diff --git a/docs/chapters/abc/content.en-GB.md b/docs/chapters/abc/content.en-GB.md index 5dcb5397..84950b3d 100644 --- a/docs/chapters/abc/content.en-GB.md +++ b/docs/chapters/abc/content.en-GB.md @@ -77,8 +77,8 @@ With `A` found, finding `e1` and `e2` for quadratic curves is a matter of runnin \[ \left \{ \begin{aligned} - v_1 &= A' - \frac{A' - e_1}{1 - t} \\ - v_2 &= A' - \frac{A' - e_2}{t} + v_1 &= A - \frac{A - e_1}{1 - t} \\ + v_2 &= A - \frac{A - e_2}{t} \end{aligned} \right . \] @@ -86,8 +86,8 @@ And then reverse engineer the curve's control points: \[ \left \{ \begin{aligned} - C_1' &= \textit{start} + \frac{v_1 - \textit{start}}{t} \\ - C_2' &= \textit{end} + \frac{v_2 - \textit{end}}{1 - t} + C_1 &= \textit{start} + \frac{v_1 - \textit{start}}{t} \\ + C_2 &= \textit{end} + \frac{v_2 - \textit{end}}{1 - t} \end{aligned} \right . \]