2013-09-08 21:52:47 -07:00
---
2013-08-13 13:52:13 -04:00
name: Go
category: language
language: Go
filename: learngo.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
2014-01-24 15:30:11 -06:00
- ["Christopher Bess", "https://github.com/cbess"]
2014-01-30 18:47:55 -05:00
- ["Jesse Johnson", "https://github.com/holocronweaver"]
2014-02-02 15:11:15 -05:00
- ["Quint Guvernator", "https://github.com/qguv"]
2014-05-11 16:33:08 -04:00
- ["Jose Donizetti", "https://github.com/josedonizetti"]
2014-07-16 05:28:50 +07:00
- ["Alexej Friesen", "https://github.com/heyalexej"]
2013-08-13 13:52:13 -04:00
---
2014-09-05 15:05:13 +02:00
Go was created out of the need to get work done. It's not the latest trend
2013-08-13 13:52:13 -04:00
in computer science, but it is the newest fastest way to solve real-world
problems.
It has familiar concepts of imperative languages with static typing.
It's fast to compile and fast to execute, it adds easy-to-understand
concurrency to leverage today's multi-core CPUs, and has features to
help with large-scale programming.
Go comes with a great standard library and an enthusiastic community.
2013-08-13 19:59:19 -07:00
```go
2013-08-13 13:52:13 -04:00
// Single line comment
/* Multi-
2014-09-05 15:05:13 +02:00
line comment */
2013-08-13 13:52:13 -04:00
// A package clause starts every source file.
// Main is a special name declaring an executable rather than a library.
package main
2013-08-13 17:12:54 -04:00
// Import declaration declares library packages referenced in this file.
2013-08-13 13:52:13 -04:00
import (
2014-07-16 05:28:50 +07:00
"fmt" // A package in the Go standard library.
"io/ioutil" // Implements some I/O utility functions.
m "math" // Math library with local alias m.
"net/http" // Yes, a web server!
"strconv" // String conversions.
2013-08-13 13:52:13 -04:00
)
2014-09-05 15:05:13 +02:00
// A function definition. Main is special. It is the entry point for the
// executable program. Love it or hate it, Go uses brace brackets.
2013-08-13 13:52:13 -04:00
func main() {
2014-07-16 05:28:50 +07:00
// Println outputs a line to stdout.
// Qualify it with the package name, fmt.
fmt.Println("Hello world!")
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
// Call another function within this package.
beyondHello()
2013-08-13 13:52:13 -04:00
}
2013-08-13 17:12:54 -04:00
// Functions have parameters in parentheses.
2013-09-04 09:37:26 +02:00
// If there are no parameters, empty parentheses are still required.
2013-08-13 13:52:13 -04:00
func beyondHello() {
2014-07-16 05:28:50 +07:00
var x int // Variable declaration. Variables must be declared before use.
x = 3 // Variable assignment.
// "Short" declarations use := to infer the type, declare, and assign.
y := 4
sum, prod := learnMultiple(x, y) // Function returns two values.
fmt.Println("sum:", sum, "prod:", prod) // Simple output.
learnTypes() // < y minutes , learn more !
2013-08-13 13:52:13 -04:00
}
2015-04-22 23:54:16 +10:00
/* < - multiline comment
Functions can have parameters and (multiple!) return values.
Here `x` , `y` are the arguments and `sum` , `prod` is the signature (what's returned).
Note that `x` and `sum` receive the type `int` .
*/
2013-08-13 13:52:13 -04:00
func learnMultiple(x, y int) (sum, prod int) {
2014-07-16 05:28:50 +07:00
return x + y, x * y // Return two values.
2013-08-13 13:52:13 -04:00
}
// Some built-in types and literals.
func learnTypes() {
2014-07-16 05:28:50 +07:00
// Short declaration usually gives you what you want.
2014-09-22 12:11:49 +00:00
str := "Learn Go!" // string type.
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
s2 := `A "raw" string literal
2014-01-30 18:47:55 -05:00
can include line breaks.` // Same string type.
2013-08-13 13:52:13 -04:00
2014-09-05 15:05:13 +02:00
// Non-ASCII literal. Go source is UTF-8.
2014-08-19 12:06:02 +01:00
g := 'Σ' // rune type, an alias for int32, holds a unicode code point.
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
f := 3.14195 // float64, an IEEE-754 64-bit floating point number.
c := 3 + 4i // complex128, represented internally with two float64's.
