1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-19 06:52:02 +02:00

Fix spelling mistakes (#122)

This commit is contained in:
David Thomas
2017-10-16 17:04:21 +01:00
committed by Mike Kamermans
parent 7e1cefa73f
commit d395c261bc
19 changed files with 35 additions and 35 deletions

View File

@@ -66,7 +66,7 @@ And that's it, all values found.
<div className="note">
Much like the *u(t)* function in the above note, the *ratio(t)* function depends on whether we're looking at quadratic or cubic curves. Their form is intrinsically related to the *u(t)* function in that they both come rolling out of the same function evalution, explained over on [MathOverflow](http://mathoverflow.net/questions/122257/finding-the-formula-for-Bézier-curve-ratios-hull-point-point-baseline) by Boris Zbarsky and myself. The ratio functions are the "s(t)" functions from the answers there, while the "u(t)" functions have the same name both here and on MathOverflow.
Much like the *u(t)* function in the above note, the *ratio(t)* function depends on whether we're looking at quadratic or cubic curves. Their form is intrinsically related to the *u(t)* function in that they both come rolling out of the same function evaluation, explained over on [MathOverflow](http://mathoverflow.net/questions/122257/finding-the-formula-for-Bézier-curve-ratios-hull-point-point-baseline) by Boris Zbarsky and myself. The ratio functions are the "s(t)" functions from the answers there, while the "u(t)" functions have the same name both here and on MathOverflow.
\[
ratio(t)_{quadratic} = \left | \frac{t^2 + (1-t)^2 - 1}{t^2 + (1-t)^2} \right |