1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-30 19:50:01 +02:00

Automated build

This commit is contained in:
Bezierinfo CI
2024-06-19 17:19:22 +00:00
parent d3851791fd
commit e5bfa1987a
10 changed files with 28 additions and 22 deletions

7
docs/index.html generated
View File

@@ -38,7 +38,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -4977,7 +4977,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5026,7 +5027,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>