2013-08-13 13:52:13 -04:00
2015-04-22 23:54:16 +10:00
// var syntax with initializers.
2014-07-16 05:28:50 +07:00
var u uint = 7 // Unsigned, but implementation dependent size as with int.
var pi float32 = 22. / 7
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
// Conversion syntax with a short declaration.
n := byte('\n') // byte is an alias for uint8.
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
// Arrays have size fixed at compile time.
var a4 [4]int // An array of 4 ints, initialized to all 0.
2014-09-05 21:02:38 -05:00
a3 := [...]int{3, 1, 5} // An array initialized with a fixed size of three
2014-08-07 22:37:52 +02:00
// elements, with values 3, 1, and 5.
2013-08-13 13:52:13 -04:00
2014-09-05 15:05:13 +02:00
// Slices have dynamic size. Arrays and slices each have advantages
2014-07-16 05:28:50 +07:00
// but use cases for slices are much more common.
2014-09-05 15:05:13 +02:00
s3 := []int{4, 5, 9} // Compare to a3. No ellipsis here.
2014-07-16 05:28:50 +07:00
s4 := make([]int, 4) // Allocates slice of 4 ints, initialized to all 0.
var d2 [][]float64 // Declaration only, nothing allocated here.
bs := []byte("a slice") // Type conversion syntax.
2013-08-13 13:52:13 -04:00
2014-08-10 20:02:31 -07:00
// Because they are dynamic, slices can be appended to on-demand.
// To append elements to a slice, built-in append() function is used.
// First argument is a slice to which we are appending. Commonly,
// the array variable is updated in place, as in example below.
s := []int{1, 2, 3} // Result is a slice of length 3.
s = append(s, 4, 5, 6) // Added 3 elements. Slice now has length of 6.
2014-08-10 20:04:49 -07:00
fmt.Println(s) // Updated slice is now [1 2 3 4 5 6]
// To append another slice, instead of list of atomic elements we can
2014-08-10 20:02:31 -07:00
// pass a reference to a slice or a slice literal like this, with a
2014-08-19 20:43:18 -07:00
// trailing elipsis, meaning take a slice and unpack its elements,
// appending them to slice s.
s = append(s, []int{7, 8, 9}...) // Second argument is a slice literal.
2014-08-10 20:04:49 -07:00
fmt.Println(s) // Updated slice is now [1 2 3 4 5 6 7 8 9]
2014-08-10 20:02:31 -07:00
2014-07-16 05:28:50 +07:00
p, q := learnMemory() // Declares p, q to be type pointer to int.
2014-09-05 15:05:13 +02:00
fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
// Maps are a dynamically growable associative array type, like the
// hash or dictionary types of some other languages.
m := map[string]int{"three": 3, "four": 4}
m["one"] = 1
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
// Unused variables are an error in Go.
// The underbar lets you "use" a variable but discard its value.
2014-09-22 12:11:49 +00:00
_, _ , _, _ , _, _ , _, _ , _, _ = str, s2, g, f, u, pi, n, a3, s4, bs
2014-07-16 05:28:50 +07:00
// Output of course counts as using a variable.
fmt.Println(s, c, a4, s3, d2, m)
2013-08-13 13:52:13 -04:00
2014-07-16 05:28:50 +07:00
learnFlowControl() // Back in the flow.
2013-08-13 13:52:13 -04:00
}
2014-06-29 08:12:58 -07:00
// It is possible, unlike in many other languages for functions in go
2014-06-22 06:20:12 -07:00
// to have named return values.
2014-06-23 07:31:39 -07:00
// Assigning a name to the type being returned in the function declaration line
2014-06-29 08:12:58 -07:00
// allows us to easily return from multiple points in a function as well as to
2014-06-23 07:31:39 -07:00
// only use the return keyword, without anything further.
2014-06-22 06:20:12 -07:00
func learnNamedReturns(x, y int) (z int) {
2014-07-16 05:28:50 +07:00
z = x * y
return // z is implicit here, because we named it earlier.
2014-06-22 06:20:12 -07:00
}
2014-09-05 15:05:13 +02:00
// Go is fully garbage collected. It has pointers but no pointer arithmetic.
