1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-30 03:30:34 +02:00

intersections

This commit is contained in:
Pomax
2020-08-29 08:40:36 -07:00
parent 4e34774afb
commit bdc7c4228d
13 changed files with 201 additions and 89 deletions

View File

@@ -10,7 +10,7 @@ If we have two line segments with two coordinates each, segments A-B and C-D, we
The following graphic implements this intersection detection, showing a red point for an intersection on the lines our segments lie on (thus being a virtual intersection point), and a green point for an intersection that lies on both segments (being a real intersection point).
<Graphic title="Line/line intersections" setup={this.setupLines} draw={this.drawLineIntersection} />
<graphics-element title="Line/line intersections" src="./line-line.js"></graphics-element>
<div class="howtocode">
@@ -44,7 +44,9 @@ lli = function(line1, line2):
Curve/line intersection is more work, but we've already seen the techniques we need to use in order to perform it: first we translate/rotate both the line and curve together, in such a way that the line coincides with the x-axis. This will position the curve in a way that makes it cross the line at points where its y-function is zero. By doing this, the problem of finding intersections between a curve and a line has now become the problem of performing root finding on our translated/rotated curve, as we already covered in the section on finding extremities.
<Graphic title="Quadratic curve/line intersections" setup={this.setupQuadratic} draw={this.draw}/>
<Graphic title="Cubic curve/line intersections" setup={this.setupCubic} draw={this.draw}/>
<div class="figure">
<graphics-element title="Quadratic curve/line intersections" src="./curve-line.js" data-type="quadratic"></graphics-element>
<graphics-element title="Cubic curve/line intersections" src="./curve-line.js" data-type="cubic"></graphics-element>
</div>
Curve/curve intersection, however, is more complicated. Since we have no straight line to align to, we can't simply align one of the curves and be left with a simple procedure. Instead, we'll need to apply two techniques we've met before: de Casteljau's algorithm, and curve splitting.

View File

@@ -0,0 +1,53 @@
const utils = Bezier.getUtils();
let Point = Vector, curve, line;
setup() {
const type = this.parameters.type ?? `quadratic`;
if (type === `quadratic`) {
curve = Bezier.defaultQuadratic(this);
line = [new Point(15,250), new Point(220,20)];
} else {
curve = Bezier.defaultCubic(this);
line = [new Point(25,260), new Point(240,55)];
}
setMovable(curve.points, line);
}
draw() {
clear();
curve.drawSkeleton();
curve.drawCurve();
curve.drawPoints();
this.drawLine(...line);
const [p1, p2] = line;
const aligned = utils.align(curve.points, {p1,p2});
const nB = new Bezier(this, aligned);
const roots = utils.roots(nB.points);
const coords = roots.map(t => curve.get(t));
if (roots.length) {
roots.forEach((t,i) => {
var p = coords[i];
setColor(`magenta`);
circle(p.x, p.y, 3);
setColor(`black`);
text(`t = ${t.toFixed(2)}`, p.x + 5, p.y + 10);
});
setFill(`black`);
const cval = coords.map(p => `(${p.x|0},${p.y|0})`).join(`, `);
text(`Intersection${roots.length>=1?`s`:``} at ${cval}`, this.width/2, 15, CENTER);
}
}
drawLine(p1, p2) {
setStroke(`black`);
line(p1.x, p1.y, p2.x, p2.y);
setStroke( randomColor() );
circle(p1.x, p1.y, 3);
circle(p2.x, p2.y, 3);
}

View File

@@ -1,75 +0,0 @@
var min = Math.min, max = Math.max;
module.exports = {
setupLines: function(api) {
var curve1 = new api.Bezier([50,50,150,110]);
var curve2 = new api.Bezier([50,250,170,170]);
api.setCurve(curve1, curve2);
},
drawLineIntersection: function(api, curves) {
api.reset();
var lli = api.utils.lli4;
var p = lli(
curves[0].points[0],
curves[0].points[1],
curves[1].points[0],
curves[1].points[1]
);
var mark = 0;
curves.forEach(curve => {
api.drawSkeleton(curve);
api.setColor("black");
if (p) {
var pts = curve.points,
mx = min(pts[0].x, pts[1].x),
my = min(pts[0].y, pts[1].y),
Mx = max(pts[0].x, pts[1].x),
My = max(pts[0].y, pts[1].y);
if (mx <= p.x && my <= p.y && Mx >= p.x && My >= p.y) {
api.setColor("#00FF00");
mark++;
}
}
api.drawCurve(curve);
});
if (p) {
api.setColor(mark < 2 ? "red" : "#00FF00");
api.drawCircle(p, 3);
}
},
setupQuadratic: function(api) {
var curve1 = api.getDefaultQuadratic();
var curve2 = new api.Bezier([15,250,220,20]);
api.setCurve(curve1, curve2);
},
setupCubic: function(api) {
var curve1 = new api.Bezier([100,240, 30,60, 210,230, 160,30]);
var curve2 = new api.Bezier([25,260, 230,20]);
api.setCurve(curve1, curve2);
},
draw: function(api, curves) {
api.reset();
curves.forEach(curve => {
api.drawSkeleton(curve);
api.drawCurve(curve);
});
var utils = api.utils;
var line = { p1: curves[1].points[0], p2: curves[1].points[1] };
var acpts = utils.align(curves[0].points, line);
var nB = new api.Bezier(acpts);
var roots = utils.roots(nB.points);
roots.forEach(t => {
var p = curves[0].get(t);
api.drawCircle(p, 3);
api.text("t = " + t, {x: p.x + 5, y: p.y + 10});
});
}
};

View File

@@ -0,0 +1,61 @@
let Point = Vector, points = [];
setup() {
points.push(new Point(50,50));
points.push(new Point(150,110));
points.push(new Point(50,250));
points.push(new Point(170,170));
setMovable(points);
}
draw() {
clear();
const [p1, p2, p3, p4] = points;
setStroke(`black`);
this.drawLine(p1,p2);
this.drawLine(p3,p4);
const p = this.lli(
p1.x, p1.y,
p2.x, p2.y,
p3.x, p3.y,
p4.x, p4.y
);
if (p) {
if (this.onLine(p, p1, p2) && this.onLine(p, p3, p4)) {
setColor(`lime`);
circle(p.x, p.y, 3);
setFill(`black`);
text(`Intersection at (${p.x|0}, ${p.y|0})`, this.width/2, 15, CENTER);
} else {
setColor(`red`);
circle(p.x, p.y, 3);
}
}
}
drawLine(p1, p2) {
setColor(`black`);
line(p1.x, p1.y, p2.x, p2.y);
setStroke( randomColor() );
circle(p1.x, p1.y, 2);
circle(p2.x, p2.y, 2);
}
lli(x1, y1, x2, y2, x3, y3, x4, y4) {
const nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4),
ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4),
d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (d == 0) return;
return { x: nx / d, y: ny / d };
}
onLine(p, p1, p2) {
const mx = min(p1.x, p2.x),
my = min(p1.y, p2.y),
Mx = max(p1.x, p2.x),
My = max(p1.y, p2.y);
return (mx <= p.x && my <= p.y && Mx >= p.x && My >= p.y);
}