mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-18 22:41:49 +02:00
XeLaTeX interpration of LaTeX for localization
This commit is contained in:
@@ -3,13 +3,13 @@
|
||||
We can also represent Bézier as matrix operations, by expressing the Bézier formula as a polynomial basis function, the weight matrix, and the actual coordinates as matrix. Let's look at what this means for the cubic curve:
|
||||
|
||||
\[
|
||||
B(t) = P_1 \cdot (1-t)^3 + P_2 \cdot 3 \cdot (1-t)^2 \cdot t + P_3 \cdot 3 \cdot (1-t) \cdot t^2 + P_4 \cdot t^3
|
||||
B(t) = P_1 \cdot (1-t)^3 + P_2 \cdot 3 \cdot (1-t)^2 \cdot t + P_3 \cdot 3 \cdot (1-t) \cdot t^2 + P_4 \cdot t^3
|
||||
\]
|
||||
|
||||
Disregarding our actual coordinates for a moment, we have:
|
||||
|
||||
\[
|
||||
B(t) = (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
B(t) = (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
\]
|
||||
|
||||
We can write this as a sum of four expressions:
|
||||
|
Reference in New Issue
Block a user