mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-29 02:59:58 +02:00
873 lines
23 KiB
JavaScript
873 lines
23 KiB
JavaScript
import { Bezier } from "./bezier.js";
|
|
|
|
// math-inlining.
|
|
const { abs, cos, sin, acos, atan2, sqrt, pow } = Math;
|
|
|
|
// cube root function yielding real roots
|
|
function crt(v) {
|
|
return v < 0 ? -pow(-v, 1 / 3) : pow(v, 1 / 3);
|
|
}
|
|
|
|
// trig constants
|
|
const pi = Math.PI,
|
|
tau = 2 * pi,
|
|
quart = pi / 2,
|
|
// float precision significant decimal
|
|
epsilon = 0.000001,
|
|
// extremas used in bbox calculation and similar algorithms
|
|
nMax = Number.MAX_SAFE_INTEGER || 9007199254740991,
|
|
nMin = Number.MIN_SAFE_INTEGER || -9007199254740991,
|
|
// a zero coordinate, which is surprisingly useful
|
|
ZERO = { x: 0, y: 0, z: 0 };
|
|
|
|
// Bezier utility functions
|
|
const utils = {
|
|
// Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x))
|
|
Tvalues: [
|
|
-0.0640568928626056260850430826247450385909,
|
|
0.0640568928626056260850430826247450385909,
|
|
-0.1911188674736163091586398207570696318404,
|
|
0.1911188674736163091586398207570696318404,
|
|
-0.3150426796961633743867932913198102407864,
|
|
0.3150426796961633743867932913198102407864,
|
|
-0.4337935076260451384870842319133497124524,
|
|
0.4337935076260451384870842319133497124524,
|
|
-0.5454214713888395356583756172183723700107,
|
|
0.5454214713888395356583756172183723700107,
|
|
-0.6480936519369755692524957869107476266696,
|
|
0.6480936519369755692524957869107476266696,
|
|
-0.7401241915785543642438281030999784255232,
|
|
0.7401241915785543642438281030999784255232,
|
|
-0.8200019859739029219539498726697452080761,
|
|
0.8200019859739029219539498726697452080761,
|
|
-0.8864155270044010342131543419821967550873,
|
|
0.8864155270044010342131543419821967550873,
|
|
-0.9382745520027327585236490017087214496548,
|
|
0.9382745520027327585236490017087214496548,
|
|
-0.9747285559713094981983919930081690617411,
|
|
0.9747285559713094981983919930081690617411,
|
|
-0.9951872199970213601799974097007368118745,
|
|
0.9951872199970213601799974097007368118745,
|
|
],
|
|
|
|
// Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article)
|
|
Cvalues: [
|
|
0.1279381953467521569740561652246953718517,
|
|
0.1279381953467521569740561652246953718517,
|
|
0.1258374563468282961213753825111836887264,
|
|
0.1258374563468282961213753825111836887264,
|
|
0.121670472927803391204463153476262425607,
|
|
0.121670472927803391204463153476262425607,
|
|
0.1155056680537256013533444839067835598622,
|
|
0.1155056680537256013533444839067835598622,
|
|
0.1074442701159656347825773424466062227946,
|
|
0.1074442701159656347825773424466062227946,
|
|
0.0976186521041138882698806644642471544279,
|
|
0.0976186521041138882698806644642471544279,
|
|
0.086190161531953275917185202983742667185,
|
|
0.086190161531953275917185202983742667185,
|
|
0.0733464814110803057340336152531165181193,
|
|
0.0733464814110803057340336152531165181193,
|
|
0.0592985849154367807463677585001085845412,
|
|
0.0592985849154367807463677585001085845412,
|
|
0.0442774388174198061686027482113382288593,
|
|
0.0442774388174198061686027482113382288593,
|
|
0.0285313886289336631813078159518782864491,
|
|
0.0285313886289336631813078159518782864491,
|
|
0.0123412297999871995468056670700372915759,
|
|
0.0123412297999871995468056670700372915759,
|
|
],
|
|
|
|
arcfn: function (t, derivativeFn) {
|
|
const d = derivativeFn(t);
|
|
let l = d.x * d.x + d.y * d.y;
|
|
if (typeof d.z !== "undefined") {
|
|
l += d.z * d.z;
|
|
}
|
|
return sqrt(l);
|
|
},
|
|
|
|
compute: function (t, points, _3d) {
|
|
// shortcuts
|
|
if (t === 0) {
|
|
points[0].t = 0;
|
|
return points[0];
|
|
}
|
|
|
|
const order = points.length - 1;
|
|
|
|
if (t === 1) {
|
|
points[order].t = 1;
|
|
return points[order];
|
|
}
|
|
|
|
const mt = 1 - t;
|
|
let p = points;
|
|
|
|
// constant?
