1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-16 13:44:31 +02:00
Files
BezierInfo-2/docs/chapters/tracing/tracing.js
2020-09-19 22:51:19 -07:00

106 lines
2.2 KiB
JavaScript

let curve;
setup(api) {
curve = Bezier.defaultCubic(this);
setMovable(curve.points);
setSlider(`.slide-control`, `steps`, 8);
}
draw() {
clear();
curve.drawSkeleton();
curve.drawCurve();
curve.drawPoints();
let w = this.width/3;
let h = this.height;
let len = curve.length();
setStroke(`black`);
translate(w,0);
line(0, 0, 0, h);
scale(0.85);
translate(30,30);
// This first part is the same as the previous graphic
setFill(`black`);
drawAxes("t", 0, 1, "d", 0, len|0, w, h);
let LUT = this.plotDistanceFunction(w, h, len);
// but this part is new.
this.drawPlotIntervals(w, h, LUT);
resetTransform();
translate(2*w,0);
line(0, 0, 0, h);
this.drawCurveIntervals(LUT);
}
plotDistanceFunction(w, h, len) {
noFill();
let LUT = curve.getLUT(this.steps * 10);
let d = LUT[0].d = 0;
LUT[0].t = 0;
start();
vertex(0,0);
for(let i=1, e=LUT.length-1, p1, p2; i<=e; i++) {
p1 = LUT[i-1];
p2 = LUT[i];
d += dist(p1.x, p1.y, p2.x, p2.y);
vertex(
map(i, 0, e, 0, w),
map(d, 0, len, 0, h)
);
p2.d = d;
p2.t = i/e;
}
end();
return LUT;
}
drawPlotIntervals(w, h, LUT) {
noFill();
setStroke(`grey`);
let dlen = LUT.slice(-1)[0].d;
let pos = 0;
for(let i=0, e=this.steps; i<=e; i++) {
// get our closest known coordinate
let targetDistance = i/e * dlen;
while(LUT[pos].d < targetDistance) pos++;
// then we can either refine this to get a more exact
// associated `t`, but really, there's no reason to if
// we care about integer coordinates...
let l = LUT[pos];
let x = map(pos, 0, LUT.length-1, 0, w);
let y = map(l.d, 0, dlen, 0, h);
line(0,y,x,y);
line(x,0,x,y);
}
}
drawCurveIntervals(LUT) {
noFill();
setStroke(`red`);
let dlen = LUT.slice(-1)[0].d;
let lastpos = 0, pos = 0;
for(let i=0, e=this.steps; i<=e; i++) {
let targetDistance = i/e * dlen;
while(LUT[pos].d < targetDistance) pos++;
setStroke(randomColor() );
start();
for(let j=lastpos; j<=pos; j++) vertex(LUT[j].x, LUT[j].y);
lastpos = pos;
end();
let p = curve.get(LUT[pos].t);
setStroke(`black`);
circle(p.x, p.y, 1);
}
}