1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-08 23:50:43 +02:00

added sliders to sketches that should have one, improved lazy loading

This commit is contained in:
Pomax
2020-08-21 23:39:36 -07:00
parent 65173c10a2
commit ad5da1f088
67 changed files with 833 additions and 643 deletions

View File

@@ -5,9 +5,17 @@ Bézier curves are, like all "splines", interpolation functions. This means that
The following graphs show the interpolation functions for quadratic and cubic curves, with "S" being the strength of a point's contribution to the total sum of the Bézier function. Click-and-drag to see the interpolation percentages for each curve-defining point at a specific <i>t</i> value.
<div class="figure">
<graphics-element title="Quadratic interpolations" src="./lerp-quadratic.js"></graphics-element>
<graphics-element title="Cubic interpolations" src="./lerp-cubic.js"></graphics-element>
<graphics-element title="15th degree interpolations" src="./lerp-fifteenth.js"></graphics-element>
<graphics-element title="Quadratic interpolations" src="./lerp-quadratic.js">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="Cubic interpolations" src="./lerp-cubic.js">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<graphics-element title="15th degree interpolations" src="./lerp-fifteenth.js">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
</div>
Also shown is the interpolation function for a 15<sup>th</sup> order Bézier function. As you can see, the start and end point contribute considerably more to the curve's shape than any other point in the control point set.