1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-31 03:59:58 +02:00

this rename is absolutely stupid

This commit is contained in:
Pomax
2020-08-20 13:01:32 -07:00
parent 59fdafb2c5
commit d92e370bd1
470 changed files with 22 additions and 9 deletions

View File

@@ -0,0 +1,10 @@
# Tight bounding boxes
With our knowledge of bounding boxes, and curve alignment, We can now form the "tight" bounding box for curves. We first align our curve, recording the translation we performed, "T", and the rotation angle we used, "R". We then determine the aligned curve's normal bounding box. Once we have that, we can map that bounding box back to our original curve by rotating it by -R, and then translating it by -T.
We now have nice tight bounding boxes for our curves:
<graphics-element title="Aligning a quadratic curve" src="./quadratic.js"></graphics-element>
<graphics-element title="Aligning a cubic curve" src="./cubic.js"></graphics-element>
These are, strictly speaking, not necessarily the tightest possible bounding boxes. It is possible to compute the optimal bounding box by determining which spanning lines we need to effect a minimal box area, but because of the parametric nature of Bézier curves this is actually a rather costly operation, and the gain in bounding precision is often not worth it.

View File

@@ -0,0 +1,79 @@
setup() {
const curve = this.curve = Bezier.defaultCubic(this);
curve.points[2].x = 210;
setMovable(curve.points);
}
draw() {
const curve = this.curve;
clear();
curve.drawSkeleton();
curve.drawCurve();
curve.drawPoints();
let translated = this.translatePoints(curve.points);
let rotated = this.rotatePoints(translated);
let rtcurve = new Bezier(this, rotated);
let extrema = rtcurve.extrema();
let minx = Number.MAX_SAFE_INTEGER,
miny = minx,
maxx = Number.MIN_SAFE_INTEGER,
maxy = maxx;
setStroke(`red`);
[0, ...extrema.x, ...extrema.y, 1].forEach(t => {
let p = curve.get(t);
let rtp = rtcurve.get(t);
if (rtp.x < minx) minx = rtp.x;
if (rtp.x > maxx) maxx = rtp.x;
if (rtp.y < miny) miny = rtp.y;
if (rtp.y > maxy) maxy = rtp.y;
if (t > 0 && t< 1) circle(p.x, p.y, 3);
});
noFill();
setStroke(`#0F0`);
let tx = curve.points[0].x;
let ty = curve.points[0].y;
let a = rotated[0].a;
start();
vertex(tx + minx * cos(a) - miny * sin(a), ty + minx * sin(a) + miny * cos(a));
vertex(tx + maxx * cos(a) - miny * sin(a), ty + maxx * sin(a) + miny * cos(a));
vertex(tx + maxx * cos(a) - maxy * sin(a), ty + maxx * sin(a) + maxy * cos(a));
vertex(tx + minx * cos(a) - maxy * sin(a), ty + minx * sin(a) + maxy * cos(a));
end(true);
}
translatePoints(points) {
// translate to (0,0)
let m = points[0];
return points.map(v => {
return {
x: v.x - m.x,
y: v.y - m.y
}
});
}
rotatePoints(points) {
// rotate so that last point is (...,0)
let dx = points[3].x;
let dy = points[3].y;
let a = atan2(dy, dx);
return points.map(v => {
return {
a: a,
x: v.x * cos(-a) - v.y * sin(-a),
y: v.x * sin(-a) + v.y * cos(-a)
};
});
}
onMouseMove() {
redraw();
}

View File

@@ -0,0 +1,78 @@
setup() {
this.curve = Bezier.defaultQuadratic(this);
setMovable(this.curve.points);
}
draw() {
const curve = this.curve;
clear();
curve.drawSkeleton();
curve.drawCurve();
curve.drawPoints();
let translated = this.translatePoints(curve.points);
let rotated = this.rotatePoints(translated);
let rtcurve = new Bezier(this, rotated);
let extrema = rtcurve.extrema();
let minx = Number.MAX_SAFE_INTEGER,
miny = minx,
maxx = Number.MIN_SAFE_INTEGER,
maxy = maxx;
setStroke(`red`);
[0, ...extrema.x, ...extrema.y, 1].forEach(t => {
let p = curve.get(t);
let rtp = rtcurve.get(t);
if (rtp.x < minx) minx = rtp.x;
if (rtp.x > maxx) maxx = rtp.x;
if (rtp.y < miny) miny = rtp.y;
if (rtp.y > maxy) maxy = rtp.y;
if (t > 0 && t< 1) circle(p.x, p.y, 3);
});
noFill();
setStroke(`#0F0`);
let tx = curve.points[0].x;
let ty = curve.points[0].y;
let a = rotated[0].a;
start();
vertex(tx + minx * cos(a) - miny * sin(a), ty + minx * sin(a) + miny * cos(a));
vertex(tx + maxx * cos(a) - miny * sin(a), ty + maxx * sin(a) + miny * cos(a));
vertex(tx + maxx * cos(a) - maxy * sin(a), ty + maxx * sin(a) + maxy * cos(a));
vertex(tx + minx * cos(a) - maxy * sin(a), ty + minx * sin(a) + maxy * cos(a));
end(true);
}
translatePoints(points) {
// translate to (0,0)
let m = points[0];
return points.map(v => {
return {
x: v.x - m.x,
y: v.y - m.y
}
});
}
rotatePoints(points) {
// rotate so that last point is (...,0)
let dx = points[2].x;
let dy = points[2].y;
let a = atan2(dy, dx);
return points.map(v => {
return {
a: a,
x: v.x * cos(-a) - v.y * sin(-a),
y: v.x * sin(-a) + v.y * cos(-a)
};
});
}
onMouseMove() {
redraw();
}