|
|
if (order === 0) {
|
|
points[0].t = t;
|
|
return points[0];
|
|
}
|
|
|
|
// linear?
|
|
if (order === 1) {
|
|
const ret = {
|
|
x: mt * p[0].x + t * p[1].x,
|
|
y: mt * p[0].y + t * p[1].y,
|
|
t: t,
|
|
};
|
|
if (_3d) {
|
|
ret.z = mt * p[0].z + t * p[1].z;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// quadratic/cubic curve?
|
|
if (order < 4) {
|
|
let mt2 = mt * mt,
|
|
t2 = t * t,
|
|
a,
|
|
b,
|
|
c,
|
|
d = 0;
|
|
if (order === 2) {
|
|
p = [p[0], p[1], p[2], ZERO];
|
|
a = mt2;
|
|
b = mt * t * 2;
|
|
c = t2;
|
|
} else if (order === 3) {
|
|
a = mt2 * mt;
|
|
b = mt2 * t * 3;
|
|
c = mt * t2 * 3;
|
|
d = t * t2;
|
|
}
|
|
const ret = {
|
|
x: a * p[0].x + b * p[1].x + c * p[2].x + d * p[3].x,
|
|
y: a * p[0].y + b * p[1].y + c * p[2].y + d * p[3].y,
|
|
t: t,
|
|
};
|
|
if (_3d) {
|
|
ret.z = a * p[0].z + b * p[1].z + c * p[2].z + d * p[3].z;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// higher order curves: use de Casteljau's computation
|
|
const dCpts = JSON.parse(JSON.stringify(points));
|
|
while (dCpts.length > 1) {
|
|
for (let i = 0; i < dCpts.length - 1; i++) {
|
|
dCpts[i] = {
|
|
x: dCpts[i].x + (dCpts[i + 1].x - dCpts[i].x) * t,
|
|
y: dCpts[i].y + (dCpts[i + 1].y - dCpts[i].y) * t,
|
|
};
|
|
if (typeof dCpts[i].z !== "undefined") {
|
|
dCpts[i] = dCpts[i].z + (dCpts[i + 1].z - dCpts[i].z) * t;
|
|
}
|
|
}
|
|
dCpts.splice(dCpts.length - 1, 1);
|
|
}
|
|
dCpts[0].t = t;
|
|
return dCpts[0];
|
|
},
|
|
|
|
computeWithRatios: function (t, points, ratios, _3d) {
|
|
const mt = 1 - t,
|
|
r = ratios,
|
|
p = points;
|
|
|
|
let f1 = r[0],
|
|
f2 = r[1],
|
|
f3 = r[2],
|
|
f4 = r[3],
|
|
d;
|
|
|
|
// spec for linear
|
|
f1 *= mt;
|
|
f2 *= t;
|
|
|
|
if (p.length === 2) {
|
|
d = f1 + f2;
|
|
return {
|
|
x: (f1 * p[0].x + f2 * p[1].x) / d,
|
|
y: (f1 * p[0].y + f2 * p[1].y) / d,
|
|
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z) / d,
|
|
t: t,
|
|
};
|
|
}
|
|
|
|
// upgrade to quadratic
|
|
f1 *= mt;
|
|
f2 *= 2 * mt;
|
|
f3 *= t * t;
|
|
|
|
if (p.length === 3) {
|
|
d = f1 + f2 + f3;
|
|
return {
|
|
x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x) / d,
|
|
y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y) / d,
|
|
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z) / d,
|
|
t: t,
|
|
};
|
|
}
|
|
|
|
// upgrade to cubic
|
|
f1 *= mt;
|
|
f2 *= 1.5 * mt;
|
|
f3 *= 3 * mt;
|
|
f4 *= t * t * t;
|
|
|
|
if (p.length === 4) {
|
|
d = f1 + f2 + f3 + f4;
|
|
return {
|
|
x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x + f4 * p[3].x) / d,
|
|
y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y + f4 * p[3].y) / d,
|
|
z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z + f4 * p[3].z) / d,
