1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 21:49:22 +01:00
learnxinyminutes-docs/d.html.markdown

262 lines
6.8 KiB
D
Raw Normal View History

2015-06-07 22:30:16 -04:00
---
2015-10-07 23:11:24 -04:00
language: D
filename: learnd.d
2015-06-07 22:30:16 -04:00
contributors:
- ["Nick Papanastasiou", "www.nickpapanastasiou.github.io"]
2017-08-25 14:25:11 +05:45
2015-06-07 22:30:16 -04:00
---
```d
2015-06-07 22:30:16 -04:00
// You know what's coming...
2015-06-10 11:54:16 -04:00
module hello;
2015-06-07 22:30:16 -04:00
import std.stdio;
// args is optional
void main(string[] args) {
writeln("Hello, World!");
}
2015-06-16 17:15:14 -04:00
```
2015-06-07 22:30:16 -04:00
2015-10-07 23:11:24 -04:00
If you're like me and spend way too much time on the internet, odds are you've heard
2015-06-16 17:10:57 -04:00
about [D](http://dlang.org/). The D programming language is a modern, general-purpose,
2015-10-07 23:11:24 -04:00
multi-paradigm language with support for everything from low-level features to
2015-06-16 17:10:57 -04:00
expressive high-level abstractions.
D is actively developed by a large group of super-smart people and is spearheaded by
[Walter Bright](https://en.wikipedia.org/wiki/Walter_Bright) and
[Andrei Alexandrescu](https://en.wikipedia.org/wiki/Andrei_Alexandrescu).
With all that out of the way, let's look at some examples!
2015-06-16 17:10:57 -04:00
```d
2015-06-07 22:30:16 -04:00
import std.stdio;
void main() {
2015-06-16 17:10:57 -04:00
// Conditionals and loops work as expected.
for(int i = 0; i < 10000; i++) {
2015-06-07 22:30:16 -04:00
writeln(i);
}
2015-10-13 18:17:11 +02:00
// 'auto' can be used for inferring types.
auto n = 1;
2015-10-07 23:11:24 -04:00
2015-10-13 18:17:11 +02:00
// Numeric literals can use '_' as a digit separator for clarity.
2015-06-07 22:30:16 -04:00
while(n < 10_000) {
n += n;
}
do {
n -= (n / 2);
} while(n > 0);
2015-10-13 18:17:11 +02:00
// For and while are nice, but in D-land we prefer 'foreach' loops.
// The '..' creates a continuous range, including the first value
// but excluding the last.
foreach(n; 1..1_000_000) {
2015-06-07 22:30:16 -04:00
if(n % 2 == 0)
writeln(n);
2015-06-07 22:30:16 -04:00
}
2015-10-13 18:17:11 +02:00
// There's also 'foreach_reverse' when you want to loop backwards.
foreach_reverse(n; 1..int.max) {
2015-06-10 12:18:45 -04:00
if(n % 2 == 1) {
writeln(n);
2015-06-10 12:18:45 -04:00
} else {
2015-06-07 22:30:16 -04:00
writeln("No!");
2015-06-10 12:18:45 -04:00
}
2015-06-07 22:30:16 -04:00
}
}
2015-06-07 22:50:05 -04:00
```
2015-06-10 14:07:14 -04:00
We can define new types with `struct`, `class`, `union`, and `enum`. Structs and unions
2015-10-23 06:55:00 +02:00
are passed to functions by value (i.e. copied) and classes are passed by reference. Furthermore,
2015-06-07 22:50:05 -04:00
we can use templates to parameterize all of these on both types and values!
```d
2015-10-15 07:31:48 +02:00
// Here, 'T' is a type parameter. Think '<T>' from C++/C#/Java.
2015-06-10 11:54:16 -04:00
struct LinkedList(T) {
2015-06-07 22:50:05 -04:00
T data = null;
2015-10-15 07:31:48 +02:00
// Use '!' to instantiate a parameterized type. Again, think '<T>'.
LinkedList!(T)* next;
2015-06-07 22:50:05 -04:00
}
class BinTree(T) {
T data = null;
2015-10-07 23:11:24 -04:00
2015-10-15 07:31:48 +02:00
// If there is only one template parameter, we can omit the parentheses.
2015-06-07 22:50:05 -04:00
BinTree!T left;
BinTree!T right;
}
enum Day {
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
}
2015-10-15 07:31:48 +02:00
// Use alias to create abbreviations for types.
2015-06-07 22:50:05 -04:00
alias IntList = LinkedList!int;
alias NumTree = BinTree!double;
2015-06-07 22:30:16 -04:00
2015-06-10 11:54:16 -04:00
// We can create function templates as well!
T max(T)(T a, T b) {
2015-10-07 23:11:24 -04:00
if(a < b)
2015-06-10 11:54:16 -04:00
return b;
return a;
}
2015-10-15 07:31:48 +02:00
// Use the ref keyword to ensure pass by reference. That is, even if 'a' and 'b'
// are value types, they will always be passed by reference to 'swap()'.
2015-06-10 11:54:16 -04:00
void swap(T)(ref T a, ref T b) {
auto temp = a;
a = b;
2015-10-07 23:11:24 -04:00
b = temp;
2015-06-10 11:54:16 -04:00
}
2015-10-15 07:31:48 +02:00
// With templates, we can also parameterize on values, not just types.
2015-06-10 12:21:11 -04:00
class Matrix(uint m, uint n, T = int) {
2015-06-10 11:54:16 -04:00
T[m] rows;
T[n] columns;
}
2015-06-10 12:21:11 -04:00
2015-10-15 07:31:48 +02:00
auto mat = new Matrix!(3, 3); // We've defaulted type 'T' to 'int'.
