1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-26 09:44:32 +02:00

Automated build

This commit is contained in:
Bezierinfo CI
2021-08-30 15:01:03 +00:00
parent e89f11a84a
commit aec825ba6d
13 changed files with 121 additions and 99 deletions

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 16 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 9.1 KiB

View File

@@ -0,0 +1,10 @@
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t

View File

@@ -0,0 +1,10 @@
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t

38
docs/index.html generated
View File

@@ -38,7 +38,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-08-30T14:51:35+00:00" />
<meta property="og:updated_time" content="2021-08-30T15:00:31+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -6119,30 +6119,30 @@ lli = function(line1, line2):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
A' - e
1
│ v = A' - ──────
╡ 1 1 - t
A' - e
2
│ v = A' - ──────
╰ 2 t
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/eccc1bdb9423bbfe2d42418fc8a7dd24.svg" width="132px" height="75px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/68a25507037f1a9420c60a5cd3d10f47.svg" width="121px" height="73px" loading="lazy" />
<p>And then reverse engineer the curve's control points:</p>
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
v - start
1
│ C '= start + ───────────
╡ 1 t
v - end
2
│ C '= end + ─────────
╰ 2 1 - t
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/634d373310711268cc188f45e5699d8d.svg" width="163px" height="73px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/2184aa2a897df864b3a67984be18ef27.svg" width="163px" height="73px" loading="lazy" />
<p>
So: if we have a curve's start and end points, then for any <code>t</code> value we implicitly know all the ABC values, which (combined
with an educated guess on appropriate <code>e1</code> and <code>e2</code> coordinates for cubic curves) gives us the necessary information

38
docs/ja-JP/index.html generated
View File

@@ -41,7 +41,7 @@
<meta property="og:locale" content="ja-JP" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-08-30T14:51:35+00:00" />
<meta property="og:updated_time" content="2021-08-30T15:00:31+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -6234,30 +6234,30 @@ lli = function(line1, line2):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
A' - e
1
│ v = A' - ──────
╡ 1 1 - t
A' - e
2
│ v = A' - ──────
╰ 2 t
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/eccc1bdb9423bbfe2d42418fc8a7dd24.svg" width="132px" height="75px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/68a25507037f1a9420c60a5cd3d10f47.svg" width="121px" height="73px" loading="lazy" />
<p>And then reverse engineer the curve's control points:</p>
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
v - start
1
│ C '= start + ───────────
╡ 1 t
v - end
2
│ C '= end + ─────────
╰ 2 1 - t
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/634d373310711268cc188f45e5699d8d.svg" width="163px" height="73px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/2184aa2a897df864b3a67984be18ef27.svg" width="163px" height="73px" loading="lazy" />
<p>
So: if we have a curve's start and end points, then for any <code>t</code> value we implicitly know all the ABC values, which (combined
with an educated guess on appropriate <code>e1</code> and <code>e2</code> coordinates for cubic curves) gives us the necessary information

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Fri Sep 18 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Mon Aug 30 2021 14:51:35 +00:00" />
<meta property="og:updated_time" content="Mon Aug 30 2021 15:00:31 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Sun Nov 22 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Mon Aug 30 2021 14:51:35 +00:00" />
<meta property="og:updated_time" content="Mon Aug 30 2021 15:00:31 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

2
docs/news/index.html generated
View File

@@ -33,7 +33,7 @@
<meta property="og:description" content="" />
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Mon Aug 30 2021 14:51:35 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:published_time" content="Mon Aug 30 2021 15:00:31 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:updated_time" content="" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />

View File

@@ -6,7 +6,7 @@
<atom:link href="https://pomax.github.io/bezierinfo" rel="self"></atom:link>
<description>News updates for the <a href="https://pomax.github.io/bezierinfo">primer on Bézier Curves</a> by Pomax</description>
<language>en-GB</language>
<lastBuildDate>Mon Aug 30 2021 14:51:35 +00:00</lastBuildDate>
<lastBuildDate>Mon Aug 30 2021 15:00:31 +00:00</lastBuildDate>
<image>
<url>https://pomax.github.io/bezierinfo/images/og-image.png</url>
<title>A Primer on Bézier Curves</title>

