1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-22 16:23:12 +02:00

catmull-rom

This commit is contained in:
Pomax
2020-09-02 16:39:10 -07:00
parent 4aef67e662
commit bb5adcaebd
42 changed files with 979 additions and 630 deletions

View File

@@ -1,148 +0,0 @@
import invert from "./matrix-invert.js";
var binomialCoefficients = [[1],[1,1]];
function binomial(n,k) {
if (n===0) return 1;
var lut = binomialCoefficients;
while(n >= lut.length) {
var s = lut.length;
var nextRow = [1];
for(var i=1,prev=s-1; i<s; i++) {
nextRow[i] = lut[prev][i-1] + lut[prev][i];
}
nextRow[s] = 1;
lut.push(nextRow);
}
return lut[n][k];
}
function transpose(M) {
var Mt = [];
M.forEach(row => Mt.push([]));
M.forEach((row,r) => row.forEach((v,c) => Mt[c][r] = v));
return Mt;
}
function row(M,i) {
return M[i];
}
function col(M,i) {
var col = [];
for(var r=0, l=M.length; r<l; r++) {
col.push(M[r][i]);
}
return col;
}
function multiply(M1, M2) {
// prep
var M = [];
var dims = [M1.length, M1[0].length, M2.length, M2[0].length];
// work
for (var r=0, c; r<dims[0]; r++) {
M[r] = [];
var _row = row(M1, r);
for (c=0; c<dims[3]; c++) {
var _col = col(M2,c);
var reducer = (a,v,i) => a + _col[i]*v;
M[r][c] = _row.reduce(reducer, 0);
}
}
return M;
}
function getValueColumn(P, prop) {
var col = [];
P.forEach(v => col.push([v[prop]]));
return col;
}
function computeBasisMatrix(n) {
/*
We can form any basis matrix using a generative approach:
- it's an M = (n x n) matrix
- it's a lower triangular matrix: all the entries above the main diagonal are zero
- the main diagonal consists of the binomial coefficients for n
- all entries are symmetric about the antidiagonal.
What's more, if we number rows and columns starting at 0, then
the value at position M[r,c], with row=r and column=c, can be
expressed as:
M[r,c] = (r choose c) * M[r,r] * S,
where S = 1 if r+c is even, or -1 otherwise
That is: the values in column c are directly computed off of the
binomial coefficients on the main diagonal, through multiplication
by a binomial based on matrix position, with the sign of the value
also determined by matrix position. This is actually very easy to
write out in code:
*/
// form the square matrix, and set it to all zeroes
var M = [], i = n;
while (i--) { M[i] = "0".repeat(n).split('').map(v => parseInt(v)); }
// populate the main diagonal
var k = n - 1;
for (i=0; i<n; i++) { M[i][i] = binomial(k, i); }
// compute the remaining values
for (var c=0, r; c<n; c++) {
for (r=c+1; r<n; r++) {
var sign = (r+c)%2 ? -1 : 1;
var value = binomial(r, c) * M[r][r];
M[r][c] = sign * value; }}
return M;
}
function raiseRowPower(row, i) {
return row.map(v => Math.pow(v,i));
}
function formTMatrix(S, n) {
n = n || S.length;
var Tp = [];
// it's easier to generate the transposed matrix:
for(var i=0; i<n; i++) Tp.push( raiseRowPower(S, i));
return {
Tt: Tp,
T: transpose(Tp) // and then transpose "again" to get the real matrix
};
}
function computeBestFit(P, M, S, n) {
n = n || P.length;
var tm = formTMatrix(S, n),
T = tm.T,
Tt = tm.Tt,
M1 = invert(M),
TtT1 = invert(multiply(Tt,T)),
step1 = multiply(TtT1, Tt),
step2 = multiply(M1, step1),
X = getValueColumn(P,'x'),
Cx = multiply(step2, X),
Y = getValueColumn(P,'y'),
Cy = multiply(step2, Y);
return { x: Cx, y: Cy };
}
function fit(points, tvalues) {
// mode could be an int index to fit.modes, below,
// which are used to abstract time values, OR it
// could be a prespecified array of time values to
// be used in the final curve fitting step.
const n = points.length,
P = Array.from(points),
M = computeBasisMatrix(n),
S = tvalues,
C = computeBestFit(P, M, S, n);
return { n, P, M, S, C };
}
export default fit;