|
|
t: t,
|
|
};
|
|
}
|
|
},
|
|
|
|
derive: function (points, _3d) {
|
|
const dpoints = [];
|
|
for (let p = points, d = p.length, c = d - 1; d > 1; d--, c--) {
|
|
const list = [];
|
|
for (let j = 0, dpt; j < c; j++) {
|
|
dpt = {
|
|
x: c * (p[j + 1].x - p[j].x),
|
|
y: c * (p[j + 1].y - p[j].y),
|
|
};
|
|
if (_3d) {
|
|
dpt.z = c * (p[j + 1].z - p[j].z);
|
|
}
|
|
list.push(dpt);
|
|
}
|
|
dpoints.push(list);
|
|
p = list;
|
|
}
|
|
return dpoints;
|
|
},
|
|
|
|
between: function (v, m, M) {
|
|
return (m <= v && v <= M) || utils.approximately(v, m) || utils.approximately(v, M);
|
|
},
|
|
|
|
approximately: function (a, b, precision) {
|
|
return abs(a - b) <= (precision || epsilon);
|
|
},
|
|
|
|
length: function (derivativeFn) {
|
|
const z = 0.5,
|
|
len = utils.Tvalues.length;
|
|
|
|
let sum = 0;
|
|
|
|
for (let i = 0, t; i < len; i++) {
|
|
t = z * utils.Tvalues[i] + z;
|
|
sum += utils.Cvalues[i] * utils.arcfn(t, derivativeFn);
|
|
}
|
|
return z * sum;
|
|
},
|
|
|
|
map: function (v, ds, de, ts, te) {
|
|
const d1 = de - ds,
|
|
d2 = te - ts,
|
|
v2 = v - ds,
|
|
r = v2 / d1;
|
|
return ts + d2 * r;
|
|
},
|
|
|
|
lerp: function (r, v1, v2) {
|
|
const ret = {
|
|
x: v1.x + r * (v2.x - v1.x),
|
|
y: v1.y + r * (v2.y - v1.y),
|
|
};
|
|
if (!!v1.z && !!v2.z) {
|
|
ret.z = v1.z + r * (v2.z - v1.z);
|
|
}
|
|
return ret;
|
|
},
|
|
|
|
pointToString: function (p) {
|
|
let s = p.x + "/" + p.y;
|
|
if (typeof p.z !== "undefined") {
|
|
s += "/" + p.z;
|
|
}
|
|
return s;
|
|
},
|
|
|
|
pointsToString: function (points) {
|
|
return "[" + points.map(utils.pointToString).join(", ") + "]";
|
|
},
|
|
|
|
copy: function (obj) {
|
|
return JSON.parse(JSON.stringify(obj));
|
|
},
|
|
|
|
angle: function (o, v1, v2) {
|
|
const dx1 = v1.x - o.x,
|
|
dy1 = v1.y - o.y,
|
|
dx2 = v2.x - o.x,
|
|
dy2 = v2.y - o.y,
|
|
cross = dx1 * dy2 - dy1 * dx2,
|
|
dot = dx1 * dx2 + dy1 * dy2;
|
|
return atan2(cross, dot);
|
|
},
|
|
|
|
// round as string, to avoid rounding errors
|
|
round: function (v, d) {
|
|
const s = "" + v;
|
|
const pos = s.indexOf(".");
|
|
return parseFloat(s.substring(0, pos + 1 + d));
|
|
},
|
|
|
|
dist: function (p1, p2) {
|
|
const dx = p1.x - p2.x,
|
|
dy = p1.y - p2.y;
|
|
return sqrt(dx * dx + dy * dy);
|
|
},
|
|
|
|
closest: function (LUT, point) {
|
|
let mdist = pow(2, 63),
|
|
mpos,
|
|
d;
|
|
LUT.forEach(function (p, idx) {
|
|
d = utils.dist(point, p);
|
|
if (d < mdist) {
|
|
mdist = d;
|
|
mpos = idx;
|
|
}
|
|
});
|
|
return { mdist: mdist, mpos: mpos };
|
|
},
|
|
|
|
abcratio: function (t, n) {
|
|
// see ratio(t) note on http://pomax.github.io/bezierinfo/#abc
|
|