2013-08-13 13:52:13 -04:00
// You can make a mistake with a nil pointer, but not by incrementing a pointer.
func learnMemory() (p, q *int) {
2014-07-16 05:28:50 +07:00
// Named return values p and q have type pointer to int.
p = new(int) // Built-in function new allocates memory.
// The allocated int is initialized to 0, p is no longer nil.
s := make([]int, 20) // Allocate 20 ints as a single block of memory.
s[3] = 7 // Assign one of them.
r := -2 // Declare another local variable.
return & s[3], & r // & takes the address of an object.
2013-08-13 13:52:13 -04:00
}
2014-01-30 18:47:55 -05:00
func expensiveComputation() float64 {
2014-07-16 05:28:50 +07:00
return m.Exp(10)
2013-08-13 13:52:13 -04:00
}
func learnFlowControl() {
2014-07-16 05:28:50 +07:00
// If statements require brace brackets, and do not require parens.
if true {
fmt.Println("told ya")
}
// Formatting is standardized by the command line command "go fmt."
if false {
// Pout.
} else {
// Gloat.
}
// Use switch in preference to chained if statements.
x := 42.0
switch x {
case 0:
case 1:
case 42:
// Cases don't "fall through".
case 43:
// Unreached.
2015-04-20 23:26:38 -07:00
default:
// Default case is optional.
2014-07-16 05:28:50 +07:00
}
// Like if, for doesn't use parens either.
// Variables declared in for and if are local to their scope.
for x := 0; x < 3 ; x + + { / / + + is a statement .
fmt.Println("iteration", x)
}
// x == 42 here.
// For is the only loop statement in Go, but it has alternate forms.
for { // Infinite loop.
break // Just kidding.
continue // Unreached.
}
2014-08-04 22:23:24 +02:00
2014-08-07 22:43:59 +02:00
// You can use range to iterate over an array, a slice, a string, a map, or a channel.
// range returns one (channel) or two values (array, slice, string and map).
2014-08-04 22:23:24 +02:00
for key, value := range map[string]int{"one": 1, "two": 2, "three": 3} {
// for each pair in the map, print key and value
fmt.Printf("key=%s, value=%d\n", key, value)
}
2014-07-16 05:28:50 +07:00
// As with for, := in an if statement means to declare and assign
// y first, then test y > x.
if y := expensiveComputation(); y > x {
x = y
}
// Function literals are closures.
xBig := func() bool {
return x > 10000 // References x declared above switch statement.
}
fmt.Println("xBig:", xBig()) // true (we last assigned e^10 to x).
x = 1.3e3 // This makes x == 1300
fmt.Println("xBig:", xBig()) // false now.
// What's more is function literals may be defined and called inline,
// acting as an argument to function, as long as:
// a) function literal is called immediately (),
// b) result type matches expected type of argument.
fmt.Println("Add + double two numbers: ",
func(a, b int) int {
return (a + b) * 2
}(10, 2)) // Called with args 10 and 2
2014-09-05 15:05:13 +02:00
// => Add + double two numbers: 24
2014-07-16 05:28:50 +07:00
// When you need it, you'll love it.
goto love
2013-08-13 13:52:13 -04:00
love:
2014-07-16 05:28:50 +07:00
learnFunctionFactory() // func returning func is fun(3)(3)
learnDefer() // A quick detour to an important keyword.
learnInterfaces() // Good stuff coming up!
2013-08-13 13:52:13 -04:00
}
2014-07-02 14:37:15 +02:00
func learnFunctionFactory() {
2014-07-16 05:28:50 +07:00
// Next two are equivalent, with second being more practical
fmt.Println(sentenceFactory("summer")("A beautiful", "day!"))
2014-07-02 14:37:15 +02:00
2014-07-16 05:28:50 +07:00
d := sentenceFactory("summer")
fmt.Println(d("A beautiful", "day!"))
fmt.Println(d("A lazy", "afternoon!"))
2014-07-02 14:37:15 +02:00
}
2014-06-29 08:12:58 -07:00
// Decorators are common in other languages. Same can be done in Go
// with function literals that accept arguments.
