
CSS Animation 101

Donovan Hutchinson

Abstract

Learn how to add animation to your web projects

Contents

1 Welcome 5
Hello, I’m Donovan . 5
Book structure . 6
Help and support . 6
Need to brush up on your CSS? . 6
Homework . 7

2 Why animate? 8
More than words alone . 8
What is animation on the web? . 8
With great power comes great responsibility 9
Inspiration . 11
Summary . 12
Homework . 12

3 Creative environments 13
In the browser . 13
Local development . 13
In summary . 15
Homework . 15

4 Transitions 16
Transitions . 16
Transition properties . 17
In summary . 17
Homework . 19

5 Animations 20
Animation in the browser . 20
Examples . 21
Transitions vs. Animations . 22
Homework . 22

6 Transitions in action 23

1

Transitions . 23
Example: Button transition . 24
Prefixes and browser compatibility . 25
Homework . 25

7 Transitions properties 26
Shorthand vs Longhand . 26
Things transitions don’t work on . 27
Homework . 28

8 Timing functions 30
Linear . 30
Ease-in . 32
Ease-out . 32
Ease-in-out . 32
Cubic-bezier . 33
Steps . 33
More examples . 36
Homework . 36

9 Multiple transitions 37
Example 1: Fancy button . 37
Example 2: Background reveal . 39
Multiple transitions on a single element 41
Homework . 41

10 Transitions and JavaScript 42
Add or remove classes . 42
Controlling transitions with JavaScript 44
Let’s recap . 44
Homework . 45

11 Animations in action 46
A symbiotic relationship . 46
The animation property . 47
Keyframes . 47
Prefixes . 50
Homework . 50

12 Animation properties 51
Using timing functions within keyframes 53
Homework . 54

13 Keyframes in action 55
Things to look out for . 55
Example: Save button wiggle effect . 56
Homework . 59

2

14 Multiple animations 60
Traffic lights . 60
Further reading . 63
Homework . 63

15 Animation recap 64
Homework challenge: Traffic lights . 64
Recap: Animations . 64
Putting them together . 65
Homework . 66

16 Storytelling 67
Heroes . 67
Example: Scrolling background . 67
Part 1: Background animation . 70
Part 2: Adding the hover transition 71
Summary . 72
Homework . 73

17 Star Wars 74
Transform: Not an animation property 75
Transform: scale(), translateZ() and rotateY() 75
SVG, HTML and CSS . 75
Animating the Star and Wars . 76
Making it 3D . 77
The Force Awakens . 77
Homework . 78

18 Revealing content on scroll 80
Wow.js . 80
Using Wow.js . 81
Adding “wow” classes . 81
Hiding and showing . 82
Using Animate.css . 82
Using Modernizr . 83
Homework . 83

19 Accessibility 84
Make sure content is accessible . 84
Give control . 85
Allow for alternate inputs . 85
Confusion . 85
Don’t make me sick . 85
Accessibility is for everyone’s benefit 86
Homework . 86

20 Now you know CSS animation! 87

3

CSS Animation cheatsheet . 87
Resources to bookmark . 87
Other tools . 88
Next steps . 89

4

Chapter 1

Welcome

“Tell me and I forget. Teach me and I remember. Involve me and I
learn.” Benjamin Franklin

Welcome to CSS Animation 101, and thank you for choosing this book.

I’m delighted you’ve chosen to learn CSS animation. This book is a light and
fun introduction to the topic, and I hope you find it helpful. We’re going to
learn about CSS transitions and animations. By the end you’ll have a good
understanding of CSS animations as well as the tools to create and experiment
with our own.

There will be both theory and practical examples. We’ll learn how to easily
create your own working environment, and look at lots of examples of animation
along the way.

Hello, I’m Donovan

I’ve been writing articles about CSS and other topics for the best part of a
decade. I’ve also been designing and developing websites since the late 90’s.
More recently, I’ve written for Smashing Magazine, Net Magazine, Tuts+, Adobe
Inspire and more. I post random stuff at Hop.ie, and this year I’ve been writing
tutorials on CSSAnimation.rocks, all about advanced and useful animations in
the browser.

During my days I work as a designer and front-end developer, and I’m a big fan
of combining UX principles with fun animations in design. In the evenings I
write blogs and try to make sure I’m aware of what’s happening in the world of
web design.

5

https://cssanimation.rocks

This book is an introduction to the topic of CSS animation, but along the way
we’ll cover a lot of material. The goal is to make sure we understand what the
transition and animation properties are for, how they work, and see them in
action.

By the end of this book you should be confident enough to begin applying
animation to your projects.

Book structure

Here’s what we’re going to cover.

First: What’s animation anyway? We’ll look at why we animate. We’ll
also introduce the transition and animation properties and some sources of
inspiration.

Then: All about the transition property. We’ll learn how transitions work,
and the properties we can control to change the movement.

After that: We’ll take on the animation property, and learn how to create
keyframes that go beyond simple transitions.

Lastly: Bringing it all together. We’ll put together some advanced examples
that make use of both, look into how we can make sure our work is accessible,
and share some helpful CSS resources we can apply to projects, and JavaScript
tools we can use for more advanced effects.

Help and support

I love to hear from you with your questions and thoughts. Feel free to
drop me an email at donovan@cssanimation.rocks, or tweet me at [@dono-
vanh](https://twitter.com/donovanh) at any time.

Need to brush up on your CSS?

If you’re new to CSS, it might be worth taking time to get familiar with the
concepts. You don’t need to be an expert in CSS. If you know what a property
is, you’ll be fine.

Some online tools and resources you might find helpful:

• Interactive HTML/CSS tutorials
• Learn to Code HTML&CSS

6

mailto:donovan@cssanimation.rocks
http://www.codeavengers.com
http://learn.shayhowe.com/html-css/

Homework

You’ll notice each chapter ends with a little homework section. This is entirely
up to you but if you like you can use this to help with your learning. Each
homework section will have a suggestion for something to try or think about.
Give it a little time and you’ll find your understanding of CSS animation will be
even better.

Ready? Let’s learn all about CSS animation!

7

Chapter 2

Why animate?

“Animation is about creating the illusion of life.” Brad Bird

Before we get into the technical side of CSS animation, let’s discuss why we’re
animating in the first place.

More than words alone

Animation can convey information efficiently, or it can be used to grab attention
but in the end it is all about communication.

Movement in our designs gives us a more powerful way to communicate. It
transcends verbal and written language.

Subtle and appropriate animation can add appeal to our designs and credibility
to our work. This happens because as humans we’re used to seeing movement
all the time in the “real” world. Bringing some of that life into our work brings
the two closer.

As our web browsers continue to improve and better support animation, it
is becoming a more viable option than ever. In many ways animation is as
important to web design as the fonts we use and layouts we create.

What is animation on the web?

Animation brings us two main benefits: conveying information and grabbing
attention. We can come up with many ways these benefits can help us as we
build for the web.

8

Animation can be subtle, like when the CodePen save button wiggles a little to
remind us when we need to save our work:

Figure 2.1: Animated “Save” button (http://codepen.io/donovanh/pen/KwEQdQ)

We’re very good at spotting movement. This is something we have evolved to do.
Adding a little animation here and there can introduce some of that “illusion of
life” in a very subtle way.

We can also use animation to introduce content to a page:

By animating information onto the page, we give our viewers an extra piece of
information that might otherwise be missing. The animation both draws atten-
tion to the new content being added and gives context to that new information.
Without animation it would just suddenly appear, possibly leaving the viewer
unsure of whether it was there all along.

We can use animation to tell a story:

The above is based on an instructional video for the game “Portal”. However,
telling stories through our content doesn’t always need to be so literal. We can
add subtle movement, such as showing data changes in a chart. In this way, data
can itself tell a story with animation helping.

With great power comes great responsibility

It can be easy to do too much with animation. Having too many things moving
around on the page at once is distracting.

Try to do less animation when possible. Any movement you do add will be all
the more powerful.

9

Figure 2.2: Animating list items (https://cssanimation.rocks/list-items/)

10

Figure 2.3: Portal animation (http://hop.ie/portal/)

This might mean only moving a small item on your page. Sometimes it is better
to do less.

Having said that, if you want to create more of a “wow” effect with larger
animations, you can do so. Just stop when your viewers need to focus on the
content. This might mean setting animations to play once rather than infinitely,
or stopping animations when people begin to scroll a page.

Inspiration

Animation has a long and rich history. I recently wrote a post on Principles
of Animation for the Web. The principles draw from Disney’s 1981 book The
Illusion of Life: Disney Animation.

If you want to go further, dig into the Animator’s Survival Kit videos. YouTube
is full of sources of inspiration and ideas.

For loads of great examples, take some time to browse Hover States. This site
features all sorts of interesting examples of animation from the web. Dribbble.com
is helpful also.

For example, here’s a nice example from Dribbble showing Google’s Material
Design principles. Searching for “animation” is a great way to find inspiring
ideas.

11

https://cssanimation.rocks/principles/
https://cssanimation.rocks/principles/
http://en.wikipedia.org/wiki/12_basic_principles_of_animation
http://en.wikipedia.org/wiki/12_basic_principles_of_animation
https://www.youtube.com/watch?v=loCiTO8qEMI
http://hoverstat.es/
https://dribbble.com/
https://dribbble.com/shots/1621920-Google-Material-Design-Free-AE-Project-File
https://dribbble.com/shots/1621920-Google-Material-Design-Free-AE-Project-File

I also regularly check up on what’s happening at CodePen. A great source of
canvas and web animation examples.

Summary

• Animation is kind of a big deal
• Used right, it can be a useful and powerful tool in our designs
• Use it to grab attention or convey information
• Don’t overdo it
• If you want to stand out, animation can really help

Homework

Think about your own work and how animation might help.

Try not to go crazy and animate all the things. Look for ways subtle animation
might better help your visitors understand the content. Is there a call-to-action
on your page people are missing? Is there a sudden change in your page that’s
happening too suddenly, and could benefit from a smoother transition?

Lastly, take a look at sites like Hover States and Little Big Details and Dribbble.
These sorts of sites help if you’re ever stuck for ideas.

12

https://codepen.io

Chapter 3

Creative environments

“You don’t learn to walk by following rules. You learn by doing, and
by falling over.” Richard Branson

Today we’re going to look at ways we can build and see our CSS animations in
the browser. Before we get started with the coding, we want to create a workflow
that makes it easy to get started.

We’ll cover two ways of doing this: developing in the browser, and developing
offline (locally).

In the browser

The simplest way to get going for small experiments is to develop online. A site
I often use is CodePen. Another good one is JS Fiddle.

For the rest of this course I’ll be using CodePen for examples and it can be
worth being familiar with the way it works.

CodePen is a coding playground that involves an edit mode where you can make
changes to HTML, CSS and JavaScript and see the results immediately. The
screen is divided up into four areas. The preview content, the HTML area, CSS
and JavaScript. Within each is a settings option that allows you to configure
languages (Sass instead of CSS for example) and other cool stuff.

Local development

For more involved projects, I prefer to develop offline. There are ways to do so
that can be efficient and quicker than working in the browser.

13

https://codepen.io
http://jsfiddle.net/
https://codepen.io

Basic option: Simple HTML/CSS

The most simple option is to create a HTML file (filename.html) and an associated
CSS file (filename.css) and link the two in the HTML. This is ok, but can be
slow with lots of flicking back and forth between the browser and the editor.

I’ve created a set of HTML and CSS files you can copy and use to begin creating.
Download them here.

Figure 3.1: Starting files

Dreamweaver / Macaw / Muse / Coda / Sublime

You can of course use whatever tool you find comfortable to create web pages.
All you really need is a text editor. Some other tools come with more fancy
visual editing, and if that’s your preference, go for it.

Personally I’d recommend trying to get to grips with the code. Understanding
the way the CSS works will help when it comes to fixing issues, or creating more
expressive effects that visual tools can provide.

Gulp

If you’re familiar with Github, Node and checking out code, you might want to
set up a development enviroment on your own machine.

I am a big fan of Gulp. It is Node-based and very fast. Modules can be put
together to process Sass into CSS, autoprefix for browser support and sync
browsers so that you don’t need to keep refreshing each time you update the
code.

If you’ve used Grunt or other build tools, the process should be familiar.

I’ve created a Github repo to make local development faster. If you’re comfortable
with using Git, go ahead and follow the readme for setup instructions.

Do improve it if you wish and push the results back. Teamwork!

14

https://github.com/cssanimation/starter/archive/master.zip
https://github.com/cssanimation/gulp-sass-starter
https://github.com/cssanimation/gulp-sass-starter/blob/master/README.md

In summary

As you learn CSS animation, feel free to try different ways to create your code.
You might want to host it yourself, or you might prefer to use CodePen. Either
is good. Make sure you can get from idea to code as smoothly as you need to.

Homework

Register with CodePen. Have a go adding some HTML and CSS, and see how
the results change in response. Check out some of the featured CodePens on the
home page.

Optional: If you want to try local development, download local starting files:

• Basic option: Project starter HTML/CSS files
• Advanced: Gulp & Sass starter

Next: We’ll be talking about transitions!

15

http://codepen.io
https://github.com/cssanimation/starter/archive/master.zip
https://github.com/cssanimation/gulp-sass-starter

Chapter 4

Transitions

Let’s look at the transition property.

Browsers used to be much more simple. It wasn’t so long ago that they couldn’t
render images or handle more than a handful of fonts. Then CSS gave us power
over how web pages look and feel.

Animation in browsers isn’t new. Flash, Canvas and other JavaScript options
have given us ways to animate but more recently CSS has become a viable
option.

Transitions

One way CSS lets us control animation in the browser with the transition
property. In browser terms, a transition is an animation from one state to
another.

Figure 4.1: Transitions: A to B

16

When we use a transition on an element we tell the browser that we want it to
interpolate, or automatically calculate, the change between states.

Figure 4.2: Animated transition from A to B
(http://codepen.io/donovanh/pen/RNdxqw)

For example we can change an element’s style on hover, apply a transition, and
the browser will create a smooth animation between the element’s starting style
and its new style.

Figure 4.3: Animated button (http://codepen.io/donovanh/pen/MYQdZd)

Transition properties

When we use a transition on an element, there are all sorts of properties that
change how the transition works. We can make it slow or fast, delay it, and even
control the rate of change using timing functions. We’ll delve into what these
mean in the next chapter.

Another example of combined transitions:

Soon we will discuss how to use transitions to make these sorts of movements.

In summary

A transition is the change from one state to another. For example, when hovering
over an element, its style might change. Transitions allow the change to become
a smooth animation.

17

Figure 4.4: More transitions (http://codepen.io/suez/pen/XJGOyL)

18

Homework

How’s your creative environment looking? How about taking a look into the
code, and looking for the transition property in the CSS. Can you see what is
happening?

Next time you’re browsing the web, look for examples of transitions as you
navigate web pages. Look for interesting changes such as when a new element is
added to a page, or you hover over a button. You’ll find the web is full of subtle
animation once you start looking for it.

Next: An overview of the animation property and how it differs from
transition.

19

Chapter 5

Animations

So far we’ve discussed why we animate, found some sources of inspiration,
looked at tools and sites we might find useful for development, and learned what
transitions are.

Next, allow me to introduce the animation property.

Animation in the browser

Transitions and animations are similar. Both take the form of a CSS property,
and have duration, delay and other ways of controlling how the browser creates
the movement.

While transitions are all about smoothing the change from state A to state B,
animations are a way to describe multiple steps.

Figure 5.1: Animations: A to B to C

20

Animations are useful for more complex movement in the browser. In the above
example, there are 3 states (A, B and C). A transition would only go from A to
C while an animation allows us to specify what step B looks like and make sure
the animation follows all three steps.

Animations also behave a little differently. They can begin automatically. While
a transition might require adding a class or a change of state such as hovering,
animations can start when the page loads.

This means that if telling a story or drawing attention to something on a page,
animations can be a good choice.

Examples

The “Save” button movement we see on Codepen is a good example of a practical
animation.

Figure 5.2: Save button on CodePen (http://codepen.io/donovanh/pen/KwEQdQ)

It does a great job helping people notice the button.

The effect is made up of a series of keyframes that tell the browser to shake
the button from left to right. We’ll dig more into keyframes in greater depth in
chapter 3.

We can do so much more with CSS positioning and keyframe animations. For
another example check out this CSS-only 3D Mac Plus!

This CSS Mac Plus is available on CodePen and here’s a step-by-step guide to
building it.

21

http://codepen.io/donovanh/full/HGqjp/
https://cssanimation.rocks/macplus/

Figure 5.3: Mac Plus created using CSS
(http://codepen.io/donovanh/full/HGqjp/)

Transitions vs. Animations

Transitions are when the browser animates from one state to another (A to B).
They’re usually triggered by an action such hovering over an element, or adding
or removing a class using JavaScript.

Animations are more involved, and let you create sequences of animations with
as many keyframes as you need along the way. They trigger automatically, and
can loop.

We’ll take some time to work on the animation property later.

Homework

Can you think of ways animations might be used on your web pages? Keep an
eye open for animation when browsing. Look out for when something moves in
a way that calls attention to itself. In these cases it means animation.

If you’ve downloaded the starter HTML and CSS, take a look for the animation
property. Unlike transitions, animations need a second part, called keyframes.
Try changing some values and see what happens.

22

Chapter 6

Transitions in action

Now that we have introduced the transition and animation properties, lets
delve further into transitions and see some code!

Transitions

Transitions take place in the browser when an element changes from one state
to another. The browser draws the frames between each state automatically to
create movement.

A transition is a property in CSS. Just as you’d give an element a height,
width, or border, we give elements transitions too.

We can write a transition in CSS like this:

transition: background 0.5s linear;

In this case we’re telling the browser that a transition of the background property,
will take half a second, and use the “linear” timing function.

The above property might cause a button’s background to change when hovered
over:

button {
background: white;
transition: background 0.5s linear;

}

button:hover {
background: green;

}

23

Notice the transition property to the first button reference in the CSS state.
This tells the browser to apply a transition to any change of state such as on
hover as well as when changing back from the hover state.

If we applied the transition property to the hover state only, it would only
transition to the hover state but not back.

Let’s see how this looks in action. I’ve set up a couple of demos. You might find
these examples contain some code that isn’t obvious. I’ll be going into greater
detail over the next few days, but do feel free to poke around at the values to
see what happens.