if (n !== 2 && n !== 3) {
|
|
return false;
|
|
}
|
|
if (typeof t === "undefined") {
|
|
t = 0.5;
|
|
} else if (t === 0 || t === 1) {
|
|
return t;
|
|
}
|
|
const bottom = pow(t, n) + pow(1 - t, n),
|
|
top = bottom - 1;
|
|
return abs(top / bottom);
|
|
},
|
|
|
|
projectionratio: function (t, n) {
|
|
// see u(t) note on http://pomax.github.io/bezierinfo/#abc
|
|
if (n !== 2 && n !== 3) {
|
|
return false;
|
|
}
|
|
if (typeof t === "undefined") {
|
|
t = 0.5;
|
|
} else if (t === 0 || t === 1) {
|
|
return t;
|
|
}
|
|
const top = pow(1 - t, n),
|
|
bottom = pow(t, n) + top;
|
|
return top / bottom;
|
|
},
|
|
|
|
lli8: function (x1, y1, x2, y2, x3, y3, x4, y4) {
|
|
const nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4),
|
|
ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4),
|
|
d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
|
|
if (d == 0) {
|
|
return false;
|
|
}
|
|
return { x: nx / d, y: ny / d };
|
|
},
|
|
|
|
lli4: function (p1, p2, p3, p4) {
|
|
const x1 = p1.x,
|
|
y1 = p1.y,
|
|
x2 = p2.x,
|
|
y2 = p2.y,
|
|
x3 = p3.x,
|
|
y3 = p3.y,
|
|
x4 = p4.x,
|
|
y4 = p4.y;
|
|
return utils.lli8(x1, y1, x2, y2, x3, y3, x4, y4);
|
|
},
|
|
|
|
lli: function (v1, v2) {
|
|
return utils.lli4(v1, v1.c, v2, v2.c);
|
|
},
|
|
|
|
makeline: function (p1, p2) {
|
|
const x1 = p1.x,
|
|
y1 = p1.y,
|
|
x2 = p2.x,
|
|
y2 = p2.y,
|
|
dx = (x2 - x1) / 3,
|
|
dy = (y2 - y1) / 3;
|
|
return new Bezier(x1, y1, x1 + dx, y1 + dy, x1 + 2 * dx, y1 + 2 * dy, x2, y2);
|
|
},
|
|
|
|
findbbox: function (sections) {
|
|
let mx = nMax,
|
|
my = nMax,
|
|
MX = nMin,
|
|
MY = nMin;
|
|
sections.forEach(function (s) {
|
|
const bbox = s.bbox();
|
|
if (mx > bbox.x.min) mx = bbox.x.min;
|
|
if (my > bbox.y.min) my = bbox.y.min;
|
|
if (MX < bbox.x.max) MX = bbox.x.max;
|
|
if (MY < bbox.y.max) MY = bbox.y.max;
|
|
});
|
|
return {
|
|
x: { min: mx, mid: (mx + MX) / 2, max: MX, size: MX - mx },
|
|
y: { min: my, mid: (my + MY) / 2, max: MY, size: MY - my },
|
|
};
|
|
},
|
|
|
|
shapeintersections: function (s1, bbox1, s2, bbox2, curveIntersectionThreshold) {
|
|
if (!utils.bboxoverlap(bbox1, bbox2)) return [];
|
|
const intersections = [];
|
|
const a1 = [s1.startcap, s1.forward, s1.back, s1.endcap];
|
|
const a2 = [s2.startcap, s2.forward, s2.back, s2.endcap];
|
|
a1.forEach(function (l1) {
|
|
if (l1.virtual) return;
|
|
a2.forEach(function (l2) {
|
|
if (l2.virtual) return;
|
|
const iss = l1.intersects(l2, curveIntersectionThreshold);
|
|
if (iss.length > 0) {
|
|
iss.c1 = l1;
|
|
iss.c2 = l2;
|
|
iss.s1 = s1;
|
|
iss.s2 = s2;
|
|
intersections.push(iss);
|
|
}
|
|
});
|
|
});
|
|
return intersections;
|
|
},
|
|
|
|
