1
0
mirror of https://github.com/kamranahmedse/developer-roadmap.git synced 2025-09-02 22:02:39 +02:00

Join strings and newline char (#8394)

This commit is contained in:
Piotr Idzik
2025-03-24 21:52:52 +01:00
committed by GitHub
parent 1813c7bba6
commit 58c3195831
21 changed files with 47 additions and 47 deletions

View File

@@ -34,7 +34,7 @@ int main() {
class HelloWorld {
public:
void printHello() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
}
};

View File

@@ -22,7 +22,7 @@ Let's say you have a simple C++ program saved in a file called `hello.cpp`:
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```

View File

@@ -64,7 +64,7 @@ int main() {
m["one"] = 1;
m["two"] = 2;
std::cout << "Map contains:" << '\n';
std::cout << "Map contains:\n";
for (const auto &pair : m) {
std::cout << pair.first << ": " << pair.second << '\n';
}
@@ -87,7 +87,7 @@ int main() {
um["one"] = 1;
um["two"] = 2;
std::cout << "Unordered map contains:" << '\n';
std::cout << "Unordered map contains:\n";
for (const auto &pair : um) {
std::cout << pair.first << ": " << pair.second << '\n';
}

View File

@@ -14,7 +14,7 @@ public:
// Use the same shared data for copying.
MyString(const MyString &other) : data(other.data) {
std::cout << "Copied using the Copy-Write idiom." << '\n';
std::cout << "Copied using the Copy-Write idiom.\n";
}
// Make a copy only if we want to modify the data.
@@ -22,7 +22,7 @@ public:
// Check if there's more than one reference.
if (data.use_count() > 1) {
data = std::make_shared<std::string>(*data);
std::cout << "Copy is actually made for writing." << '\n';
std::cout << "Copy is actually made for writing.\n";
}
*data = str;
}

View File

@@ -17,14 +17,14 @@ public:
}
void implementation() {
std::cout << "Default implementation in Base" << '\n';
std::cout << "Default implementation in Base\n";
}
};
class Derived1 : public Base<Derived1> {
public:
void implementation() {
std::cout << "Custom implementation in Derived1" << '\n';
std::cout << "Custom implementation in Derived1\n";
}
};

View File

@@ -12,28 +12,28 @@ To resolve this ambiguity, you can use virtual inheritance. A virtual base class
class Base {
public:
void print() {
std::cout << "Base class" << '\n';
std::cout << "Base class\n";
}
};
class Derived1 : virtual public Base {
public:
void derived1Print() {
std::cout << "Derived1 class" << '\n';
std::cout << "Derived1 class\n";
}
};
class Derived2 : virtual public Base {
public:
void derived2Print() {
std::cout << "Derived2 class" << '\n';
std::cout << "Derived2 class\n";
}
};
class Derived3 : public Derived1, public Derived2 {
public:
void derived3Print() {
std::cout << "Derived3 class" << '\n';
std::cout << "Derived3 class\n";
}
};

View File

@@ -15,7 +15,7 @@ Here's an example in C++ demonstrating dynamic polymorphism.
class Shape {
public:
virtual void draw() {
std::cout << "Drawing a shape" << '\n';
std::cout << "Drawing a shape\n";
}
};
@@ -23,7 +23,7 @@ public:
class Circle : public Shape {
public:
void draw() override {
std::cout << "Drawing a circle" << '\n';
std::cout << "Drawing a circle\n";
}
};
@@ -31,7 +31,7 @@ public:
class Rectangle : public Shape {
public:
void draw() override {
std::cout << "Drawing a rectangle" << '\n';
std::cout << "Drawing a rectangle\n";
}
};

View File

@@ -10,14 +10,14 @@ Here is a basic example of how `dynamic_cast` can be used:
class BaseClass {
public:
virtual void display() {
std::cout << "BaseClass" << '\n';
std::cout << "BaseClass\n";
}
};
class DerivedClass : public BaseClass {
public:
void display() {
std::cout << "DerivedClass" << '\n';
std::cout << "DerivedClass\n";
}
};

View File

@@ -15,14 +15,14 @@ int main() {
// Some code here...
if (/*some error condition*/) {
std::cout << "An error occurred." << '\n';
std::cout << "An error occurred.\n";
return 1;
}
// More code here...
if (/*another error condition*/) {
std::cout << "Another error occurred." << '\n';
std::cout << "Another error occurred.\n";
return 2;
}
@@ -40,7 +40,7 @@ void some_function() {
// Some code here...
if (/*some error condition*/) {
std::cout << "An error occurred." << '\n';
std::cout << "An error occurred.\n";
std::exit(1);
}

View File

@@ -19,7 +19,7 @@ template <typename T>
class MyContainer {
public:
void print() {
std::cout << "Generic container." << '\n';
std::cout << "Generic container.\n";
}
};
@@ -28,7 +28,7 @@ template <>
class MyContainer<int> {
public:
void print() {
std::cout << "Container for integers." << '\n';
std::cout << "Container for integers.\n";
}
};