Example: Button transition

Figure 6.1: Button hover effect (http://codepen.io/donovanh/pen/MYQdZd)

Here’s a CodePen demonstrating the hover effect. In CodePen, you can make
changes to the HTML and CSS and see the results immediately.

The important thing to look for is the any property beginning transition-.
I’ve written them out long-hand for demonstration like so:

transition-property: all;
transition-duration: 0.4s;
transition-timing-function: ease-out;

This code that tells the browser what sort of movement to generate between
the non-hover state and the hover state. It tells the browser to animate all
properties (colours, size, position), over a duration of 0.4 seconds.

Try changing some of these values. For example, change the “0.4s” to something
longer, like “2s” (two seconds). How does the animation feel? You could change
the property from “all” to “background”.

24

http://codepen.io/donovanh/pen/MYQdZd

For a fun effect, try changing the transition-timing-function value from
ease-out to:

transition-timing-function: cubic-bezier(.59,-0.26,.33,1.42)

The cubic bezier timing function is a lot of fun. We’ll cover timing functions in
more detail on another day.

Prefixes and browser compatibility

When I’ve given code examples, I’ve not included vendor prefixes. This is to
make the code easier to read, but if you’re using the code in production they are
needed.

I like to use Autoprefixer (this is an option on Codepen: press the settings “cog”
icon in the CSS section), and can be run with build tools such as Grunt or Gulp.
Alternately you can manually write them out like this:

-webkit-transition: ...;
-moz-transition: ...;
transition: ...;

Homework

Edit the button in today’s example and add your own ideas. You could try
changing the shape, border, or almost any property. Have some fun, the goal is
to make sure you’re familiar with how a transition affects the element’s hover
effect.

For some inspiration check out this awesome hover style. There are loads of
great examples around if you are looking for ideas.

If you want to go further, try creating a new CodePen with an element that
changes from one thing to another on hover. See if you can have an element
within it move at a different rate. Don’t worry if you haven’t got to this point
yet, we’ll cover the properties in more detail.

25

http://codepen.io/nxtonic/pen/gbZNKJ

Chapter 7

Transitions properties

Now that we have seen the transition property in action, let’s look at the
properties that go into transitions and what they mean.

Shorthand vs Longhand

When writing CSS, we can often summarise multiple properties into one in a
shorthand property. For example, padding written as shorthand might look like
this:

padding: 10px 20px 15px 25px;

This would be the equivalent of:

padding-top: 10px;
padding-right: 20px;
padding-bottom: 15px;
padding-left: 25px;

In the same way, we can write a transition as shorthand too:

transition: all 0.5s 1s linear;

In this case, the shorthand corresponds to:

transition: [property] [duration] [delay] [timing-function];

Each of these properties can be written individually:

transition-property: all;
transition-duration: 0.5s;
transition-delay: 1s;
transition-timing-function: linear;

26

Let’s look at each of these properties.

transition-property

Usually stated first in the shorthand, this is the property that the browser will
animate. To change the background for example, background could be used.
You can use all to have all applicable CSS properties transition.

transition-duration

A transition-duration value tells the browser how long the transition will
take. A transition-duration of 3s (three seconds) will be three times longer than
a transition-duration of 1000ms.

transition-delay

The transition-delay property tells the browser to wait before applying the
transition. This is a time value, and it can be specified in seconds or milliseconds.
For example, 3s would be three seconds and 100ms would be one hundred
milliseconds. Equally, you could write that as 0.1s. Up to you.

transition-timing-function

Both transitions and animations make use of timing functions. There’s a lot
to these, so rather then try to cram it in here, we’ll talk more about timing
functions tomorrow. Timing functions can really add life to your animations.

Things transitions don’t work on

While you can use transitions on positioning, size, colour, border, background-
position and many others, there are some that cannot be transitioned. The
font-family cannot be transitioned, as this would mean trying to generate frames
between two very different font images.

Background images created with CSS, such as generated gradients, cannot
have their properties animated. This would mean the browser recreating the
background image with each frame of animation and so is not supported.

However you can animate things like opacity and background position. By
moving background images around or hiding them you can create interesting
effects.

27

See it in action on this Baymax example where a background image is moved to
create the animation.

Figure 7.1: Source: http://cssanimation.rocks/baymax/

A similar effect is used on this button sheen effect, where the background gradient
is animated across the front of a button.

Figure 7.2: Source: https://cssanimation.rocks/pseudo-elements/

Homework

I’ve created a basic Codepen to try out transitions.

At the moment there a transition from a diamond shape into a circle. Try
changing some of the attributes, to see what happens.

28

http://cssanimation.rocks/baymax/
https://cssanimation.rocks/pseudo-elements/
http://codepen.io/donovanh/pen/NPYNGa?editors=110

If you would like to go further, press the “Fork” button to create your own
version and you can then save your work to your own Codepen account.

29

Chapter 8

Timing functions

The timing function is a description of the rate at which the speed of the
transition changes. Animations look lifeless when they occur at a fixed, linear
pace. Using timing functions can make transitions more life-like.

For example, here is an example of a transition using a linear timing function.
It moves back and forth at an unchanging pace.

Contrast this to this example using cubic-bezier timing functions. You’ll see
quite a big difference!

For this example we’re using customised cubic-bezier timing function:

The cubic-bezier approach in this case tells the animation to rock back a little
before quickly moving to the second state, and actually goes a little past it before
correcting back.

The CSS for the beginning and hover state of each example is the same, all
that’s changed is the timing function.

Let’s go through each and learn how they impact the way our elements move.

If you’d like to play with these in an example, I’ve set up a CodePen here.

Linear

A linear transition moves at a steady rate from beginning to end. Since there’s
no curve in the transition, it never accelerates or decelerates. This can be useful
if making animations that need a steady movement, like the scenery moving past
the background of a train window or a steadily rotating moon.

30

https://codepen.io/donovanh/pen/vMPgmd
https://codepen.io/donovanh/pen/Zbjbrx
http://codepen.io/donovanh/pen/GgaRNv

Figure 8.1: Cubic-bezier timing function

Figure 8.2: Linear

31

Ease-in

Figure 8.3: Ease-in

The ease-in timing function begins slowly and accelerates toward the end of the
transition. It would be similar to a ball beginning to roll down a hill, finishing
at the fastest speed at the bottom. Or perhaps a bored fish swimming left and
right.

Ease-out

Figure 8.4: Ease-out

Ease-out is the opposite of ease-in. It starts fast and slows down toward the end
of the transition. Useful for when something needs to appear as if it was rushing
from off-screen and slowing down to stop.

Ease-in-out

Ease-in-out is a combination of both the ease-in and ease-out functions. It begins
slowly, accelerates through the middle part of the transition, then slows toward
the end. It could illustrate a car starting from a standstill, accelerating, then
slowing down before stopping. If making a loading animation, something like
this can look pretty good.

32

Figure 8.5: Ease-in-out

Cubic-bezier

Figure 8.6: Cubic-bezier (custom)

All the timing functions we’ve seen so far are examples of cubic bezier curve.
This is a curve that describes the “shape” of the timing function.

In this way, specifying a cubic-bezier timing function is like creating a timing
function of our own.

They consist of 4 values, representing two co-ordinates. A cubic-bezier can look
like this:

transition-timing-function: cubic-bezier(1,-0.49,.13,1.09);

The two co-ordinates here are (1, -0.49) and (.13, 1.09). On a graph, they look
like this:

Rather than create these by hand, I use cubic-bezier.com. A great way to create
some interesting effects.

They really get fun when using values greater than 1. This will create transitions
that overshoot and bounce back.

Steps

Where most of the timing functions involve curves, the steps function divides the
transition into a set of steps and jumps between each. For example, if you specify

33

http://cubic-bezier.com

Figure 8.7: Source: http://cubic-bezier.com/#1,-0.49,.13,1.09

Figure 8.8: Steps

34

steps(4) the transition divides the duration into 4 discrete jumps (pictured
above).

This is useful for sprite animation. For example, a loading spinner or animated
video game character. By setting the background position at the beginning of a
series of frames, the steps timing function can then be used to jump through
each frame and create the appearance of movement.

To see a good example of this in action, check out the Twitter fave button
animation.

You can also specify whether the transition holds the first frame for the fragment
of the duration or whether it holds the final frame. The default is end, as this
assumes that the first frame in the sprite is already showing before the animation
begins.

We can specify which applies when setting the steps:

transition: all 2s steps(10, start);
transition: all 2s steps(10, end);

35

https://cssanimation.rocks/twitter-fave/

More examples

I’ve written on the subject of timing functions here if you’d like to read more
and see other examples.

Homework

Following on from the previous homework example try changing the
transition-timing-function value and see how it changes the way the
transition feels.

You can also try changing values on this demo. Technically this is an animation
rather than a transition but the timing function applies in the same way.

36

https://medium.com/css-tutorials/bouncy-transitions-c0c8085d489
http://codepen.io/donovanh/pen/NPYNGa?editors=110
http://codepen.io/donovanh/pen/GgaRNv

Chapter 9

Multiple transitions

So far we’ve covered how a transition creates the movement between one state
and another. Next we’ll see what happens when we apply a single transition to
an element with multiple changes, and how to use multiple transitions together
to subtly improve our animation.