makeshape: function (forward, back, curveIntersectionThreshold) {
|
|
const bpl = back.points.length;
|
|
const fpl = forward.points.length;
|
|
const start = utils.makeline(back.points[bpl - 1], forward.points[0]);
|
|
const end = utils.makeline(forward.points[fpl - 1], back.points[0]);
|
|
const shape = {
|
|
startcap: start,
|
|
forward: forward,
|
|
back: back,
|
|
endcap: end,
|
|
bbox: utils.findbbox([start, forward, back, end]),
|
|
};
|
|
shape.intersections = function (s2) {
|
|
return utils.shapeintersections(shape, shape.bbox, s2, s2.bbox, curveIntersectionThreshold);
|
|
};
|
|
return shape;
|
|
},
|
|
|
|
getminmax: function (curve, d, list) {
|
|
if (!list) return { min: 0, max: 0 };
|
|
let min = nMax,
|
|
max = nMin,
|
|
t,
|
|
c;
|
|
if (list.indexOf(0) === -1) {
|
|
list = [0].concat(list);
|
|
}
|
|
if (list.indexOf(1) === -1) {
|
|
list.push(1);
|
|
}
|
|
for (let i = 0, len = list.length; i < len; i++) {
|
|
t = list[i];
|
|
c = curve.get(t);
|
|
if (c[d] < min) {
|
|
min = c[d];
|
|
}
|
|
if (c[d] > max) {
|
|
max = c[d];
|
|
}
|
|
}
|
|
return { min: min, mid: (min + max) / 2, max: max, size: max - min };
|
|
},
|
|
|
|
align: function (points, line) {
|
|
const tx = line.p1.x,
|
|
ty = line.p1.y,
|
|
a = -atan2(line.p2.y - ty, line.p2.x - tx),
|
|
d = function (v) {
|
|
return {
|
|
x: (v.x - tx) * cos(a) - (v.y - ty) * sin(a),
|
|
y: (v.x - tx) * sin(a) + (v.y - ty) * cos(a),
|
|
};
|
|
};
|
|
return points.map(d);
|
|
},
|
|
|
|
roots: function (points, line) {
|
|
line = line || { p1: { x: 0, y: 0 }, p2: { x: 1, y: 0 } };
|
|
|
|
const order = points.length - 1;
|
|
const aligned = utils.align(points, line);
|
|
const reduce = function (t) {
|
|
return 0 <= t && t <= 1;
|
|
};
|
|
|
|
if (order === 2) {
|
|
const a = aligned[0].y,
|
|
b = aligned[1].y,
|
|
c = aligned[2].y,
|
|
d = a - 2 * b + c;
|
|
if (d !== 0) {
|
|
const m1 = -sqrt(b * b - a * c),
|
|
m2 = -a + b,
|
|
v1 = -(m1 + m2) / d,
|
|
v2 = -(-m1 + m2) / d;
|
|
return [v1, v2].filter(reduce);
|
|
} else if (b !== c && d === 0) {
|
|
return [(2 * b - c) / (2 * b - 2 * c)].filter(reduce);
|
|
}
|
|
return [];
|
|
}
|
|
|
|
// see http://www.trans4mind.com/personal_development/mathematics/polynomials/cubicAlgebra.htm
|
|
const pa = aligned[0].y,
|
|
pb = aligned[1].y,
|
|
pc = aligned[2].y,
|
|
pd = aligned[3].y;
|
|
|
|
let d = -pa + 3 * pb - 3 * pc + pd,
|
|
a = 3 * pa - 6 * pb + 3 * pc,
|
|
b = -3 * pa + 3 * pb,
|
|
c = pa;
|
|
|
|
if (utils.approximately(d, 0)) {
|
|
// this is not a cubic curve.
|
|
if (utils.approximately(a, 0)) {
|
|
// in fact, this is not a quadratic curve either.
|
|
if (utils.approximately(b, 0)) {
|
|
// in fact in fact, there are no solutions.