38
docs/ru-RU/index.html generated
View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="ru-RU" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-08-30T14:51:35+00:00" />
<meta property="og:updated_time" content="2021-08-30T15:00:31+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -6391,30 +6391,30 @@ lli = function(line1, line2):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
A' - e
1
│ v = A' - ──────
╡ 1 1 - t
A' - e
2
│ v = A' - ──────
╰ 2 t
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/eccc1bdb9423bbfe2d42418fc8a7dd24.svg" width="132px" height="75px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/68a25507037f1a9420c60a5cd3d10f47.svg" width="121px" height="73px" loading="lazy" />
<p>And then reverse engineer the curve's control points:</p>
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
v - start
1
│ C '= start + ───────────
╡ 1 t
v - end
2
│ C '= end + ─────────
╰ 2 1 - t
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/634d373310711268cc188f45e5699d8d.svg" width="163px" height="73px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/2184aa2a897df864b3a67984be18ef27.svg" width="163px" height="73px" loading="lazy" />
<p>
So: if we have a curve's start and end points, then for any <code>t</code> value we implicitly know all the ABC values, which (combined
with an educated guess on appropriate <code>e1</code> and <code>e2</code> coordinates for cubic curves) gives us the necessary information

38
docs/uk-UA/index.html generated
View File

@@ -39,7 +39,7 @@
<meta property="og:locale" content="uk-UA" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-08-30T14:51:35+00:00" />
<meta property="og:updated_time" content="2021-08-30T15:00:31+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -6367,30 +6367,30 @@ lli = function(line1, line2):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
A' - e
1
│ v = A' - ──────
╡ 1 1 - t
A' - e
2
│ v = A' - ──────
╰ 2 t
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/eccc1bdb9423bbfe2d42418fc8a7dd24.svg" width="132px" height="75px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/68a25507037f1a9420c60a5cd3d10f47.svg" width="121px" height="73px" loading="lazy" />
<p>And then reverse engineer the curve's control points:</p>
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
v - start
1
│ C '= start + ───────────
╡ 1 t
v - end
2
│ C '= end + ─────────
╰ 2 1 - t
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/634d373310711268cc188f45e5699d8d.svg" width="163px" height="73px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/2184aa2a897df864b3a67984be18ef27.svg" width="163px" height="73px" loading="lazy" />
<p>
So: if we have a curve's start and end points, then for any <code>t</code> value we implicitly know all the ABC values, which (combined
with an educated guess on appropriate <code>e1</code> and <code>e2</code> coordinates for cubic curves) gives us the necessary information

38
docs/zh-CN/index.html generated
View File

@@ -41,7 +41,7 @@
<meta property="og:locale" content="zh-CN" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-08-30T14:51:35+00:00" />
<meta property="og:updated_time" content="2021-08-30T15:00:31+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -6210,30 +6210,30 @@ lli = function(line1, line2):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
A' - e
1
│ v = A' - ──────
╡ 1 1 - t
A' - e
2
│ v = A' - ──────
╰ 2 t
╭ A - e
│ 1
│ v = A - ──────
╡ 1 1 - t
│ A - e
│ 2
│ v = A - ──────
╰ 2 t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/eccc1bdb9423bbfe2d42418fc8a7dd24.svg" width="132px" height="75px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/68a25507037f1a9420c60a5cd3d10f47.svg" width="121px" height="73px" loading="lazy" />
<p>And then reverse engineer the curve's control points:</p>
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
v - start
1
│ C '= start + ───────────
╡ 1 t
v - end
2
│ C '= end + ─────────
╰ 2 1 - t
╭ v - start
│ 1
│ C = start + ───────────
╡ 1 t
│ v - end
│ 2
│ C = end + ─────────
╰ 2 1 - t
-->
<img class="LaTeX SVG" src="./images/chapters/abc/634d373310711268cc188f45e5699d8d.svg" width="163px" height="73px" loading="lazy" />
<img class="LaTeX SVG" src="./images/chapters/abc/2184aa2a897df864b3a67984be18ef27.svg" width="163px" height="73px" loading="lazy" />
<p>
So: if we have a curve's start and end points, then for any <code>t</code> value we implicitly know all the ABC values, which (combined
with an educated guess on appropriate <code>e1</code> and <code>e2</code> coordinates for cubic curves) gives us the necessary information