Example 1: Fancy button

While we’ve seen a simple button hover effect already, we can combine multiple
transitions into a single button for a more interesting effect.

Figure 9.1: Source: http://codepen.io/donovanh/pen/YPMGpJ

In this example a hover effect combines several changes of state, but all are
defined by a single transition:

37

http://codepen.io/donovanh/pen/YPMGpJ

transition: transform 0.4s cubic-bezier(.72,-0.61,.25,1.51);

Here’s how it works. The button is made up of two icons and two pieces of text.
The initial (non-hover) state is that the “Follow me” text and Twitter icon are
positioned inside the button. I position the @ symbol and the “cssanimation”
text outside the button like so:

Then I add a hover state, in which the elements outside the button are positioned
inside the button, like so:

I do this using CSS transforms. For example, the Twitter symbol is positioned
using absolute positioning. When setting it up I positioned it where I wanted
using left and top values:

.icon {
position: absolute;
left: 0.75em;
top: 0.75em;

}

Then I add a hover state for the button and position the Twitter icon outside

38

the button with a transform:

a:hover .icon {
transform: translateY(3em);

}

Adding overflow: hidden to the container means that elements outside the
button won’t show.

With no transition in place, the icon would suddenly disappear. Since each of
these elements inside the button is a span, I can apply the transition to them all
at once:

span {
transition: transform 0.4s cubic-bezier(.72,-0.61,.25,1.51);

}

This now means that any span elements will be transitioned if their state changes,
such as on hover. The same trick is applied to the other parts of the button.

You can see this example in full on CodePen.

Example 2: Background reveal

In this example I’ve set up a card containing some text, and show the text on
hover.

The initial (non-hover) state of the card has the title showing but the paragraph
text has an opacity of zero. On hover, we change that to 1 to show the text,
and change the height of the text container.

Without transitions, it looks like this. When we hover over the card the change
is sudden.

With the addition two transitions to change the mood entirely. Here’s the result.

The first transition (written short-hand this time) looks like this:

transition: all 0.5s cubic-bezier(.48,-0.28,.41,1.4);

This tells the browser to animate all properties over a duration of 0.5 seconds
and uses the cubic-bezier transition to give it some bounce. It affects the
height of the text container in this case.

The second transition makes the text move. Here a ease-out timing function is
used:

transition: all 0.4s ease-out;

39

http://codepen.io/donovanh/pen/YPMGpJ
http://codepen.io/donovanh/pen/PwgKLw?editors=110
http://codepen.io/donovanh/pen/LEvjJg

Figure 9.2: Source: http://codepen.io/donovanh/pen/LEvjJg

40

There’s a lot that we can achieve by changing states on hover. In this example
the info div’s height and the paragraph are both give new values within the
.card:hover state.

In this example we use two transitions so that each of the moving parts moves
in a different way. Having elements move at different paces can really help add
appeal to a transition.

You can also see this example on CodePen.

Multiple transitions on a single element

As well as using multiple transitions on multiple elements, we can also use more
than one transition on a single element.

A case for this is when you need an element’s background to change separately
from its border. Applying a single transition to all properties might be too crude
for both.

We can achieve this by combining multiple transitions into a single declaration.
Multiple transitions are separated by commas.

For example:

transition: background 1s ease-out, border 0.5s linear;

The first transition here works on only the background, and the second (after the
comma) only applies to the border. This means that a hover state that changes
the background would take 1 second and the transition of the border would take
0.5 seconds.

Homework

In this chapter we looked at how multiple effects could be handled by a single
transition, and how multiple transitions can be used together. Take a look at
the CodePen examples for each:

• Example 1: Fancy button
• Example 2: Cat Hover card

Can you think of ways these sorts of transitions might help in a project you’re
currently working on?

We’ve covered a lot so far. Next we’ll take a look at how we can apply these
transitions using JavaScript.

41

http://codepen.io/donovanh/pen/LEvjJg
http://codepen.io/donovanh/pen/YPMGpJ
http://codepen.io/donovanh/pen/LEvjJg

Chapter 10

Transitions and JavaScript

So far we’ve been using the transition property in CSS to animate between
two states, a non-hover and a hover (or focus) state.

These transitions have required hovering over the element. This isn’t the only way
we can trigger animations, so today we’ll cover two ways we can use JavaScript
to achieve the same result.

Add or remove classes

Since the power of transitions is to animate between two states, we can create
those states as separate classes. Then we add or remove these classes using
JavaScript.

This example consists of a button and a content div. Initially the content
container has the class hide. In the CSS, the hide class gives it an opacity of
0.

We also have a second class in the CSS called show. This class has an opacity of
1.

When the button is clicked, we toggle the class of the div between hide and
show. To give it animation, we apply a transition to the div also.

See it in action on this CodePen.

If you’d like to read more, you might enjoy the article, Adding Appeal to Your
Animations on the Web.

Toward the end of this course we’ll look into how we can trigger transitions and
animations on scroll.

42

http://codepen.io/donovanh/pen/YPbxqa
http://webdesign.tutsplus.com/tutorials/adding-appeal-to-your-animations-on-the-web--cms-23649
http://webdesign.tutsplus.com/tutorials/adding-appeal-to-your-animations-on-the-web--cms-23649

Figure 10.1: Source: http://codepen.io/donovanh/pen/YPbxqa

43

Controlling transitions with JavaScript

We can go further than adding or removing classes. Using JavaScript we can set
the CSS properties directly like so:

element.style.transition = 'opacity 1s ease-out';

In this case, “element” is an element we’ve selected. For example, if an element
has the ID “js-show”, you could apply a transition to it using getElementById:

document.getElementById('js-show').style.transition = 'opacity 1s ease-out';

When we do this, we must remember to include vendor prefixes too. The above
would need to be written:

document.getElementById('js-show').style.webkitTransition = 'opacity 1s ease-out';
document.getElementById('js-show').style.transition = 'opacity 1s ease-out';

Here the webkitTransition applies to any browsers that would otherwise use
the -webkit- prefix in CSS.

Let’s recap

In this chapter we’ve covered the transition property. We learned we can use
this property to tell a browser to animate from one state to another.

Along the way we’ve learned about the various properties: duration, delay, and
timing functions.

Putting these together we can create interesting combinations of effects, and
even apply multiple transitions to a single element.

Finally, we wrapped it up today by covering how to apply these transitions using
JavaScript.

Transitions are but one part of the CSS Animation puzzle. Next we’ll cover the
animation property.

44

Homework

Before we start looking at the animation property, take some time to think
about how you use transitions.

Can you think of ways they could help smooth the interactions or state changes
on your pages? How might they add appeal?

45

Chapter 11

Animations in action

Now that we’ve looked at the transition property, let’s take a deeper look at
the animation property.

A symbiotic relationship

The animation property is applied to an element just like a transition. It also
needs a second part, called keyframes.

.element {
animation: ...

}

@keyframes animation-name {
/* Keyframes go here */

}

One benefit of having the keyframes defined separately is that it allows us to
create animations that can be reused multiple times.

46

The animation property

Applying these keyframes to an element is done with the animation property. It
is quite similar to transition but with some extra properties. An animation
could be written as the following shorthand:

animation: change-background 4s linear infinite;

Written as individual properties it would look like:

animation-name: change-background;
animation-duration: 4s;
animation-timing-function: linear;
animation-repeat: infinite;

Where a transition takes a property, such as “background” or “all”, the
animation property is given the name of the set of keyframes that describe the
animation sequence.

Animations have some properties that transitions don’t. For example, we can
tell the animation to alternate back and forth rather than looping from the
beginning each time.

Keyframes

A set of keyframes in CSS is a series of stops along the way through an animation.
Each “keyframe” is a written as a percentage.

I find it helps to describe this using an example. Let’s start with a div on a
web page that changes background over time. It begins with a blue background,
changes to an orange background and then finally green.

47

If we tried to explain to someone how these background colours changed over
time, we might say something like:

“Start with a blue background, then orange background halfway through and finish
with a green background”

Or, if we wanted to be more precise, we could use percentages to explain the
timing:

“Start at 0% of the way through with a blue background, then by 50% through be
orange, and at 100% have a green background”

We could then summarise this as:

0% Blue
50% Green
100% Orange

With these percentages we’ve created a series of “waypoints” that an animation
might pass through. All we need to do now is tell the browser that these
percentages are in fact keyframes and give the animation a name. The result is
this:

@keyframes change-background {
0% {

background: blue;
}
50% {

background: orange;
}
100% {

48

background: green;
}

}

The animation is called “change-background”. We’ll use that later when applying
the keyframes to an element.

As you read the code from the top down, the percentages are describing how
far through the animation each of these keyframes takes place. We can see it in
action here:

Figure 11.1: Source: http://codepen.io/donovanh/pen/WbqNwd?editors=110

As the animation takes place, the browser creates the in-between frames needed
to go from each of the background colours to the next. By telling the browser
that we wanted the div to begin one colour, be another one half way through
and finish on a third, the browser can do the work of creating the animation
between each of these points.

I’ve put together a CodePen example showing this in action.

Earlier, I mentioned using the animation-direction property to have an ani-
mation alternate. Here’s how it would look:

49

http://codepen.io/donovanh/pen/WbqNwd?editors=110

In this case I’ve changed the animation-direction property to alternate. See it
on CodePen here.