|
|
return [];
|
|
}
|
|
// linear solution:
|
|
return [-c / b].filter(reduce);
|
|
}
|
|
// quadratic solution:
|
|
const q = sqrt(b * b - 4 * a * c),
|
|
a2 = 2 * a;
|
|
return [(q - b) / a2, (-b - q) / a2].filter(reduce);
|
|
}
|
|
|
|
// at this point, we know we need a cubic solution:
|
|
|
|
a /= d;
|
|
b /= d;
|
|
c /= d;
|
|
|
|
const p = (3 * b - a * a) / 3,
|
|
p3 = p / 3,
|
|
q = (2 * a * a * a - 9 * a * b + 27 * c) / 27,
|
|
q2 = q / 2,
|
|
discriminant = q2 * q2 + p3 * p3 * p3;
|
|
|
|
let u1, v1, x1, x2, x3;
|
|
if (discriminant < 0) {
|
|
const mp3 = -p / 3,
|
|
mp33 = mp3 * mp3 * mp3,
|
|
r = sqrt(mp33),
|
|
t = -q / (2 * r),
|
|
cosphi = t < -1 ? -1 : t > 1 ? 1 : t,
|
|
phi = acos(cosphi),
|
|
crtr = crt(r),
|
|
t1 = 2 * crtr;
|
|
x1 = t1 * cos(phi / 3) - a / 3;
|
|
x2 = t1 * cos((phi + tau) / 3) - a / 3;
|
|
x3 = t1 * cos((phi + 2 * tau) / 3) - a / 3;
|
|
return [x1, x2, x3].filter(reduce);
|
|
} else if (discriminant === 0) {
|
|
u1 = q2 < 0 ? crt(-q2) : -crt(q2);
|
|
x1 = 2 * u1 - a / 3;
|
|
x2 = -u1 - a / 3;
|
|
return [x1, x2].filter(reduce);
|
|
} else {
|
|
const sd = sqrt(discriminant);
|
|
u1 = crt(-q2 + sd);
|
|
v1 = crt(q2 + sd);
|
|
return [u1 - v1 - a / 3].filter(reduce);
|
|
}
|
|
},
|
|
|
|
droots: function (p) {
|
|
// quadratic roots are easy
|
|
if (p.length === 3) {
|
|
const a = p[0],
|
|
b = p[1],
|
|
c = p[2],
|
|
d = a - 2 * b + c;
|
|
if (d !== 0) {
|
|
const m1 = -sqrt(b * b - a * c),
|
|
m2 = -a + b,
|
|
v1 = -(m1 + m2) / d,
|
|
v2 = -(-m1 + m2) / d;
|
|
return [v1, v2];
|
|
} else if (b !== c && d === 0) {
|
|
return [(2 * b - c) / (2 * (b - c))];
|
|
}
|
|
return [];
|
|
}
|
|
|
|
// linear roots are even easier
|
|
if (p.length === 2) {
|
|
const a = p[0],
|
|
b = p[1];
|
|
if (a !== b) {
|
|
return [a / (a - b)];
|
|
}
|
|
return [];
|
|
}
|
|
|
|
return [];
|
|
},
|
|
|
|
curvature: function (t, d1, d2, _3d, kOnly) {
|
|
let num,
|
|
dnm,
|
|
adk,
|
|
dk,
|
|
k = 0,
|
|
r = 0;
|
|
|
|
//
|
|
// We're using the following formula for curvature:
|
|
//
|
|
// x'y" - y'x"
|
|
// k(t) = ------------------
|
|
// (x'² + y'²)^(3/2)
|
|
//
|
|
// from https://en.wikipedia.org/wiki/Radius_of_curvature#Definition
|
|
//
|
|
// With it corresponding 3D counterpart:
|
|
//
|
|
// sqrt( (y'z" - y"z')² + (z'x" - z"x')² + (x'y" - x"y')²)
|
|
// k(t) = -------------------------------------------------------
|
|
// (x'² + y'² + z'²)^(3/2)
|
|
//
|
|
|
|
const d = utils.compute(t, d1);
|
|
const dd = utils.compute(t, d2);
|
|
const qdsum = d.x * d.x + d.y * d.y;
|
|
|
|
if (_3d) {
|
|
num = sqrt(pow(d.y * dd.z - dd.y * d.z, 2) + pow(d.z * dd.x - dd.z * d.x, 2) + pow(d.x * dd.y - dd.x * d.y, 2));
|
|
dnm = pow(qdsum + d.z * d.z, 3 / 2);
|
|
} else {
|
|
num = d.x * dd.y - d.y * dd.x;
|
|
dnm = pow(qdsum, 3 / 2);
|
|
}
|
|
|
|
if (num === 0 || dnm === 0) {
|
|
return { k: 0, r: 0 };
|
|
}
|
|
|
|
k = num / dnm;
|
|
r = dnm / num;
|
|
|
|
// We're also computing the derivative of kappa, because
|
|
// there is value in knowing the rate of change for the
|
|
// curvature along the curve. And we're just going to
|
|
// ballpark it based on an epsilon.
