1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-29 02:59:58 +02:00
Files
BezierInfo-2/docs/js/graphics-element/api/util/fit-curve-to-points.js
2020-11-06 11:32:44 -08:00

87 lines
2.2 KiB
JavaScript

import { Matrix } from "../types/matrix.js";
import binomial from "./binomial.js";
/*
We can form any basis matrix using a generative approach:
- it's an M = (n x n) matrix
- it's a lower triangular matrix: all the entries above the main diagonal are zero
- the main diagonal consists of the binomial coefficients for n
- all entries are symmetric about the antidiagonal.
What's more, if we number rows and columns starting at 0, then
the value at position M[r,c], with row=r and column=c, can be
expressed as:
M[r,c] = (r choose c) * M[r,r] * S,
where S = 1 if r+c is even, or -1 otherwise
That is: the values in column c are directly computed off of the
binomial coefficients on the main diagonal, through multiplication
by a binomial based on matrix position, with the sign of the value
also determined by matrix position. This is actually very easy to
write out in code:
*/
function generateBasisMatrix(n) {
const M = new Matrix(n, n);
// populate the main diagonal
var k = n - 1;
for (let i = 0; i < n; i++) {
M.set(i, i, binomial(k, i));
}
// compute the remaining values
for (var c = 0, r; c < n; c++) {
for (r = c + 1; r < n; r++) {
var sign = (r + c) % 2 === 0 ? 1 : -1;
var value = binomial(r, c) * M.get(r, r);
M.set(r, c, sign * value);
}
}
return M;
}
/**
* ...docs go here...
*/
function formTMatrix(row, n) {
let data = [];
for (var i = 0; i < n; i++) {
data.push(row.map((v) => v ** i));
}
const Tt = new Matrix(n, n, data);
const T = Tt.transpose();
return { T, Tt };
}
/**
* ...docs go here...
*/
function computeBestFit(points, n, M, S) {
var tm = formTMatrix(S, n),
T = tm.T,
Tt = tm.Tt,
M1 = M.invert(),
TtT1 = Tt.multiply(T).invert(),
step1 = TtT1.multiply(Tt),
step2 = M1.multiply(step1),
X = new Matrix(points.map((v) => [v.x])),
Cx = step2.multiply(X),
Y = new Matrix(points.map((v) => [v.y])),
Cy = step2.multiply(Y);
return { x: Cx.data, y: Cy.data };
}
/**
* ...docs go here...
*/
function fitCurveToPoints(points, tvalues) {
const n = points.length;
return computeBestFit(points, n, generateBasisMatrix(n), tvalues);
}
export { fitCurveToPoints };