mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-17 22:11:38 +02:00
160 lines
4.1 KiB
JavaScript
160 lines
4.1 KiB
JavaScript
import vec from "./vector-lib.js";
|
||
import { project, projectXY, projectXZ, projectYZ } from "./projection.js";
|
||
|
||
let d, cube;
|
||
|
||
setup() {
|
||
// step 1: let's define a cube to show our curve "in"
|
||
d = this.width/2 + 25;
|
||
cube = [
|
||
{x:0, y:0, z:0},
|
||
{x:d, y:0, z:0},
|
||
{x:d, y:d, z:0},
|
||
{x:0, y:d, z:0},
|
||
{x:0, y:0, z:d},
|
||
{x:d, y:0, z:d},
|
||
{x:d, y:d, z:d},
|
||
{x:0, y:d, z:d}
|
||
].map(p => project(p));
|
||
|
||
// step 2: let's also define our 3D curve
|
||
const points = this.points = [
|
||
{x:120, y: 0, z: 0},
|
||
{x:120, y:220, z: 0},
|
||
{x: 30, y: 0, z: 30},
|
||
{x: 0, y: 0, z:200}
|
||
];
|
||
|
||
// step 3: to draw this curve to the screen, we need to project the
|
||
// coordinates from 3D to 2D, for which we use what is called
|
||
// a "cabinet projection".
|
||
this.curve = new Bezier(this, points.map(p => project(p)));
|
||
|
||
// We also construct handy projections on just the X/Y, X/Z, and Y/Z planes.
|
||
this.cxy = new Bezier(this, points.map(p => projectXY(p)));
|
||
this.cxz = new Bezier(this, points.map(p => projectXZ(p)));
|
||
this.cyz = new Bezier(this, points.map(p => projectYZ(p)));
|
||
|
||
setSlider(`.slide-control`, `position`, 0);
|
||
}
|
||
|
||
draw() {
|
||
clear();
|
||
translate(this.width/2 - 60, this.height/2 + 75);
|
||
const curve = this.curve;
|
||
|
||
// Draw all our planar curve projections first
|
||
this.drawCurveProjections();
|
||
|
||
// And the "back" side of our cube
|
||
this.drawCubeBack();
|
||
|
||
// Then, we draw the real curve
|
||
curve.drawCurve(`grey`);
|
||
setStroke(`grey`)
|
||
line(curve.points[0].x, curve.points[0].y, curve.points[1].x, curve.points[1].y);
|
||
line(curve.points[2].x, curve.points[2].y, curve.points[3].x, curve.points[3].y);
|
||
curve.points.forEach(p => circle(p.x, p.y, 2));
|
||
|
||
// And the current point on that curve
|
||
this.drawPoint(this.position);
|
||
|
||
// and then we can add the "front" of the cube.
|
||
this.drawCubeFront();
|
||
}
|
||
|
||
drawCurveProjections() {
|
||
this.cxy.drawCurve(`#EEF`);
|
||
this.cxz.drawCurve(`#EEF`);
|
||
this.cyz.drawCurve(`#EEF`);
|
||
}
|
||
|
||
drawCubeBack() {
|
||
const c = cube;
|
||
|
||
// x axis
|
||
setStroke(`blue`);
|
||
line(c[0].x, c[0].y, c[1].x, c[1].y);
|
||
|
||
// y axis
|
||
setStroke(`red`);
|
||
line(c[3].x, c[3].y, c[0].x, c[0].y);
|
||
|
||
// z axis
|
||
setStroke(`green`);
|
||
line(c[0].x, c[0].y, c[4].x, c[4].y);
|
||
}
|
||
|
||
drawPoint(t) {
|
||
const {o, r, n, dt} = this.getFrenetVectors(t, this.points);
|
||
|
||
setStroke(`red`);
|
||
setFill(`red`);
|
||
const p = project(o);
|
||
circle(p.x, p.y, 3);
|
||
|
||
// Draw our axis of rotation,
|
||
this.drawVector(p, vec.normalize(r), 40, `blue`, `r`);
|
||
|
||
// our normal,
|
||
this.drawVector(p, vec.normalize(n), 40, `red`, `n`);
|
||
|
||
// and our derivative.
|
||
this.drawVector(p, vec.normalize(dt), 40, `green`, `t′`);
|
||
|
||
setFill(`black`)
|
||
text(`t = ${t.toFixed(2)}`, p.x+10, p.y+15);
|
||
}
|
||
|
||
drawCubeFront() {
|
||
const c = cube;
|
||
setStroke("lightgrey");
|
||
line(c[1].x, c[1].y, c[2].x, c[2].y);
|
||
line(c[2].x, c[2].y, c[3].x, c[3].y);
|
||
line(c[1].x, c[1].y, c[5].x, c[5].y);
|
||
line(c[2].x, c[2].y, c[6].x, c[6].y);
|
||
line(c[3].x, c[3].y, c[7].x, c[7].y);
|
||
line(c[4].x, c[4].y, c[5].x, c[5].y);
|
||
line(c[5].x, c[5].y, c[6].x, c[6].y);
|
||
line(c[6].x, c[6].y, c[7].x, c[7].y);
|
||
line(c[7].x, c[7].y, c[4].x, c[4].y);
|
||
}
|
||
|
||
getFrenetVectors(t, originalPoints) {
|
||
// The frenet vectors are based on the (unprojected) curve,
|
||
// and its derivative curve.
|
||
const curve = new Bezier(this, originalPoints);
|
||
const d1curve = new Bezier(this, curve.dpoints[0]);
|
||
const o = curve.get(t);
|
||
const dt = d1curve.get(t);
|
||
const ddt = d1curve.derivative(t);
|
||
// project the derivative into the future
|
||
const f = vec.plus(dt, ddt);
|
||
// and then find the axis of rotation wrt the plane
|
||
// spanned by the currented and projected derivative
|
||
const r = vec.cross(f, dt);
|
||
// after which the normal is found by rotating the
|
||
// tangent in that plane.
|
||
const n = vec.normalize(vec.cross(r, dt));
|
||
return { o, dt, r, n };
|
||
}
|
||
|
||
drawVector(from, vec, length, color, label) {
|
||
setStroke(color);
|
||
setFill(`black`);
|
||
|
||
let pt = project({
|
||
x: length * vec.x,
|
||
y: length * vec.y,
|
||
z: length * vec.z
|
||
});
|
||
line(from.x, from.y, from.x + pt.x, from.y + pt.y);
|
||
|
||
let txt = project({
|
||
x: (length+15) * vec.x,
|
||
y: (length+15) * vec.y,
|
||
z: (length+15) * vec.z
|
||
});
|
||
text(label, from.x + txt.x, from.y + txt.y);
|
||
}
|