Prefixes

While this is becomeing less important, you may want to use the -webkit- prefix
on the animation property. I won’t add it to examples, but it will be needed
for your animations to work in browsers such as Safari.

In CodePen you can use the “Autoprefixer” option within the CSS settings. For
local development, I use the Gulp version of Autoprefixer. Prefix Free is a decent
alternative also.

Homework

Open up this keyframes example and try changing the code. See if you can break
it, and fix it. Even better, if you come up with something cool, let me know!

I love seeing how you’re getting on. You can email me or get in touch on Twitter.

50

http://codepen.io/donovanh/pen/NPZqej
http://leaverou.github.io/prefixfree/
http://codepen.io/donovanh/pen/WbqNwd?editors=110
mailto:donovan@cssanimation.rocks
https://twitter.com/donovanh

Chapter 12

Animation properties

Before we work on more animation examples, let’s take a look at each of the
animation properties.

Like the transition property, the animation property can be written using
shorthand, or any of these properties can be specified individually.

animation-delay

Similar to transition-delay, we can use this property to make the animation
wait before starting. This can be particularly useful in situations where there
are multiple animations taking place.

If the animation loops, the delay does not apply each time it loops. The delay
only applies to when the animation is applied to the element.

You can give this property a negative value such as -1s. This would cause the
animation to start as if a second has already elapsed.

animation-direction

Animations normally begin at 0% and finish at 100%. Using animation-direction
we use the values normal, reverse, alternate and alternate-reverse to
control the direction.

“Reverse” causes it to play (and loop) from 100% to 0%, while “alternate” plays
from 0% to 100% and back again to 0%.

51

animation-duration

This is the length of the animation. Similar to transition-duration, this takes
a value such as 1s for one second or 200ms for two hundred milliseconds.

animation-fill-mode

By default, an animation will play and then the element returns to its normal
state. Using animation-fill-mode we can have the animation “stick” at either
the end or beginning state.

Using the value forwards tells the animation to finish and stay on the last
keyframe. The value backwards returns to the first keyframe when the animation
finishes.

An example of this is the bouncer animation on Hop.ie. The animation plays
once and finishes on the last frame. This is using the value forwards.

animation-iteration-count

This is the number of times the animation plays. By default it will play once.
You can specify a number, or “infinite” to have it loop forever.

animation-name

The animation-name refers to the keyframes associated with the animation. For
example, if the animation-name is set to “foo”, it would use a set of keyframes
like:

@keyframes foo {
...

}

animation-play-state

If you ever need to pause or resume an animation, this property lets you do so.
It takes the values of running or paused, with the default being running. One
idea might be to set this value on an animation using JavaScript.

animation-timing-function

This takes the same values the timing function property in transitions, but
behaves a little differently. While a timing function, such as ease-out applies

52

http://hop.ie/

to the entire transition, the timing function of an animation applies between
each keyframe.

This means that the following keyframes would see the animation starting fast
and slowing toward 50%, then picking up fast and slowing down before 100%.

@keyframes foo {
0% {

/* Animation starts fast and ease-out makes it slow down before 50% */
}
50% {

/* Again, starts fast and slows toward 100% */
}
100% {

/* fin */
}

}

This can be tricky to work with. Often when creating keyframe animations I’ll
choose the linear timing function and handle the way the animation is paced
using keyframes.

Having said that, cubic-bezier timing functions can create some great effects
when used with animations, so have a go.

Using timing functions within keyframes

When you specify a timing function for an animation, the timing function applies
to each keyframe of the animation.

This means that if you were to specify four keyframes, the timing function would
apply to each. An ease-out function would slow down as it approached each
keyframe.

For that reason we would usually define the timing function for animations as
linear, and control the pacing on a per-keyframe basis:

@keyframes my-animation {
0% {
...
animation-timing-function: linear;
}
50% {
...
animation-timing-function: ease-out;
}

}

53

In this case the first half of the animation will be linear, and the second half
would use the ease-out timing function.

Homework

I’ve created a simple keyframe animation here on CodePen. The properties are
listed in the CSS. Try changing some of these properties, and see what happens.

54

http://codepen.io/donovanh/pen/MYMJRd?editors=010

Chapter 13

Keyframes in action

So far we’ve been introduced to the animation properties, and had a chance to
see how it relies on keyframes. Next we’ll cover keyframes in greater detail.

Things to look out for

There are a couple of things about keyframes I’d like to cover before getting
into a practical example. The first is an alternate syntax you may see, using the
keywords from and to.

@keyframes name {
from {

...
}
to {

...
}

}

While this is simple an alternate way of writing 0% and 100%, it can be simpler
to understand and useful for simple animations.

You may have noticed that sometimes more than one percentage value is used
on the same line. This is a way to have the animation pause for a while, or hold
a particular state.

For example:

@keyframes name {
0%, 20% {

opacity: 0;

55

}
100% {

opacity: 1;
}

}

This example will have the element start with an opacity of 0, and stay invisible
until 20% through the animation, at which time it will then begin to animate
toward an opacity of 1.

We’ll make use of this tomorrow when we have multiple animations we want to
stay in sync with each other.

Example: Save button wiggle effect

Remember the “Save” button example from back in chapter 1? Let’s revisit
that example and look at how keyframes are used along with the animation
property to create the effect.

Figure 13.1: Source: http://codepen.io/donovanh/pen/KwEQdQ

Before adding any animation I added some basic styles to a button to make it
look like CodePen’s. An orange border at the top, dark gradient and white text.
I’m using absolute positioning in the demo to make sure the button is in the
middle of the screen.

The first thing I generally do is apply an animation property to the element.
Like so:

button {
animation: wiggle 2s linear infinite;

56

}

In this case we’re applying a set of keyframes called “wiggle”, and the animation
runs for two seconds with the “linear” timing function. There’s also a new
attribute here, infinite.

The “infinite” value here is for the property animation-iteration-count. We
can have animation repeat a set number of times, and by default they repeat
once. In this case it’ll repeat an infinite number of times.

Next, we plan out what these keyframes are for the “wiggle” animation. Here’s
the result:

@keyframes wiggle {
0%, 7% {

transform: rotateZ(0);
}
15% {

transform: rotateZ(-15deg);
}
20% {

transform: rotateZ(10deg);
}
25% {

transform: rotateZ(-10deg);
}
30% {

transform: rotateZ(6deg);
}
35% {

transform: rotateZ(-4deg);
}
40%, 100% {

transform: rotateZ(0);
}

}

What we have here is a series of waypoints for the browser to animate between.
Each one rotates the “Save” button on the z-axis. The angles start bigger and
get smaller over the course of the animation.

Here’s how the animation tilts the button back and forth over time:

We can see that the browser creates the in-between steps between each keyframe.
Without relying on fancy timing functions, this animation manages to add a lot
of character to the button.

Here’s a CodePen showing the Save button wiggle in action.

57

http://codepen.io/donovanh/pen/KwEQdQ

Figure 13.2: Source: http://codepen.io/donovanh/pen/pvXJqp

58

Homework

I’ve created a new CodePen with a single animated element. It makes use of an
“animation-timing-function” within the keyframes and has a series of keyframes
creating a relatively complex animation.

What happens when you take some frames away? Or change the percentage
values? Can you make the cube do something else? See if you can create a
feeling of “life” in something so simple!

59

http://codepen.io/donovanh/pen/azgjMz?editors=010

Chapter 14

Multiple animations

In this chapter we’ll be looking at how we can make use of multiple sets of
keyframes running at the same time.

Traffic lights

There are times when we want multiple animations on a page to stay in sync,
but at the same time each animation has its own timing. A good example that
illustrates this is traffic lights

Here we have a simple (UK-style) traffic light pattern:

We have three lights, each with their own pattern of being off and on. We can
create this by giving each light their own animation.

.red {
animation: red 10s linear infinite;

}
.amber {

animation: amber 10s linear infinite;
}
.green {

animation: green 10s linear infinite;
}

We have three animations, one for each light. Each animation lasts the same
length of time so that when they loop, they won’t go out of sync. Next we need
to plan the keyframes.

When creating this example I found it helpful to think of the lights as a grid.
The animation happens from left to right, with each light being on or off at

60

Figure 14.1: Source: http://codepen.io/donovanh/pen/ogRRdR?editors=010

61

certain times.

The grid is divided up into 5 columns. This means that we can deal with “chunks”
of 20% and create sets of keyframes from these chunks.

Taking each light one at a time, we can start with the red light. It would be
on for the first and second chunks, then off for the rest of the animation. The
resulting keyframes:

@keyframes red {
0% {

background: black;
}
2%, 40% {

background-color: red;
}
42%, 100% {

background: black;
}

}

I’ve added a 2% gap at the beginning and had the third part of the animation
begin at 42% as this adds a little bit of a fade to the way the traffic light appears.
The subtle stuff that makes all the difference.

With the red light done, we look at the amber light on the grid.

The amber light is off at the beginning, on for one chunk, then off for two chunks,
and finally on again. The keyframes for this light:

@keyframes amber {
0%, 20% {

background: black;
}

62

22%, 40% {
background: #FF7E00;

}
42%, 80% {

background: black;
}
82%, 100% {

background: #FF7E00;
}

}

Lastly, the green light. This light is off for the first two chunks, then on for two,
and finally off for one.

