1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-31 12:01:54 +02:00

Automated build

This commit is contained in:
Bezierinfo CI
2024-06-19 17:19:22 +00:00
parent d3851791fd
commit e5bfa1987a
10 changed files with 28 additions and 22 deletions

7
docs/index.html generated
View File

@@ -38,7 +38,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -4977,7 +4977,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5026,7 +5027,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>

7
docs/ja-JP/index.html generated
View File

@@ -41,7 +41,7 @@
<meta property="og:locale" content="ja-JP" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -5022,7 +5022,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5071,7 +5072,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>

7
docs/ko-KR/index.html generated
View File

@@ -43,7 +43,7 @@
<meta property="og:locale" content="ko-KR" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -5163,7 +5163,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5212,7 +5213,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Fri Sep 18 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Wed Feb 28 2024 17:22:37 +00:00" />
<meta property="og:updated_time" content="Wed Jun 19 2024 17:18:55 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Sun Nov 22 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Wed Feb 28 2024 17:22:37 +00:00" />
<meta property="og:updated_time" content="Wed Jun 19 2024 17:18:55 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

2
docs/news/index.html generated
View File

@@ -33,7 +33,7 @@
<meta property="og:description" content="" />
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Wed Feb 28 2024 17:22:37 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:published_time" content="Wed Jun 19 2024 17:18:55 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:updated_time" content="" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />

View File

@@ -6,7 +6,7 @@
<atom:link href="https://pomax.github.io/bezierinfo" rel="self"></atom:link>
<description>News updates for the <a href="https://pomax.github.io/bezierinfo">primer on Bézier Curves</a> by Pomax</description>
<language>en-GB</language>
<lastBuildDate>Wed Feb 28 2024 17:22:37 +00:00</lastBuildDate>
<lastBuildDate>Wed Jun 19 2024 17:18:55 +00:00</lastBuildDate>
<image>
<url>https://pomax.github.io/bezierinfo/images/og-image.png</url>
<title>A Primer on Bézier Curves</title>

7
docs/ru-RU/index.html generated
View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="ru-RU" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -5229,7 +5229,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5278,7 +5279,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>

7
docs/uk-UA/index.html generated
View File

@@ -39,7 +39,7 @@
<meta property="og:locale" content="uk-UA" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -5193,7 +5193,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -5242,7 +5243,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>

7
docs/zh-CN/index.html generated
View File

@@ -35,7 +35,7 @@
<meta property="og:locale" content="zh-CN" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2024-02-28T17:22:37+00:00" />
<meta property="og:updated_time" content="2024-06-19T17:18:55+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -4504,7 +4504,8 @@ mapped = (x) = │ 1 2
Now, if you look more closely at that right graphic, you'll notice something interesting: if we treat the red line as "the x axis", then
the point where the function crosses our line is really just a root for the cubic function x(t) through a shifted "x-axis"... and
<a href="#extremities">we've already seen</a> how to calculate roots, so let's just run cubic root finding - and not even the complicated
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is only root, simplifying the code we need!
cubic case either: because of the kind of curve we're starting with, we <em>know</em> there is at most a single root in the interval
[0,1], simplifying the code we need!
</p>
<p>First, let's look at the function for x(t):</p>
<!--
@@ -4553,7 +4554,7 @@ foreach p in xcoord: p.x -= x
t = getRoots(p[0], p[1], p[2], p[3])[0]
// find our answer:
y = curve.get(t).y</textarea
if t in [0,1] y = curve.get(t).y</textarea
>
</td>
</tr>