1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-27 18:20:24 +02:00

XeLaTeX interpration of LaTeX for localization

This commit is contained in:
Pomax
2017-02-26 22:27:36 -08:00
parent a889d16f36
commit ba54cc37f9
216 changed files with 477 additions and 404 deletions

View File

@@ -32,10 +32,12 @@ So that just leaves finding A.
While that relation is fixed, the function *u(t)* differs depending on whether we're working
with quadratic or cubic curves:
\[\begin{align}
& u(t)_{quadratic} = \frac{(1-t)^2}{t^2 + (1-t)^2} \\
& u(t)_{cubic} = \frac{(1-t)^3}{t^3 + (1-t)^3}
\end{align}\]
\[
\begin{aligned}
& u(t)_{quadratic} &= \frac{(1-t)^2}{t^2 + (1-t)^2} \\
& u(t)_{cubic} &= \frac{(1-t)^3}{t^3 + (1-t)^3}
\end{aligned}
\]
So, if we know the start and end coordinates, and we know the *t* value, we know C: