mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-27 18:20:24 +02:00
XeLaTeX interpration of LaTeX for localization
This commit is contained in:
@@ -32,10 +32,12 @@ So that just leaves finding A.
|
||||
While that relation is fixed, the function *u(t)* differs depending on whether we're working
|
||||
with quadratic or cubic curves:
|
||||
|
||||
\[\begin{align}
|
||||
& u(t)_{quadratic} = \frac{(1-t)^2}{t^2 + (1-t)^2} \\
|
||||
& u(t)_{cubic} = \frac{(1-t)^3}{t^3 + (1-t)^3}
|
||||
\end{align}\]
|
||||
\[
|
||||
\begin{aligned}
|
||||
& u(t)_{quadratic} &= \frac{(1-t)^2}{t^2 + (1-t)^2} \\
|
||||
& u(t)_{cubic} &= \frac{(1-t)^3}{t^3 + (1-t)^3}
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
So, if we know the start and end coordinates, and we know the *t* value, we know C:
|
||||
|
||||
|
Reference in New Issue
Block a user