2014-07-02 14:37:15 +02:00
func sentenceFactory(mystring string) func(before, after string) string {
2014-07-16 05:28:50 +07:00
return func(before, after string) string {
return fmt.Sprintf("%s %s %s", before, mystring, after) // new string
}
2014-06-29 08:12:58 -07:00
}
2014-02-02 15:11:15 -05:00
func learnDefer() (ok bool) {
2014-07-16 05:28:50 +07:00
// Deferred statements are executed just before the function returns.
defer fmt.Println("deferred statements execute in reverse (LIFO) order.")
defer fmt.Println("\nThis line is being printed first because")
// Defer is commonly used to close a file, so the function closing the
// file stays close to the function opening the file.
return true
2014-02-02 15:11:15 -05:00
}
2013-08-13 17:12:54 -04:00
// Define Stringer as an interface type with one method, String.
2013-08-13 13:52:13 -04:00
type Stringer interface {
2014-07-16 05:28:50 +07:00
String() string
2013-08-13 13:52:13 -04:00
}
2013-08-13 17:12:54 -04:00
// Define pair as a struct with two fields, ints named x and y.
2013-08-13 13:52:13 -04:00
type pair struct {
2014-07-16 05:28:50 +07:00
x, y int
2013-08-13 13:52:13 -04:00
}
2014-09-05 15:05:13 +02:00
// Define a method on type pair. Pair now implements Stringer.
2013-08-13 17:12:54 -04:00
func (p pair) String() string { // p is called the "receiver"
2014-07-16 05:28:50 +07:00
// Sprintf is another public function in package fmt.
// Dot syntax references fields of p.
return fmt.Sprintf("(%d, %d)", p.x, p.y)
2013-08-13 13:52:13 -04:00
}
func learnInterfaces() {
2014-09-05 15:05:13 +02:00
// Brace syntax is a "struct literal". It evaluates to an initialized
// struct. The := syntax declares and initializes p to this struct.
2014-07-16 05:28:50 +07:00
p := pair{3, 4}
fmt.Println(p.String()) // Call String method of p, of type pair.
var i Stringer // Declare i of interface type Stringer.
i = p // Valid because pair implements Stringer
2014-09-05 15:05:13 +02:00
// Call String method of i, of type Stringer. Output same as above.
2014-07-16 05:28:50 +07:00
fmt.Println(i.String())
// Functions in the fmt package call the String method to ask an object
// for a printable representation of itself.
fmt.Println(p) // Output same as above. Println calls String method.
fmt.Println(i) // Output same as above.
learnVariadicParams("great", "learning", "here!")
2014-01-30 18:47:55 -05:00
}
// Functions can have variadic parameters.
func learnVariadicParams(myStrings ...interface{}) {
2014-07-16 05:28:50 +07:00
// Iterate each value of the variadic.
// The underbar here is ignoring the index argument of the array.
for _, param := range myStrings {
fmt.Println("param:", param)
}
2014-04-16 18:06:58 +04:00
2014-07-16 05:28:50 +07:00
// Pass variadic value as a variadic parameter.
fmt.Println("params:", fmt.Sprintln(myStrings...))
2013-08-13 19:59:19 -07:00
2014-07-16 05:28:50 +07:00
learnErrorHandling()
2013-08-13 13:52:13 -04:00
}
func learnErrorHandling() {
2014-07-16 05:28:50 +07:00
// ", ok" idiom used to tell if something worked or not.
m := map[int]string{3: "three", 4: "four"}
if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
fmt.Println("no one there")
} else {
fmt.Print(x) // x would be the value, if it were in the map.
}
// An error value communicates not just "ok" but more about the problem.
if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
// prints 'strconv.ParseInt: parsing "non-int": invalid syntax'
fmt.Println(err)
}
2014-09-05 15:05:13 +02:00
// We'll revisit interfaces a little later. Meanwhile,
2014-07-16 05:28:50 +07:00
learnConcurrency()
2013-08-13 13:52:13 -04:00
}
2013-08-13 17:12:54 -04:00
// c is a channel, a concurrency-safe communication object.
2013-08-13 13:52:13 -04:00
func inc(i int, c chan int) {
2014-07-16 05:28:50 +07:00
c < - i + 1 / / < - is the " send " operator when a channel appears on the left .
2013-08-13 13:52:13 -04:00
}
// We'll use inc to increment some numbers concurrently.
func learnConcurrency() {
2014-09-05 15:05:13 +02:00
// Same make function used earlier to make a slice. Make allocates and
2014-07-16 05:28:50 +07:00
// initializes slices, maps, and channels.
c := make(chan int)
2014-09-05 15:05:13 +02:00
// Start three concurrent goroutines. Numbers will be incremented
2014-07-16 05:28:50 +07:00
// concurrently, perhaps in parallel if the machine is capable and
2014-09-05 15:05:13 +02:00
// properly configured. All three send to the same channel.
