var React = require("react"); var Graphic = require("../../Graphic.jsx"); var SectionHeader = require("../../SectionHeader.jsx"); var TightBounds = React.createClass({ getDefaultProps: function() { return { title: "Tight boxes" }; }, setupQuadratic: function(api) { var curve = api.getDefaultQuadratic(); api.setCurve(curve); }, setupCubic: function(api) { var curve = api.getDefaultCubic(); api.setCurve(curve); }, align: function(points, line) { var tx = line.p1.x, ty = line.p1.y, a = -Math.atan2(line.p2.y-ty, line.p2.x-tx), cos = Math.cos, sin = Math.sin, d = function(v) { return { x: (v.x-tx)*cos(a) - (v.y-ty)*sin(a), y: (v.x-tx)*sin(a) + (v.y-ty)*cos(a), a: a }; }; return points.map(d); }, // FIXME: I'm not satisfied with needing to turn a bbox[] into a point[], // this needs a bezier.js solution, really, with a call curve.tightbbox() transpose: function(points, angle, offset) { var tx = offset.x, ty = offset.y, cos = Math.cos, sin = Math.sin, v = [points.x.min, points.y.min, points.x.max, points.y.max], points = [ {x: v[0], y: v[1] }, {x: v[2], y: v[1] }, {x: v[2], y: v[3] }, {x: v[0], y: v[3] } ].map(p => { var x=p.x, y=p.y; return { x: x*cos(angle) - y*sin(angle) + tx, y: x*sin(angle) + y*cos(angle) + ty }; }); return points; }, draw: function(api, curve) { api.reset(); api.drawSkeleton(curve); api.drawCurve(curve); var pts = curve.points; var line = {p1: pts[0], p2: pts[pts.length-1]}; var apts = this.align(pts, line); var angle = -apts[0].a; var aligned = new api.Bezier(apts); var bbox = aligned.bbox(); var tpts = this.transpose(bbox, angle, pts[0]); api.setColor("#00FF00"); api.drawLine(tpts[0], tpts[1]); api.drawLine(tpts[1], tpts[2]); api.drawLine(tpts[2], tpts[3]); api.drawLine(tpts[3], tpts[0]); }, render: function() { return (

With our knowledge of bounding boxes, and curve alignment, We can now form the "tight" bounding box for curves. We first align our curve, recording the translation we performed, "T", and the rotation angle we used, "R". We then determine the aligned curve's normal bounding box. Once we have that, we can map that bounding box back to our original curve by rotating it by -R, and then translating it by -T. We now have nice tight bounding boxes for our curves:

These are, strictly speaking, not necessarily the tightest possible bounding boxes. It is possible to compute the optimal bounding box by determining which spanning lines we need to effect a minimal box area, but because of the parametric nature of Bézier curves this is actually a rather costly operation, and the gain in bounding precision is often not worth it. If there is high demand for it, I'll add a section on how to precisely compute the best fit bounding box, but the maths is fairly gruelling and just not really worth spending time on.

); } }); module.exports = TightBounds;