|
|
if (!kOnly) {
|
|
// compute k'(t) based on the interval before, and after it,
|
|
// to at least try to not introduce forward/backward pass bias.
|
|
const pk = utils.curvature(t - 0.001, d1, d2, _3d, true).k;
|
|
const nk = utils.curvature(t + 0.001, d1, d2, _3d, true).k;
|
|
dk = (nk - k + (k - pk)) / 2;
|
|
adk = (abs(nk - k) + abs(k - pk)) / 2;
|
|
}
|
|
|
|
return { k: k, r: r, dk: dk, adk: adk };
|
|
},
|
|
|
|
inflections: function (points) {
|
|
if (points.length < 4) return [];
|
|
|
|
// FIXME: TODO: add in inflection abstraction for quartic+ curves?
|
|
|
|
const p = utils.align(points, { p1: points[0], p2: points.slice(-1)[0] }),
|
|
a = p[2].x * p[1].y,
|
|
b = p[3].x * p[1].y,
|
|
c = p[1].x * p[2].y,
|
|
d = p[3].x * p[2].y,
|
|
v1 = 18 * (-3 * a + 2 * b + 3 * c - d),
|
|
v2 = 18 * (3 * a - b - 3 * c),
|
|
v3 = 18 * (c - a);
|
|
|
|
if (utils.approximately(v1, 0)) {
|
|
if (!utils.approximately(v2, 0)) {
|
|
let t = -v3 / v2;
|
|
if (0 <= t && t <= 1) return [t];
|
|
}
|
|
return [];
|
|
}
|
|
|
|
const trm = v2 * v2 - 4 * v1 * v3,
|
|
sq = Math.sqrt(trm),
|
|
d2 = 2 * v1;
|
|
|
|
if (utils.approximately(d2, 0)) return [];
|
|
|
|
return [(sq - v2) / d2, -(v2 + sq) / d2].filter(function (r) {
|
|
return 0 <= r && r <= 1;
|
|
});
|
|
},
|
|
|
|
bboxoverlap: function (b1, b2) {
|
|
const dims = ["x", "y"],
|
|
len = dims.length;
|
|
|
|
for (let i = 0, dim, l, t, d; i < len; i++) {
|
|
dim = dims[i];
|
|
l = b1[dim].mid;
|
|
t = b2[dim].mid;
|
|
d = (b1[dim].size + b2[dim].size) / 2;
|
|
if (abs(l - t) >= d) return false;
|
|
}
|
|
return true;
|
|
},
|
|
|
|
expandbox: function (bbox, _bbox) {
|
|
if (_bbox.x.min < bbox.x.min) {
|
|
bbox.x.min = _bbox.x.min;
|
|
}
|
|
if (_bbox.y.min < bbox.y.min) {
|
|
bbox.y.min = _bbox.y.min;
|
|
}
|
|
if (_bbox.z && _bbox.z.min < bbox.z.min) {
|
|
bbox.z.min = _bbox.z.min;
|
|
}
|
|
if (_bbox.x.max > bbox.x.max) {
|
|
bbox.x.max = _bbox.x.max;
|
|
}
|
|
if (_bbox.y.max > bbox.y.max) {
|
|
bbox.y.max = _bbox.y.max;
|
|
}
|
|
if (_bbox.z && _bbox.z.max > bbox.z.max) {
|
|
bbox.z.max = _bbox.z.max;
|
|
}
|
|
bbox.x.mid = (bbox.x.min + bbox.x.max) / 2;
|
|
bbox.y.mid = (bbox.y.min + bbox.y.max) / 2;
|
|
if (bbox.z) {
|
|
bbox.z.mid = (bbox.z.min + bbox.z.max) / 2;
|
|
}
|
|
bbox.x.size = bbox.x.max - bbox.x.min;
|
|
bbox.y.size = bbox.y.max - bbox.y.min;
|
|
if (bbox.z) {
|
|
bbox.z.size = bbox.z.max - bbox.z.min;
|
|
}
|
|
},
|
|
|
|
pairiteration: function (c1, c2, curveIntersectionThreshold) {
|
|
const c1b = c1.bbox(),
|
|
c2b = c2.bbox(),