@keyframes green {
0%, 40% {

background: black;
}
42%, 80% {

background: green;
}
82%, 100% {

background: black;
}

}

We can put it all together and see it in action.

Further reading

For more reading on the subject of keyframe syntax, do check out CSS tricks
article on the subject.

Homework

Today’s homework is a challenge. The traffic light example might look strange
to you as it follows the UK pattern.

Can you start with the traffic light example and change it so that it works more
like traffic lights in the USA or elsewhere?

63

http://codepen.io/donovanh/pen/ogRRdR?editors=010
https://css-tricks.com/snippets/css/keyframe-animation-syntax/
https://css-tricks.com/snippets/css/keyframe-animation-syntax/
http://codepen.io/donovanh/pen/ogRRdR?editors=010

Chapter 15

Animation recap

We’ve covered a lot of detail so far! I hope things are making sense.

When learning this, I must admit it took me a while for this animation and
keyframe stuff to make sense to me. If it is not clear yet, try not to becoe
frustrated. Keep at it, and bit by bit the various tricks of using animation in
HTML and CSS will become clear.

In this chapter we’re going to take a moment to recap what we learned. But
first, we’ll take a look at that homework challenge!

Homework challenge: Traffic lights

I’ve created an updated version of the UK-based traffic light demo, this time
changing the sequence to remove the “red + amber” stage.

See it in action here. I’ve made the colour scheme match what Google suggested
American traffic lights look like.

Recap: Animations

In this section we looked at the animation property and how it works alongside
keyframes.

Like a transition, only different

While the animation property looks and works in a way that’s similar to
transition, it has some subtle differences. While a transition will only oc-

64

http://codepen.io/donovanh/pen/ogRRdR?editors=010
http://codepen.io/donovanh/pen/vEqbdw?editors=010

cur when an element changes, animations can begin straight away.

Using the various properties, animations can loop a certain number of times (or
forever), and can even begin with a negative value for their delay. This starts
the animation with it already having progressed.

By default, animations will play from start to finish, then jump back to their
default state. We can have the animation freeze at its end point by using the
animation-direction property of forwards.

Animations use timing-functions, much like transitions. However, the timing
function applies to each individual keyframe, not the entire set of keyframes.
Instead, you can specify animation-timing-function within a keyframe for
more granular control.

Finally, animations can be specified in shorthand, just like transitions:

animation: keyframe-name 2s forwards linear;

Keyframes

Every animation needs to reference a set of keyframes. These keyframes are a
series of percentages, describing each “stage” of the animation. The browser fills
in the gaps automatically.

Keyframes have their own shorthand (to and from) when you want to only go
from one state to another.

Stacking percentages beside each other can have the animation “pause” at that
stage.

Lastly, you can omit the 0% keyframe and the browser will take the element’s
style as implied. For example, to have something fade away, we don’t necessarily
have to give it a starting opacity of 1 (assuming the element is already visible):

@keyframes name {
100% {

opacity: 0;
}

}

Putting them together

When we want to use an animation, we always have the two pieces:

.element {
animation: keyframe-name ...

}

65

@keyframes keyframe-name {
...

}

Homework

At this point we should be clear on the different between the animation property
and the transition property.

Have a look at some of the Principles of Animation for the Web examples. Each
is made entirely with HTML and CSS, using keyframe animation. Try forking
one and see what you can do with it.

66

http://codepen.io/collection/AxKOdY/

Chapter 16

Storytelling

Now that we’ve covered both the transition and animation property, let’s
combine both into an animation with a hover effect.

Heroes

Many sites like to make use of a large, attention-grabbing image at the top of
their homepage. Sometimes called a “hero image”, this is usually a full-width
banner style element.

A nice example I found recently was the Fabric landing page. A CSS animatiom
shows how Fabric works as a modular framework.

Another interesting example is the Mailchimp homepage. Here the hero image
tells a story by demonstrating how emails are created.

You may have also seen it in action on my CSS Animation 101 email course
landing page:

In each of these examples, they use animation to set the tone of the page and
illustrate what the site is about.

Example: Scrolling background

Let’s create an example of our own. In this example I’ve created a “web page”
style graphic that moves up and down the screen.

For a bit of interactivity, the animation pauses and a message is shown when
a mouse cursor hovers over the screen. It makes use of both animations and
transitions to achieve this effect.

67

https://cssanimation.rocks/courses/animation-101/

Figure 16.1: Source: https://get.fabric.io/

Figure 16.2: Source: http://mailchimp.com

68

Figure 16.3: Source: https://cssanimation.rocks/courses/animation-101/

Figure 16.4: Source: http://codepen.io/donovanh/pen/LEwedW?editors=110

69

See it in action here.

Part 1: Background animation

To set up this example we begin with the HTML element to contain it:

<div class="screen"></div>

We can make the “screen” div look like a monitor or iPad using some styles:

.screen {
background: #e25865 url(//cssanimation.rocks/screen/images/screen_bg.png) no-repeat top center;
background-size: 100% auto;
border: 2em solid #fff;
border-radius: 1em;
width: 40em;
height: 30em;

}

We have some styles here defining the size and border, and setting a background
image.

The effect we’re creating is based on moving a background image. The background
image is taller than the screen and has a background-size of 100% auto. This
means the background will fit the width of our container but be taller.

With a background image to animate, we can now write the keyframes that
make it look like someone is scrolling a web page:

@keyframes scroll {
0%, 10% {

background-position: 0 0;
}
20%, 30% {

background-position: 0 -22em;
}
50%, 60% {

background-position: 0 -44em;
}
90%, 100% {

background-position: 0 0;
}

}

The property we’re animating is background-position. With this property we
can move it up and down. It begins at 0 0, which means zero distance from the
left, and zero from the top.

70

http://codepen.io/donovanh/pen/LEwedW?editors=110
https://cssanimation.rocks/screen/images/screen_bg.png
https://cssanimation.rocks/screen/images/screen_bg.png

In the next frames we have the background move 22 ems up, then 44 ems up,
then return to the top of the page. Let’s create an animation property to apply
this to the “screen” element.

.screen {
animation: scroll 5s infinite cubic-bezier(.52,-0.39,.3,1.43);

}

This CSS is applying the a set of keyframes called “scroll”, telling it to take
5 seconds, run forever and use a cubic-bezier timing function. In this case
the cubic bezier function gives the animation the bounciness as without it the
movement would look less lifelike.

I generated this bezier over on cubic-bezier.com. If you haven’t bookmarked
that site yet, I’d absolutely recommend you do!

Part 2: Adding the hover transition

It can be a good idea to pause or stop an animation once it has finished or when
you want people to concentrate on something else. Constant animation can be
distracting, so let’s make use of animation-play-state to pause the animation
when on hover.

.screen:hover {
animation-play-state: paused;

}

This means that when a cursor hovers over the animation, it will pause. And
when the cursor moves away again, it will resume its default playing state.

You can achieve this with JavaScript also. One possibility is to have some
JavaScript disable the animation when the user interacts with another part of
the page, or perhaps when they scroll away. We’ll take a look at how to enable
animations on scroll later.

Adding a message

We can also go further and have a message transition into place when a user
hovers over the element. To do this we’ll need a little more HTML:

<div class="screen">
<div class="message">Hover message!</div>

</div>

In the CodePen CSS we position this message in the middle of the “screen” and
make it invisible.

71

http://cubic-bezier.com/#.52,-0.39,.3,1.43
http://codepen.io/donovanh/pen/LEwedW?editors=110

.message {
/*... positioning styles ...*/
opacity: 0;
transition: all 0.4s ease-out;

}

We can then show it on hover using a transition:

.screen:hover .message {
opacity: 1;

}

Since we set a transition on the “message” styling, it creates the animation
both when the cursor hovers over the element and when it leaves. The paused
animation and transition effects look like this:

Figure 16.5: Source: http://codepen.io/donovanh/pen/LEwedW?editors=110

Summary

In this chapter we combined both an animation and a transition to create an
effect that could be useful for landing pages and product tours. We made use

72

of the animation-play-state to make sure the animation stopped when we
wanted it to.

Homework

Take a moment to think about what we’ve covered so far.

We covered a lot. Combining animations and transitions is a powerful way to
bring pages to life.

When thinking about how this can apply to your work, think about how it might
be controlled too. When might animation work for your users’ benefit, and when
might it work against it? While it is great to know how to animate it can be
even better to know when not to.

73

Chapter 17

Star Wars

Get out the popcorn! In this chapter we’ll have some fun making an SVG
animation. We will be building the Star Wars movie title from the “The Force
Awakens” trailer.

Figure 17.1: Source: https://www.youtube.com/watch?v=ngElkyQ6Rhs

This example combines CSS animation with some other CSS properties you may
find helpful, specifically the transforms scale, translate and rotate.

74

Transform: Not an animation property

While it may sound like it creates an animation, the transform property is in
fact used setting a static position, skew or scale of an element. We can use it to
create great effects but to do so we need to have a different transform for each
keyframe or state we animate.

Transform: scale(), translateZ() and rotateY()

We can make elements larger or smaller using scale. Using translateZ we can
move elements in the Z-axis. This axis would be the one represented by drawing
a line from you, through the monitor.

