mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-04 07:47:40 +02:00
126 lines
3.3 KiB
JavaScript
126 lines
3.3 KiB
JavaScript
var sin = Math.sin;
|
|
var tau = Math.PI*2;
|
|
|
|
module.exports = {
|
|
/**
|
|
* Set up a sinusoid generating function,
|
|
* which we'll use to draw the "progressively
|
|
* better looking" integral approximations.
|
|
*/
|
|
setup: function(api) {
|
|
var w = api.getPanelWidth();
|
|
var h = api.getPanelHeight();
|
|
var generator;
|
|
if (!this.generator) {
|
|
generator = ((v,scale) => {
|
|
scale = scale || 1;
|
|
return {
|
|
x: v*w/tau,
|
|
y: scale * sin(v)
|
|
};
|
|
});
|
|
generator.start = 0;
|
|
generator.end = tau;
|
|
generator.step = 0.1;
|
|
generator.scale = h/3;
|
|
this.generator = generator;
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Draw the generator's sine function:
|
|
*/
|
|
drawSine: function(api, dheight) {
|
|
var w = api.getPanelWidth();
|
|
var h = api.getPanelHeight();
|
|
var generator = this.generator;
|
|
generator.dheight = dheight;
|
|
|
|
api.setColor("black");
|
|
api.drawLine({x:0,y:h/2}, {x:w,y:h/2});
|
|
api.drawFunction(generator, {x:0, y:h/2});
|
|
},
|
|
|
|
/**
|
|
* Draw the sliced between the sine curve and
|
|
* the x-axis, with a variable number of steps so
|
|
* we can show the approximation becoming better
|
|
* and better as we increase the step count.
|
|
*/
|
|
drawSlices: function(api, steps) {
|
|
var w = api.getPanelWidth();
|
|
var h = api.getPanelHeight();
|
|
var f = w/tau;
|
|
var area = 0;
|
|
var c = steps <= 25 ? 1 : 0;
|
|
api.reset();
|
|
api.setColor("transparent");
|
|
api.setFill("rgba(150,150,255, 0.4)");
|
|
for (var step=tau/steps, i=step/2, v, p1, p2; i<tau+step/2; i+=step) {
|
|
v = this.generator(i);
|
|
|
|
// draw a rectangular strip between the curve and the x-axis:
|
|
p1 = {x:v.x - f*step/2 + c, y: 0};
|
|
p2 = {x:v.x + f*step/2 - c, y: v.y * this.generator.scale};
|
|
|
|
if (!c) { api.setFill("rgba(150,150,255,"+(0.4 + 0.3*Math.random())+")"); }
|
|
api.drawRect(p1, p2, {x:0, y:h/2});
|
|
|
|
// and keep track of the (much simpler to compute) approximated area under the curve so far:
|
|
area += step * Math.abs(v.y * this.generator.scale);
|
|
}
|
|
api.setFill("black");
|
|
var trueArea = ((100 * 4 * h/3)|0)/100;
|
|
var currArea = ((100 * area)|0)/100;
|
|
api.text("Approximating with "+steps+" strips (true area: "+trueArea+"): " + currArea, {x: 10, y: h-15});
|
|
},
|
|
|
|
/**
|
|
* Draw the sine curve, with a 10 slice approximation:
|
|
*/
|
|
drawCoarseIntegral: function(api) {
|
|
api.reset();
|
|
this.drawSlices(api, 10);
|
|
this.drawSine(api);
|
|
},
|
|
|
|
/**
|
|
* Draw the sine curve, with a 24 slice approximation:
|
|
*/
|
|
drawFineIntegral: function(api) {
|
|
api.reset();
|
|
this.drawSlices(api, 24);
|
|
this.drawSine(api);
|
|
},
|
|
|
|
/**
|
|
* Draw the sine curve, with a 99 slice approximation:
|
|
*/
|
|
drawSuperFineIntegral: function(api) {
|
|
api.reset();
|
|
this.drawSlices(api, 99);
|
|
this.drawSine(api);
|
|
},
|
|
|
|
/**
|
|
* Set up a default cubic curve for which we'll be determining
|
|
* its length, using the iterative integral approach:
|
|
*/
|
|
setupCurve: function(api) {
|
|
var curve = api.getDefaultCubic();
|
|
api.setCurve(curve);
|
|
},
|
|
|
|
/**
|
|
* Draw our curve, and show its computed length:
|
|
*/
|
|
drawCurve: function(api, curve) {
|
|
api.reset();
|
|
api.drawSkeleton(curve);
|
|
api.drawCurve(curve);
|
|
var len = curve.length();
|
|
api.setFill("black");
|
|
api.text("Curve length: "+len+" pixels", {x:10, y:15});
|
|
}
|
|
};
|