1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-17 06:04:31 +02:00
Files
BezierInfo-2/docs/chapters/pointvectors/pointvectors.js
2020-11-27 11:52:55 -08:00

97 lines
2.3 KiB
JavaScript

let curve;
setup() {
const type = this.type = this.parameters.type ?? `quadratic`;
if (type === `quadratic`) {
curve = Bezier.defaultQuadratic(this);
} else {
curve = Bezier.defaultCubic(this);
// to show this off for Cubic curves we need to change some of the points
curve.points[0].x = 30;
curve.points[0].y = 230;
curve.points[1].x = 75;
curve.points[1].y = 50;
}
setMovable(curve.points);
}
draw() {
clear();
curve.drawSkeleton();
const pts = curve.points;
const f = 15;
for(let i=0; i<=10; i++) {
let t = i/10.0;
let p = curve.get(t);
let d = this.type === `quadratic` ? this.getQuadraticDerivative(t, pts) : this.getCubicDerivative(t, pts);
this.drawVectors(f, t, p, d);
}
curve.drawPoints();
}
drawVectors(f, t, p, d) {
let m = sqrt(d.x*d.x + d.y*d.y);
d = { x: d.x/m, y: d.y/m };
let n = this.getNormal(t, d);
// draw the tangent vector
setStroke(`blue`);
line(p.x, p.y, p.x + d.x*f, p.y + d.y*f);
// draw the normal vector
setStroke(`red`);
line(p.x, p.y, p.x + n.x*f, p.y + n.y*f);
// and the point these are for
setStroke(`black`);
circle(p.x, p.y, 3);
}
getQuadraticDerivative(t, points) {
let mt = (1 - t), d = [
{
x: 2 * (points[1].x - points[0].x),
y: 2 * (points[1].y - points[0].y)
},
{
x: 2 * (points[2].x - points[1].x),
y: 2 * (points[2].y - points[1].y)
}
];
return {
x: mt * d[0].x + t * d[1].x,
y: mt * d[0].y + t * d[1].y
};
}
getCubicDerivative(t, points) {
let mt = (1 - t), a = mt*mt, b = 2*mt*t, c = t*t, d = [
{
x: 3 * (points[1].x - points[0].x),
y: 3 * (points[1].y - points[0].y)
},
{
x: 3 * (points[2].x - points[1].x),
y: 3 * (points[2].y - points[1].y)
},
{
x: 3 * (points[3].x - points[2].x),
y: 3 * (points[3].y - points[2].y)
}
];
return {
x: a * d[0].x + b * d[1].x + c * d[2].x,
y: a * d[0].y + b * d[1].y + c * d[2].y
};
}
getNormal(t, d) {
const q = sqrt(d.x * d.x + d.y * d.y);
return { x: -d.y / q, y: d.x / q };
}