In this case we’ll be using a combination of scale and translateZ to make it look
like some words are flying through space.

Lastly we’ll use rotateY to spin the letters of the tagline. Rotating around the
Y-axis will require a bit of 3D work in the browser.

SVG, HTML and CSS

In preparation for this example I made two SVG files for the Star and Wars
parts of the logo. Do feel free to grab them to use if you want to play along.

The HTML for the demo is as follows:

<div class="starwars-demo">

<h2 class="byline" id="byline">The Force Awakens</h2>

</div>

A static image of some stars is used for the background. The font in the byline
was tricky to find, so I’ve referenced the web font “Lato” in this example.

With some absolute positioning to position the content in the middle of the
screen, we begin with this:

75

https://cssanimation.rocks/demo/starwars/images/star.svg
https://cssanimation.rocks/demo/starwars/images/wars.svg
https://cssanimation.rocks/demo/starwars/images/bg.jpg

Animating the Star and Wars

We want the larger text to fade into view, while also starting larger and getting
smaller over time. This is a good case for the scale() transform. Let’s use it
on the word “Star” with these keyframes:

@keyframes star {
0% {

opacity: 0;
transform: scale(1.5) translateY(-0.75em);

}
20% {

opacity: 1;
}
89% {

opacity: 1;
transform: scale(1);

}
100% {

opacity: 0;
transform: translateZ(-1000em);

}
}

There are two properties that change over the course of this animation. The
opacity and transform. The opacity change makes it start transparent, and

76

fade away at the end so that we can loop the animation.

The transform begins by setting the scale at 1.5. This means that the initial size
of the text is 150% larger than normal. At 89%, we set the transform property
to a scale of 1. This means that between 0% and 89%, the scale goes from 150%
to 100%.

The final transformZ causes the words to zoom away quickly.

We can apply these keyframes to the word “Star” like so:

.star {
animation: star 10s ease-out infinite;

}

A similar set of keyframes is used for the word “Wars”.

Making it 3D

Using 3D transforms in CSS, whether translating along the Z-axis, or rotating
around the Y and Z axes requires that we set a stage for the 3D. In HTML
terms this means we create a container, and tell the browser that some 3D stuff
is going to happen.

We do this by adding the following to the .starwars-demo div:

.starwars-demo {
perspective: 800px;
transform-style: preserve3d;

}

These two properties tell the browser that the container’s children should be
positioned in 3D, rather than flat. CSS Tricks goes into more detail on the
property.

Secondly, the persective property tells the browser how “deep” the scene needs
to be. In case we’ve made it 800px. Smaller values create more “extreme”
perspective effects as the scene is shorter.

With that covered, we’ll introduce the tagline.

The Force Awakens

The tagline “The Force Awakens” appears in the trailer with each letter spinning
into place. We can create this effect using the rotateY transform. In this
case we’ve wrapped each of the letters in a span element, so that we can apply
animation to each letter.

77

https://css-tricks.com/almanac/properties/t/transform-style/

An issue I quickly discovered was that there isn’t a straightforward way to
animate each of the letters in the byline. My first approach was to manually
wrap each letter in a span tag. This worked but made the HTML a little messy.
The current demo includes some JavaScript (thanks to Tady for the assist) that
wraps each letter automatically in a span.

We’re going to apply an animation to each letter.

First, the keyframes:

@keyframes spin-letters {
0%, 10% {

opacity: 0;
transform: rotateY(90deg);

}
30% {

opacity: 1;
}
70%, 86% {

transform: rotateY(0);
opacity: 1;

}
95%, 100% {

opacity: 0;
}

}

To begin with, the letters are rotated 90 degrees, then by 70% through the
animation, they’ve been animated to face the viewer.

We can apply this set of keyframes to each span like so:

.byline span {
animation: spin-letters 10s linear infinite;

}

The result is each of the span containers that hold each letter will fade and spin
slowly into place, before fading away at the end of the animation.

Putting it together we have the finished demo.

Homework

If you have time I’d encourage you to take a look through the CSS section of
the CodePen version.

You may notice some “media” queries in the CSS. We use these to resize the
example for smaller devices. Try changing some of the animation keyframes, or

78

https://twitter.com/tadywankenobi
http://codepen.io/donovanh/pen/pJzwEw?editors=110
http://codepen.io/donovanh/pen/pJzwEw?editors=110

Figure 17.2: Source: http://codepen.io/donovanh/pen/pJzwEw?editors=110

the transform values to see what happens.

79

Chapter 18

Revealing content on scroll

A popular use for animation on the web is adding movement to elements when
the browser scrolls. In this chapter we’ll take a look at how to do this.

Here’s today’s demo on CodePen. Try scrolling down the page, and see how the
quotes and cats fade into place.

Wow.js

Many sites trigger custom animations when you scroll to a certain point. They
could start playing a video, trigger a complex keyframe animation, or just have
items fade into place to draw attention to them.

In each case, what’s happening is that there’s some JavaScript that adds a class
to an element when it is visible on screen. We can then attach animations to
the class, so that the browser scrolling results in the animation starting at the
right time.

There are many JavaScript options that add classes, and one I’ve found easy to
use is Wow.js. Let’s use it to create a simple example where content fades into
view as we scroll.

80

http://codepen.io/donovanh/pen/gbVMjm
http://mynameismatthieu.com/WOW/

">

Using Wow.js

Using Wow.js involves two steps. The first is to download the JavaScript. Place
the wow.min.js file in your project’s JavaScript folder. Next step is to reference
this file from within your HTML:

<script src="javascripts/wow.min.js"></script>

(Assuming your folder is called javascripts - change as needed)

Then, we invoke the JavaScript using this command (paste it after the previous
code):

<script>
new WOW().init();

</script>

We can now add “wow” classes to our content and Wow.js will take care of
working out whether our content is on-screen.

Adding “wow” classes

If we have an element we want to animate on scroll, start by making sure it has
the class “wow”:

<p class="wow">...</p>

81

https://raw.githubusercontent.com/matthieua/WOW/master/dist/wow.min.js

This means that when the browser scrolls this content onto the screen, Wow.js
will add “animated” to the class, like this:

<p class="wow animated">...</p>

If we had an animation on our p.animated elements, the animation would only
happen when this class is added.

Hiding and showing

For our demo, we’ll hide all elements with the wow class, and show them when
they have the animated class. First, we hide them:

.wow {
opacity: 0;
transition: all 0.5s 0.5s ease-out;

}

We also apply a transition here so that the element will fade in. Notice the
second 0.5s. In this case we’re also adding a delay of half a second. This will
allow the element a chance to properly scroll into the viewport before it fades in.

The next code defines how the element will look with Wow.js’s animated class
added:

.animated {
opacity: 1;

}

We should now have a situation where items will fade in as the user scrolls! See
it in action on the demo.

Using Animate.css

Wow.js has been designed to work well with the CSS framework Animate.css.
I’ve not used in this example yet as it helps to understand how to create our
own transitions. It can be worth looking at some of the transitions Animate.css
gives us out of the box.

In this example I’ve used Animate.css. Note how there are no animations
or transitions in the CSS. Instead, I’ve added a class to the HTML to tell
Animate.css which animation to apply:

<section class="image wow bounceInUp">

82

http://codepen.io/donovanh/pen/gbVMjm
http://codepen.io/donovanh/pen/gbVMjm
http://daneden.github.io/animate.css/
http://codepen.io/donovanh/pen/xbvOQK

The class bounceInUp is a reference to one of Animate.css’s many built in
animations. If you select the “cog” on the CSS section in the demo, you’ll see
that I’ve referenced the Animate.css framework under “External CSS file”.

Using Modernizr

I find it is generally a good idea to protect against situations in which we hide
content and show it again using JavaScript. People may not have JavaScript
enabled or working for some reason or another. A script such as Modernizr can
be used to handle this. It’ll add a js class to the body of the document, and we
can then bring that into our styles.

I’ve included Modernizr in the demo.

Homework

Making content fade into place is a great start, but what ways can you imagine
this being used to add value to your designs and sites? When browsing, look
out for times when content seems to start animating as you scroll to it.

When does it work, and when does it not work so well?

83

http://modernizr.com/
http://codepen.io/donovanh/pen/gbVMjm

Chapter 19

Accessibility

So far we’ve been looking at what animation on the web is, and how to create
animation. Before we finish up for this course, let’s take a moment to think
about what we can do to make sure we do right by our visitors.

There are many ways animation can help our content, as well as ways it can get
in the way.

Make sure content is accessible

An example we’ve used a few times is when we animate content to show it on
screen. If content is beginning in a hidden state, we need to be careful that it
doesn’t remain hidden for some users. Older browsers support CSS animations
to varying degrees, and JavaScript may not always work. We can use tools such
as Modernizr to design around potential issues.

We also use animation to convey meaning and intent in our designs. When
designing animations, do keep in mind that some people won’t be able to see
them. They may be using a screen reader or have different browser settings that
cause your animations to not work as intended. Make sure important information
is available regardless of whether the animation works.

Just that autoplaying video is bad for users, animation that plays automatically
can be distracting from other content on the page. Try to limit where and when
animation happens to situations where you want your visitors to be distracted by
it. This might also mean limiting how long an animation plays for, or ensuring
it has stopped before your visitor needs to focus elsewhere.