2015-06-10 12:21:11 -04:00
2015-06-07 22:39:01 -04:00
```
2015-06-10 11:54:16 -04:00
Speaking of classes, let's talk about properties for a second. A property
is roughly a function that may act like an lvalue, so we can
have the syntax of POD structures (`structure.x = 7`) with the semantics of
getter and setter methods (`object.setX(7)`)!
2015-06-10 12:18:45 -04:00
```d
2015-10-15 07:31:48 +02:00
// Consider a class parameterized on types 'T' & 'U'.
2015-06-16 17:15:14 -04:00
class MyClass(T, U) {
T _data;
U _other;
}
2015-10-15 07:31:48 +02:00
// And "getter" and "setter" methods like so:
2015-06-10 12:18:45 -04:00
class MyClass(T, U) {
T _data;
U _other;
2015-10-07 23:11:24 -04:00
2015-10-15 07:31:48 +02:00
// Constructors are always named 'this'.
2015-06-10 12:18:45 -04:00
this(T t, U u) {
2015-10-15 07:31:48 +02:00
// This will call the setter methods below.
2015-06-10 12:18:45 -04:00
data = t;
other = u;
}
2015-10-07 23:11:24 -04:00
2015-06-10 12:18:45 -04:00
// getters
@property T data() {
return _data;
}
@property U other() {
return _other;
}
2015-10-07 23:11:24 -04:00
// setters
2015-06-10 12:18:45 -04:00
@property void data(T t) {
_data = t;
}
@property void other(U u) {
_other = u;
}
}
2015-10-15 07:31:48 +02:00
// And we use them in this manner:
2015-06-10 12:18:45 -04:00
void main() {
auto mc = new MyClass!(int, string)(7, "seven");
2015-06-10 12:18:45 -04:00
// Import the 'stdio' module from the standard library for writing to
// console (imports can be local to a scope).
import std.stdio;
2015-10-07 23:11:24 -04:00
// Call the getters to fetch the values.
writefln("Earlier: data = %d, str = %s", mc.data, mc.other);
// Call the setters to assign new values.
mc.data = 8;
mc.other = "eight";
// Call the getters again to fetch the new values.
writefln("Later: data = %d, str = %s", mc.data, mc.other);
2015-06-10 12:18:45 -04:00
}
```
2015-06-16 17:10:57 -04:00
With properties, we can add any amount of logic to
2015-06-10 12:18:45 -04:00
our getter and setter methods, and keep the clean syntax of
accessing members directly!
2015-06-10 12:42:10 -04:00
2015-06-10 14:07:14 -04:00
Other object-oriented goodies at our disposal
include interfaces, abstract classes,
and overriding methods. D does inheritance just like Java:
2015-06-16 17:10:57 -04:00
Extend one class, implement as many interfaces as you please.
2015-06-10 12:42:10 -04:00
We've seen D's OOP facilities, but let's switch gears. D offers
2015-10-07 23:11:24 -04:00
functional programming with first-class functions, `pure`
2015-06-10 12:42:10 -04:00
functions, and immutable data. In addition, all of your favorite
functional algorithms (map, filter, reduce and friends) can be
found in the wonderful `std.algorithm` module!
```d
2015-06-10 14:07:14 -04:00
import std.algorithm : map, filter, reduce;
import std.range : iota; // builds an end-exclusive range
import std.stdio;
2015-06-10 12:42:10 -04:00
void main() {
// We want to print the sum of a list of squares of even ints
// from 1 to 100. Easy!
2015-10-07 23:11:24 -04:00
2015-06-10 12:42:10 -04:00
// Just pass lambda expressions as template parameters!
2015-12-02 21:59:12 +02:00
// You can pass any function you like, but lambdas are convenient here.
2015-06-10 12:42:10 -04:00
auto num = iota(1, 101).filter!(x => x % 2 == 0)
.map!(y => y ^^ 2)
.reduce!((a, b) => a + b);
writeln(num);
}
```
2015-10-07 23:11:24 -04:00
Notice how we got to build a nice Haskellian pipeline to compute num?
2015-12-02 21:59:12 +02:00
That's thanks to a D innovation know as Uniform Function Call Syntax (UFCS).
2015-06-10 12:42:10 -04:00
With UFCS, we can choose whether to write a function call as a method
2015-06-16 17:46:58 -04:00
or free function call! Walter wrote a nice article on this
2015-10-07 23:11:24 -04:00
[here.](http://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394)
In short, you can call functions whose first parameter
2015-06-16 17:15:14 -04:00
is of some type A on any expression of type A as a method.
2015-06-10 12:42:10 -04:00
2015-06-16 17:46:58 -04:00
I like parallelism. Anyone else like parallelism? Sure you do. Let's do some!
2015-06-10 12:42:10 -04:00
```d
2015-12-02 21:59:12 +02:00
// Let's say we want to populate a large array with the square root of all
// consecutive integers starting from 1 (up until the size of the array), and we
// want to do this concurrently taking advantage of as many cores as we have
// available.
2015-06-16 17:46:58 -04:00
import std.stdio;
import std.parallelism : parallel;
import std.math : sqrt;
void main() {
2015-12-02 21:59:12 +02:00
// Create your large array
2015-06-16 17:46:58 -04:00
auto arr = new double[1_000_000];
2015-12-02 21:59:12 +02:00
// Use an index, access every array element by reference (because we're
// going to change each element) and just call parallel on the array!
2015-06-16 17:46:58 -04:00
foreach(i, ref elem; parallel(arr)) {
2016-01-02 18:43:19 +02:00
elem = sqrt(i + 1.0);
2015-06-16 17:46:58 -04:00
}
}
```