2014-07-16 05:28:50 +07:00
go inc(0, c) // go is a statement that starts a new goroutine.
go inc(10, c)
go inc(-805, c)
// Read three results from the channel and print them out.
// There is no telling in what order the results will arrive!
fmt.Println(< -c , < -c , < -c ) / / channel on right , < - is " receive " operator .
cs := make(chan string) // Another channel, this one handles strings.
ccs := make(chan chan string) // A channel of string channels.
go func() { c < - 84 } ( ) / / Start a new goroutine just to send a value .
go func() { cs < - " wordy " } ( ) / / Again , for cs this time .
// Select has syntax like a switch statement but each case involves
2014-09-05 15:05:13 +02:00
// a channel operation. It selects a case at random out of the cases
2014-07-16 05:28:50 +07:00
// that are ready to communicate.
select {
case i := < -c: / / The value received can be assigned to a variable ,
fmt.Printf("it's a %T", i)
case < -cs: / / or the value received can be discarded .
fmt.Println("it's a string")
case < -ccs: / / Empty channel , not ready for communication .
fmt.Println("didn't happen.")
}
2014-09-05 15:05:13 +02:00
// At this point a value was taken from either c or cs. One of the two
2014-07-16 05:28:50 +07:00
// goroutines started above has completed, the other will remain blocked.
learnWebProgramming() // Go does it. You want to do it too.
2013-08-13 13:52:13 -04:00
}
2013-08-13 17:12:54 -04:00
// A single function from package http starts a web server.
2013-08-13 13:52:13 -04:00
func learnWebProgramming() {
2014-07-02 14:55:33 +02:00
2014-07-16 05:28:50 +07:00
// First parameter of ListenAndServe is TCP address to listen to.
// Second parameter is an interface, specifically http.Handler.
go func() {
err := http.ListenAndServe(":8080", pair{})
fmt.Println(err) // don't ignore errors
}()
2014-07-02 14:55:33 +02:00
2014-07-16 05:28:50 +07:00
requestServer()
2013-08-13 13:52:13 -04:00
}
2013-08-13 17:12:54 -04:00
// Make pair an http.Handler by implementing its only method, ServeHTTP.
2013-08-13 13:52:13 -04:00
func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
2014-07-16 05:28:50 +07:00
// Serve data with a method of http.ResponseWriter.
w.Write([]byte("You learned Go in Y minutes!"))
2013-08-13 13:52:13 -04:00
}
2014-07-02 14:55:33 +02:00
func requestServer() {
2014-07-16 05:28:50 +07:00
resp, err := http.Get("http://localhost:8080")
fmt.Println(err)
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
fmt.Printf("\nWebserver said: `%s` ", string(body))
2014-07-02 14:55:33 +02:00
}
2013-08-13 13:52:13 -04:00
```
## Further Reading
The root of all things Go is the [official Go web site ](http://golang.org/ ).
There you can follow the tutorial, play interactively, and read lots.
2014-09-05 15:05:13 +02:00
The language definition itself is highly recommended. It's easy to read
2013-08-13 13:52:13 -04:00
and amazingly short (as language definitions go these days.)
2014-08-07 22:31:20 +02:00
You can play around with the code on [Go playground ](https://play.golang.org/p/tnWMjr16Mm ). Try to change it and run it from your browser! Note that you can use [https://play.golang.org ](https://play.golang.org ) as a [REPL ](https://en.wikipedia.org/wiki/Read-eval-print_loop ) to test things and code in your browser, without even installing Go.
2014-08-05 09:03:21 +02:00
2013-09-04 20:46:45 -07:00
On the reading list for students of Go is the [source code to the standard
2014-09-05 15:05:13 +02:00
library](http://golang.org/src/pkg/). Comprehensively documented, it
2013-09-04 20:46:45 -07:00
demonstrates the best of readable and understandable Go, Go style, and Go
2014-09-05 15:05:13 +02:00
idioms. Or you can click on a function name in [the
2013-09-04 20:46:45 -07:00
documentation](http://golang.org/pkg/) and the source code comes up!
2013-08-13 13:52:13 -04:00
2014-05-11 16:33:08 -04:00
Another great resource to learn Go is [Go by example ](https://gobyexample.com/ ).