View File

@@ -1,5 +1,3 @@
import fit from "./curve-fitter.js";
let points = [], curve, sliders;
setup() {
@@ -24,29 +22,90 @@ draw() {
setColor('black');
setFontSize(16);
setTextStroke(`white`, 4);
if (points.length > 2) {
curve = this.fitCurve(points);
const n = points.length;
if (n > 2 && sliders && sliders.values) {
curve = this.fitCurveToPoints(n);
curve.drawSkeleton(`blue`);
curve.drawCurve();
text(this.label, this.width/2, 20, CENTER);
}
points.forEach(p => circle(p.x, p.y, 3));
}
fitCurve(points) {
let n = points.length;
let tvalues = sliders ? sliders.values : [...new Array(n)].map((_,i) =>i/(n-1));
let bestFitData = fit(points, tvalues),
x = bestFitData.C.x,
y = bestFitData.C.y,
bpoints = x.map((r,i) => (
{x: r[0], y: y[i][0]}
));
fitCurveToPoints(n) {
// alright, let's do this thing:
const tm = this.formTMatrix(sliders.values, n),
T = tm.T,
Tt = tm.Tt,
M = this.generateBasisMatrix(n),
M1 = M.invert(),
TtT1 = Tt.multiply(T).invert(),
step1 = TtT1.multiply(Tt),
step2 = M1.multiply(step1),
// almost there...
X = new Matrix(points.map((v) => [v.x])),
Cx = step2.multiply(X),
x = Cx.data,
// almost...
Y = new Matrix(points.map((v) => [v.y])),
Cy = step2.multiply(Y),
y = Cy.data,
// last step!
bpoints = x.map((r,i) => ({x: r[0], y: y[i][0]}));
return new Bezier(this, bpoints);
}
formTMatrix(row, n) {
// it's actually easier to create the transposed
// version, and then (un)transpose that to get T!
let data = [];
for (var i = 0; i < n; i++) {
data.push(row.map((v) => v ** i));
}
const Tt = new Matrix(n, n, data);
const T = Tt.transpose();
return { T, Tt };
}
generateBasisMatrix(n) {
const M = new Matrix(n, n);
// populate the main diagonal
var k = n - 1;
for (let i = 0; i < n; i++) {
M.set(i, i, binomial(k, i));
}
// compute the remaining values
for (var c = 0, r; c < n; c++) {
for (r = c + 1; r < n; r++) {
var sign = (r + c) % 2 === 0 ? 1 : -1;
var value = binomial(r, c) * M.get(r, r);
M.set(r, c, sign * value);
}
}
return M;
}
onMouseDown() {
if (!this.currentPoint) {
const {x, y} = this.cursor;
points.push({ x, y });
resetMovable(points);
this.updateSliders();
redraw();
}
}
// -------------------------------------
// The rest of this code is slider logic
// -------------------------------------
updateSliders() {
if (sliders && points.length > 2) {
sliders.innerHTML = ``;
@@ -100,14 +159,4 @@ setSliderValues(mode) {
s.setAttribute(`value`, sliders.values[i]);
s.value = sliders.values[i];
});
}
onMouseDown() {
if (!this.currentPoint) {
const {x, y} = this.cursor;
points.push({ x, y });
resetMovable(points);
this.updateSliders();
redraw();
}
}
}

View File

@@ -1,110 +0,0 @@
// Copied from http://blog.acipo.com/matrix-inversion-in-javascript/
// Returns the inverse of matrix `M`.
export default function matrix_invert(M) {
// I use Guassian Elimination to calculate the inverse:
// (1) 'augment' the matrix (left) by the identity (on the right)
// (2) Turn the matrix on the left into the identity by elemetry row ops
// (3) The matrix on the right is the inverse (was the identity matrix)
// There are 3 elemtary row ops: (I combine b and c in my code)
// (a) Swap 2 rows
// (b) Multiply a row by a scalar
// (c) Add 2 rows
//if the matrix isn't square: exit (error)
if (M.length !== M[0].length) {
console.log('not square');
return;
}
//create the identity matrix (I), and a copy (C) of the original
var i = 0,
ii = 0,
j = 0,
dim = M.length,
e = 0,
t = 0;
var I = [],
C = [];
for (i = 0; i < dim; i += 1) {
// Create the row
I[I.length] = [];
C[C.length] = [];
for (j = 0; j < dim; j += 1) {
//if we're on the diagonal, put a 1 (for identity)
if (i == j) {
I[i][j] = 1;
} else {
I[i][j] = 0;
}
// Also, make the copy of the original
C[i][j] = M[i][j];
}
}
// Perform elementary row operations
for (i = 0; i < dim; i += 1) {
// get the element e on the diagonal
e = C[i][i];
// if we have a 0 on the diagonal (we'll need to swap with a lower row)
if (e == 0) {
//look through every row below the i'th row
for (ii = i + 1; ii < dim; ii += 1) {
//if the ii'th row has a non-0 in the i'th col
if (C[ii][i] != 0) {
//it would make the diagonal have a non-0 so swap it
for (j = 0; j < dim; j++) {
e = C[i][j]; //temp store i'th row
C[i][j] = C[ii][j]; //replace i'th row by ii'th
C[ii][j] = e; //repace ii'th by temp
e = I[i][j]; //temp store i'th row
I[i][j] = I[ii][j]; //replace i'th row by ii'th
I[ii][j] = e; //repace ii'th by temp
}
//don't bother checking other rows since we've swapped
break;
}
}
//get the new diagonal
e = C[i][i];
//if it's still 0, not invertable (error)
if (e == 0) {
return;
}
}
// Scale this row down by e (so we have a 1 on the diagonal)
for (j = 0; j < dim; j++) {
C[i][j] = C[i][j] / e; //apply to original matrix
I[i][j] = I[i][j] / e; //apply to identity
}
// Subtract this row (scaled appropriately for each row) from ALL of
// the other rows so that there will be 0's in this column in the
// rows above and below this one
for (ii = 0; ii < dim; ii++) {
// Only apply to other rows (we want a 1 on the diagonal)
if (ii == i) {
continue;
}
// We want to change this element to 0
e = C[ii][i];
// Subtract (the row above(or below) scaled by e) from (the
// current row) but start at the i'th column and assume all the
// stuff left of diagonal is 0 (which it should be if we made this
// algorithm correctly)
for (j = 0; j < dim; j++) {
C[ii][j] -= e * C[i][j]; //apply to original matrix
I[ii][j] -= e * I[i][j]; //apply to identity
}
}
}
//we've done all operations, C should be the identity
//matrix I should be the inverse:
return I;
};