2 \cdot t BLUE[+ 140] \cdot 3 \cdot (1-t) \cdot t^2
\end{array} \right.
\]

View File

@@ -162,7 +162,7 @@ function Bezier(3,t):
return mt3 + 3*mt2*t + 3*mt*t2 + t3
```
And now we know how to program the basis function. Exellent.
And now we know how to program the basis function. Excellent.
</div>