View File

@@ -33,7 +33,7 @@ Example of a source file:
#include <iostream>
void Example::printMessage() {
std::cout << "Hello, code splitting!" << '\n';
std::cout << "Hello, code splitting!\n";
}
```

View File

@@ -35,8 +35,8 @@ int main() {
#include <iostream>
int main() {
std::cerr << "An error occurred." << '\n';
std::clog << "Logging information." << '\n';
std::cerr << "An error occurred.\n";
std::clog << "Logging information.\n";
return 0;
}
```

View File

@@ -25,7 +25,7 @@ Here are a few examples to demonstrate the use of lambda functions in C++:
```cpp
auto printHello = []() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
};
printHello(); // Output: Hello, World!
```

View File

@@ -13,7 +13,7 @@ C++ provides the following logical operators:
```cpp
int a = 5, b = 10;
if (a > 0 && b > 0) {
std::cout << "Both values are positive." << '\n';
std::cout << "Both values are positive.\n";
}
```
- **OR Operator (||)**
@@ -25,7 +25,7 @@ C++ provides the following logical operators:
```cpp
int a = 5, b = -10;
if (a > 0 || b > 0) {
std::cout << "At least one value is positive." << '\n';
std::cout << "At least one value is positive.\n";
}
```
@@ -38,7 +38,7 @@ C++ provides the following logical operators:
```cpp
int a = 5;
if (!(a < 0)) {
std::cout << "The value is not negative." << '\n';
std::cout << "The value is not negative.\n";
}
```
@@ -48,7 +48,7 @@ Using these operators, you can create more complex logical expressions, for exam
int a = 5, b = -10, c = 15;
if (a > 0 && (b > 0 || c > 0)) {
std::cout << "At least two values are positive." << '\n';
std::cout << "At least two values are positive.\n";
}
```

View File

@@ -30,7 +30,7 @@ class Animal
public:
void eat()
{
std::cout << "I can eat!" << '\n';
std::cout << "I can eat!\n";
}
};
@@ -40,7 +40,7 @@ class Mammal
public:
void breath()
{
std::cout << "I can breathe!" << '\n';
std::cout << "I can breathe!\n";
}
};
@@ -50,7 +50,7 @@ class Dog : public Animal, public Mammal
public:
void bark()
{
std::cout << "I can bark! Woof woof!" << '\n';
std::cout << "I can bark! Woof woof!\n";
}
};

View File

@@ -13,7 +13,7 @@ To create a new thread, include the `<thread>` header file and create an instanc
#include <thread>
void my_function() {
std::cout << "This function is executing in a separate thread" << '\n';
std::cout << "This function is executing in a separate thread\n";
}
int main() {

View File

@@ -13,7 +13,7 @@ public:
int age;
void bark() {
std::cout << name << " barks!" << '\n';
std::cout << name << " barks!\n";
}
};
```
@@ -47,7 +47,7 @@ public:
}
void bark() {
std::cout << name << " barks!" << '\n';
std::cout << name << " barks!\n";
}
};
```
@@ -62,14 +62,14 @@ Inheritance is the concept of deriving new classes from existing ones, which ena
class Animal {
public:
void breathe() {
std::cout << "I can breathe" << '\n';
std::cout << "I can breathe\n";
}
};
class Dog : public Animal {
public:
void bark() {
std::cout << "Dog barks!" << '\n';
std::cout << "Dog barks!\n";
}
};
```
@@ -90,21 +90,21 @@ Polymorphism allows you to use a single interface to represent different types.
class Animal {
public:
virtual void makeSound() {
std::cout << "The Animal makes a sound" << '\n';
std::cout << "The Animal makes a sound\n";
}
};
class Dog : public Animal {
public:
void makeSound() override {
std::cout << "Dog barks!" << '\n';
std::cout << "Dog barks!\n";
}
};
class Cat : public Animal {
public:
void makeSound() override {
std::cout << "Cat meows!" << '\n';
std::cout << "Cat meows!\n";
}
};
```

View File

@@ -32,7 +32,7 @@ class MyClass_Impl // the actual implementation
public:
void some_method()
{
std::cout << "Implementation method called!" << '\n';
std::cout << "Implementation method called!\n";
}
};

View File

@@ -10,7 +10,7 @@ The first program that most people learn to write in any programming language is
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```
@@ -40,7 +40,7 @@ int main() {
To output text to the console, we use the `std::cout` object and the insertion operator `<<`. In the "Hello, World!" example, we used the following line to print "Hello, World!" to the console:
```cpp
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
```
- `std`: This is the namespace where C++ standard library entities (classes and functions) reside. It stands for "standard"
- `std::cout`: The standard "character output" stream that writes to the console

View File

@@ -38,7 +38,7 @@ Create a new file called `main.cpp` within your project and include this code:
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```

View File

@@ -15,14 +15,14 @@ Here's an example that demonstrates SFINAE in action:
template <typename T, typename = void>
struct foo_impl {
void operator()(T t) {
std::cout << "Called when T is not arithmetic" << '\n';
std::cout << "Called when T is not arithmetic\n";
}
};
template <typename T>
struct foo_impl<T, std::enable_if_t<std::is_arithmetic<T>::value>> {
void operator()(T t) {
std::cout << "Called when T is arithmetic" << '\n';
std::cout << "Called when T is arithmetic\n";
}
};