1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-28 18:49:57 +02:00
This commit is contained in:
Pomax
2016-01-03 10:20:31 -08:00
parent 982d432da8
commit d6bf1cbaeb
6 changed files with 238 additions and 147 deletions

View File

@@ -0,0 +1,106 @@
var React = require("react");
var Graphic = require("../../Graphic.jsx");
var SectionHeader = require("../../SectionHeader.jsx");
var TightBounds = React.createClass({
getDefaultProps: function() {
return {
title: "Tight boxes"
};
},
setupQuadratic: function(api) {
var curve = api.getDefaultQuadratic();
api.setCurve(curve);
},
setupCubic: function(api) {
var curve = api.getDefaultCubic();
api.setCurve(curve);
},
align: function(points, line) {
var tx = line.p1.x,
ty = line.p1.y,
a = -Math.atan2(line.p2.y-ty, line.p2.x-tx),
cos = Math.cos,
sin = Math.sin,
d = function(v) {
return {
x: (v.x-tx)*cos(a) - (v.y-ty)*sin(a),
y: (v.x-tx)*sin(a) + (v.y-ty)*cos(a),
a: a
};
};
return points.map(d);
},
// FIXME: I'm not satisfied with needing to turn a bbox[] into a point[],
// this needs a bezier.js solution, really, with a call curve.tightbbox()
transpose: function(points, angle, offset) {
var tx = offset.x,
ty = offset.y,
cos = Math.cos,
sin = Math.sin,
v = [points.x.min, points.y.min, points.x.max, points.y.max],
points = [
{x: v[0], y: v[1] },
{x: v[2], y: v[1] },
{x: v[2], y: v[3] },
{x: v[0], y: v[3] }
].map(p => {
var x=p.x, y=p.y;
return {
x: x*cos(angle) - y*sin(angle) + tx,
y: x*sin(angle) + y*cos(angle) + ty
};
});
return points;
},
draw: function(api, curve) {
api.reset();
api.drawSkeleton(curve);
api.drawCurve(curve);
var pts = curve.points;
var line = {p1: pts[0], p2: pts[pts.length-1]};
var apts = this.align(pts, line);
var angle = -apts[0].a;
var aligned = new api.Bezier(apts);
var bbox = aligned.bbox();
var tpts = this.transpose(bbox, angle, pts[0]);
api.setColor("#00FF00");
api.drawLine(tpts[0], tpts[1]);
api.drawLine(tpts[1], tpts[2]);
api.drawLine(tpts[2], tpts[3]);
api.drawLine(tpts[3], tpts[0]);
},
render: function() {
return (
<section>
<SectionHeader {...this.props} />
<p>With our knowledge of bounding boxes, and curve alignment, We can now form the "tight" bounding box for
curves. We first align our curve, recording the translation we performed, "T", and the rotation angle we
used, "R". We then determine the aligned curve's normal bounding box. Once we have that, we can map that
bounding box back to our original curve by rotating it by -R, and then translating it by -T. We now have
nice tight bounding boxes for our curves:</p>
<Graphic preset="twopanel" title="Aligning a quadratic curve" setup={this.setupQuadratic} draw={this.draw} />
<Graphic preset="twopanel" title="Aligning a cubic curve" setup={this.setupCubic} draw={this.draw} />
<p>These are, strictly speaking, not necessarily the tightest possible bounding boxes. It is possible to compute
the optimal bounding box by determining which spanning lines we need to effect a minimal box area, but because
of the parametric nature of Bézier curves this is actually a rather costly operation, and the gain in bounding
precision is often not worth it. If there is high demand for it, I'll add a section on how to precisely compute
the best fit bounding box, but the maths is fairly gruelling and just not really worth spending time on.</p>
</section>
);
}
});
module.exports = TightBounds;