84

http://modernizr.com/
http://www.punkchip.com/autoplay-is-bad-for-all-users/

Give control

The W3C recommends that any content that is blinking, scrolling or auto-
updating for more than 5 seconds should have a means of pausing or removing
the motion. Using the animation-play-state is one way to pause animations
as needed, as seen on hover here.

Allow for alternate inputs

A growing percentage of your visitors will be using phones. When on a phone,
there is no cursor and no hover state. We need to design around this. One option
I often use is to detect a tap and add an “active” class to the target. I then add
transitions or animations to both the :hover as well as the .active states.

Confusion

Sometimes websites go too far and try to animate all the things. This doesn’t
just muddy the site’s message, it can cause confusion. This is especially true of
UI. When adding animation to elements on the page that visitors interact with,
make sure that it is obvious why the animation has been triggered. Your visitors
don’t have time to decipher complexity in either the visual design or the way it
moves, so try to be clear.

Don’t make me sick

Too much animation, or the wrong kind of animation, can make people feel sick.

When Apple introduced iOS7, an updated operating system for their phone, it
brought with it a lot more motion and animation. Some of this was enough to
make people sick. Some people, like myself, struggle to read in a car or bus as
the motion makes us feel ill, and others can’t play certain video games for more
than a few minutes at a time.

The reason this happens is down to the way our vestibular system works. We
have 3 tubes in our ears that help us determine where our head is in 3D space.
We can trick our minds into thinking we’re moving, but then when the vestibular
system doesn’t echo the movement our brains get confused and we feel ill.

That we get sick is an evolutionary side effect. Throwing up is a complex thing,
and we have a special part of our brains dedicated to handling it. As it happens,
this part of the brain is located near the part that deals with balance, and so we
feel ill.

85

http://www.w3.org/TR/2008/REC-WCAG20-20081211/#time-limits-pause
http://codepen.io/donovanh/pen/LEwedW
http://reverttosaved.com/2013/09/28/why-ios-7-is-making-some-users-sick/
http://reverttosaved.com/2013/09/28/why-ios-7-is-making-some-users-sick/
https://www.youtube.com/watch?v=dSHnGO9qGsE

This is something that could become more of an issue as we begin to see more
wearable technology. When designing larger animations, be sure to test whether
people are comfortable with the types of motion in place.

Vestibular.org is a great starting point to learn more about this topic.

Accessibility is for everyone’s benefit

Accessibility isn’t just for people using screen readers or alternative means of
browsing our content. We’re all distracted sometimes, network connections drop,
we’re checking our phones in a queue at the post office or glancing at directions
when driving. We should be aware of the ways people might use what we make
and ensure our animations don’t get in the way.

Homework

If your job involves designing or building interfaces for people to use, do take
time to read NNGroup’s Animation for Attention and Comprehension. Think
about how people might use your work, and what it might mean if they couldn’t
see the animation.

86

http://vestibular.org/understanding-vestibular-disorder
http://www.nngroup.com/articles/animation-usability/

Chapter 20

Now you know CSS
animation!

You’ve completed CSS Animation 101! I hope you’ve enjoyed this book.

Before we finish up, let’s explore some resources you might want to bookmark
and explore as you go further with CSS animation.

CSS Animation cheatsheet

I’ve prepared a transitions and animations cheat sheet (PDF) that sums up the
various properties of each. It is designed to fit onto one A4 page. Enjoy!

Resources to bookmark

While it is good to know how to create our own CSS animations and transitions,
it can also be good to build on existing platforms. Here are some great tools
that we can use to save time and get the result we want quickly.

Animate.css

Animate.css describes itself as “just add water” CSS animations. You can
reference the CSS file and add any of the Animate classes to see them come to
life. Here’s an example using Animate.css.

87

https://cssanimation.rocks/cheatsheets/transitions_animations.pdf
http://daneden.github.io/animate.css/
http://codepen.io/donovanh/pen/xbvOQK

Hover.css

A nice alternative to Animate.css, Hover.css is another wide variety of ready to
use animations that you can apply to links, buttons, logos or any other HTML
element.

Other tools

CSS animation is pretty powerful, and can achieve a lot without needing to
resort to other technology such as JavaScript. However it is not always the
right tool for all situations. Sometimes there can be a need for more complex
animations, and JavaScript can help take things further. The best packages
build on CSS to make use of its speed and browser support, but let you do more.

GSAP

Greensock Animation Platform is a JavaScript-based method of creating more
advanced animations and offers fine control and great performance. There’s a
bit of a learning curve but it is a powerful tool.

Snabbt.js

Snabbt is a powerful and elegant way to create more complex animation using
custom timing functions. It generates transform matrices for the browser to
animate, resulting in very good performance.

CSS Animate

CSS Animate is a tool for generating keyframe animations. It helps design
animations by dragging an object around and uses a handy timeline approach.

Cubic-bezier.com

For when you want to create a feeling of life in your timing, Cubic-bezier.com is
my go-to tool. A simple tool that helps sculpt timing functions. Alternately, a
similar tool is built into Chrome’s inspector.

88

http://ianlunn.github.io/Hover/
http://greensock.com/gsap
http://daniel-lundin.github.io/snabbt.js/
http://cssanimate.com/
http://cubic-bezier.com

Next steps

A question some have asked is “what do we do to progress past the 101 stage?”.

My suggestion would be to look for challenges. Look to sites such as Dribbble.com,
or CodePen.io for inspiration. Look for ideas from popular products (I frequently
remake Apple designs), movies or TV shows. Wonder, how would I capture that
effect on the web? Would CSS be a good way to do it?

I’d also suggest reading some of the posts on CSS Tricks, SaraSoueidan.com,
and of course CSSAnimation.rocks.

So, if you don’t want this knowledge to fade, practice. Find reasons to use it,
and look for what interests you. If you can make it fun, it’ll be all the easier. #
Level up your CSS animation skills!

Congratulations for finishing this introduction to CSS animation! I hope you’ve
enjoyed it. Adding animation to your web projects is a great way to make them
stand out.

Introducing an essential video course: Level Up Your CSS Animation Skills

Continue learning how to create amazing animations with over 4 hours of high
quality video lessons and lifetime access to all video content, cheatsheets and
guides.

You will learn how to:

• Create an amazing animated hero header
• Bring your UI to life with hover, touch and button animations
• Wow your visitors with scroll and parallax animations
• Build your very own animated carousel
• Adjust animations to fit all sizes of devices and browsers
• Optimise your CSS animations for reuse and size
• Each with fun examples you can follow along, step by step

By the end of the course you’ll have the skills you need to create an impressive
animated landing page!

Go to https://courses.cssanimation.rocks/ now to see what you can learn!

89

http://dribbble.com
http://codepen.io
https://css-tricks.com/
http://sarasoueidan.com/articles/
https://cssanimation.rocks
http://courses.cssanimation.rocks/

	Welcome
	Hello, I'm Donovan
	Book structure
	Help and support
	Need to brush up on your CSS?
	Homework

	Why animate?
	More than words alone
	What is animation on the web?
	With great power comes great responsibility
	Inspiration
	Summary
	Homework

	Creative environments
	In the browser
	Local development
	In summary
	Homework

	Transitions
	Transitions
	Transition properties
	In summary
	Homework

	Animations
	Animation in the browser
	Examples
	Transitions vs. Animations
	Homework

	Transitions in action
	Transitions
	Example: Button transition
	Prefixes and browser compatibility
	Homework

	Transitions properties
	Shorthand vs Longhand
	Things transitions don't work on
	Homework

	Timing functions
	Linear
	Ease-in
	Ease-out
	Ease-in-out
	Cubic-bezier
	Steps
	More examples
	Homework

	Multiple transitions
	Example 1: Fancy button
	Example 2: Background reveal
	Multiple transitions on a single element
	Homework

	Transitions and JavaScript
	Add or remove classes
	Controlling transitions with JavaScript
	Let's recap
	Homework

	Animations in action
	A symbiotic relationship
	The animation property
	Keyframes
	Prefixes
	Homework

	Animation properties
	Using timing functions within keyframes
	Homework

	Keyframes in action
	Things to look out for
	Example: Save button wiggle effect
	Homework

	Multiple animations
	Traffic lights
	Further reading
	Homework

	Animation recap
	Homework challenge: Traffic lights
	Recap: Animations
	Putting them together
	Homework

	Storytelling
	Heroes
	Example: Scrolling background
	Part 1: Background animation
	Part 2: Adding the hover transition
	Summary
	Homework

	Star Wars
	Transform: Not an animation property
	Transform: scale(), translateZ() and rotateY()
	SVG, HTML and CSS
	Animating the Star and Wars
	Making it 3D
	The Force Awakens
	Homework

	Revealing content on scroll
	Wow.js
	Using Wow.js
	Adding ``wow'' classes
	Hiding and showing
	Using Animate.css
	Using Modernizr
	Homework

	Accessibility
	Make sure content is accessible
	Give control
	Allow for alternate inputs
	Confusion
	Don't make me sick
	Accessibility is for everyone's benefit
	Homework

	Now you know CSS animation!
	CSS Animation cheatsheet
	Resources to bookmark
	Other tools
	Next steps