|
|
r = 100000,
|
|
threshold = curveIntersectionThreshold || 0.5;
|
|
|
|
if (c1b.x.size + c1b.y.size < threshold && c2b.x.size + c2b.y.size < threshold) {
|
|
return [(((r * (c1._t1 + c1._t2)) / 2) | 0) / r + "/" + (((r * (c2._t1 + c2._t2)) / 2) | 0) / r];
|
|
}
|
|
|
|
let cc1 = c1.split(0.5),
|
|
cc2 = c2.split(0.5),
|
|
pairs = [
|
|
{ left: cc1.left, right: cc2.left },
|
|
{ left: cc1.left, right: cc2.right },
|
|
{ left: cc1.right, right: cc2.right },
|
|
{ left: cc1.right, right: cc2.left },
|
|
];
|
|
|
|
pairs = pairs.filter(function (pair) {
|
|
return utils.bboxoverlap(pair.left.bbox(), pair.right.bbox());
|
|
});
|
|
|
|
let results = [];
|
|
|
|
if (pairs.length === 0) return results;
|
|
|
|
pairs.forEach(function (pair) {
|
|
results = results.concat(utils.pairiteration(pair.left, pair.right, threshold));
|
|
});
|
|
|
|
results = results.filter(function (v, i) {
|
|
return results.indexOf(v) === i;
|
|
});
|
|
|
|
return results;
|
|
},
|
|
|
|
getccenter: function (p1, p2, p3) {
|
|
const dx1 = p2.x - p1.x,
|
|
dy1 = p2.y - p1.y,
|
|
dx2 = p3.x - p2.x,
|
|
dy2 = p3.y - p2.y,
|
|
dx1p = dx1 * cos(quart) - dy1 * sin(quart),
|
|
dy1p = dx1 * sin(quart) + dy1 * cos(quart),
|
|
dx2p = dx2 * cos(quart) - dy2 * sin(quart),
|
|
dy2p = dx2 * sin(quart) + dy2 * cos(quart),
|
|
// chord midpoints
|
|
mx1 = (p1.x + p2.x) / 2,
|
|
my1 = (p1.y + p2.y) / 2,
|
|
mx2 = (p2.x + p3.x) / 2,
|
|
my2 = (p2.y + p3.y) / 2,
|
|
// midpoint offsets
|
|
mx1n = mx1 + dx1p,
|
|
my1n = my1 + dy1p,
|
|
mx2n = mx2 + dx2p,
|
|
my2n = my2 + dy2p,
|
|
// intersection of these lines:
|
|
arc = utils.lli8(mx1, my1, mx1n, my1n, mx2, my2, mx2n, my2n),
|
|
r = utils.dist(arc, p1);
|
|
|
|
// arc start/end values, over mid point:
|
|
let s = atan2(p1.y - arc.y, p1.x - arc.x),
|
|
m = atan2(p2.y - arc.y, p2.x - arc.x),
|
|
e = atan2(p3.y - arc.y, p3.x - arc.x),
|
|
_;
|
|
|
|
// determine arc direction (cw/ccw correction)
|
|
if (s < e) {
|
|
// if s<m<e, arc(s, e)
|
|
// if m<s<e, arc(e, s + tau)
|
|
// if s<e<m, arc(e, s + tau)
|
|
if (s > m || m > e) {
|
|
s += tau;
|
|
}
|
|
if (s > e) {
|
|
_ = e;
|
|
e = s;
|
|
s = _;
|
|
}
|
|
} else {
|
|
// if e<m<s, arc(e, s)
|
|
// if m<e<s, arc(s, e + tau)
|
|
// if e<s<m, arc(s, e + tau)
|
|
if (e < m && m < s) {
|
|
_ = e;
|
|
e = s;
|
|
s = _;
|
|
} else {
|
|
e += tau;
|
|
}
|
|
}
|
|
// assign and done.
|
|
arc.s = s;
|
|
arc.e = e;
|
|
arc.r = r;
|
|
return arc;
|
|
},
|
|
|
|
numberSort: function (a, b) {
|
|
return a - b;
|
|
},
|
|
};
|
|
|
|
export { utils };
|