1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-16 21:18:40 +01:00
learnxinyminutes-docs/python.html.markdown

583 lines
15 KiB
Markdown
Raw Normal View History

---
2013-06-27 09:35:59 -07:00
language: python
2013-07-03 22:59:13 -07:00
contributors:
- ["Louie Dinh", "http://ldinh.ca"]
2013-11-11 23:17:34 -05:00
- ["Amin Bandali", "http://aminbandali.com"]
2013-06-29 20:19:14 -07:00
filename: learnpython.py
---
2013-06-27 09:35:59 -07:00
Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular
2013-08-08 18:49:45 +10:00
languages in existence. I fell in love with Python for its syntactic clarity. It's basically
2013-06-27 09:35:59 -07:00
executable pseudocode.
2013-06-28 16:32:26 -07:00
Feedback would be highly appreciated! You can reach me at [@louiedinh](http://twitter.com/louiedinh) or louiedinh [at] [google's email service]
2013-06-27 09:35:59 -07:00
Note: This article applies to Python 2.7 specifically, but should be applicable
to Python 2.x. Look for another tour of Python 3 soon!
```python
# Single line comments start with a number symbol.
2013-06-29 16:21:55 -04:00
""" Multiline strings can be written
using three "'s, and are often used
as comments
2013-06-27 00:29:07 -07:00
"""
2013-06-27 09:35:59 -07:00
####################################################
## 1. Primitive Datatypes and Operators
####################################################
2013-06-27 00:29:07 -07:00
# You have numbers
3 # => 3
2013-06-27 00:29:07 -07:00
# Math is what you would expect
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7
2013-06-27 09:35:59 -07:00
# Division is a bit tricky. It is integer division and floors the results
# automatically.
5 / 2 # => 2
# To fix division we need to learn about floats.
2.0 # This is a float
11.0 / 4.0 # => 2.75 ahhh...much better
# Truncation or Integer division
5 // 3 # => 1
5.0 // 3.0 # => 1.0 # works on floats too
# Modulo operation
7 % 3 # => 1
2013-06-27 00:29:07 -07:00
# Enforce precedence with parentheses
(1 + 3) * 2 # => 8
2013-06-27 00:29:07 -07:00
# Boolean values are primitives
True
False
2013-06-27 00:29:07 -07:00
# negate with not
not True # => False
not False # => True
2013-06-27 00:29:07 -07:00
# Equality is ==
1 == 1 # => True
2 == 1 # => False
2013-06-28 09:52:39 +02:00
# Inequality is !=
1 != 1 # => False
2 != 1 # => True
2013-06-28 09:52:39 +02:00
# More comparisons
1 < 10 # => True
1 > 10 # => False
2 <= 2 # => True
2 >= 2 # => True
2013-06-28 09:52:39 +02:00
2013-08-07 22:48:11 +08:00
# Comparisons can be chained!
1 < 2 < 3 # => True
2 < 3 < 2 # => False
2013-06-28 09:52:39 +02:00
2013-06-27 00:29:07 -07:00
# Strings are created with " or '
"This is a string."
'This is also a string.'
2013-06-27 00:29:07 -07:00
# Strings can be added too!
"Hello " + "world!" # => "Hello world!"
2013-06-27 00:29:07 -07:00
# A string can be treated like a list of characters
"This is a string"[0] # => 'T'
# % can be used to format strings, like this:
"%s can be %s" % ("strings", "interpolated")
# A newer way to format strings is the format method.
# This method is the preferred way
"{0} can be {1}".format("strings", "formatted")
# You can use keywords if you don't want to count.
"{name} wants to eat {food}".format(name="Bob", food="lasagna")
2013-06-27 00:29:07 -07:00
# None is an object
None # => None
2013-08-23 09:54:21 +03:00
# Don't use the equality "==" symbol to compare objects to None
# Use "is" instead
"etc" is None # => False
None is None # => True
# The 'is' operator tests for object identity. This isn't
# very useful when dealing with primitive values, but is
# very useful when dealing with objects.
# None, 0, and empty strings/lists all evaluate to False.
# All other values are True
bool(0) # => False
bool("") # => False
2013-06-27 09:35:59 -07:00
####################################################
## 2. Variables and Collections
####################################################
# Python has a print function, available in versions 2.7 and 3...
print("I'm Python. Nice to meet you!")
# and an older print statement, in all 2.x versions but removed from 3.
print "I'm also Python!"
2013-06-27 00:29:07 -07:00
# No need to declare variables before assigning to them.
2013-06-27 09:35:59 -07:00
some_var = 5 # Convention is to use lower_case_with_underscores
some_var # => 5
# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_other_var # Raises a name error
# if can be used as an expression
"yahoo!" if 3 > 2 else 2 # => "yahoo!"
2013-06-27 00:29:07 -07:00
# Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6]
2013-06-27 00:29:07 -07:00
# Add stuff to the end of a list with append
li.append(1) # li is now [1]
li.append(2) # li is now [1, 2]
li.append(4) # li is now [1, 2, 4]
li.append(3) # li is now [1, 2, 4, 3]
# Remove from the end with pop
li.pop() # => 3 and li is now [1, 2, 4]
# Let's put it back
li.append(3) # li is now [1, 2, 4, 3] again.
2013-06-27 00:29:07 -07:00
# Access a list like you would any array
li[0] # => 1
# Look at the last element
li[-1] # => 3
2013-06-27 18:22:30 -07:00
2013-06-27 00:29:07 -07:00
# Looking out of bounds is an IndexError
li[4] # Raises an IndexError
2013-06-27 10:53:43 -07:00
# You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
li[1:3] # => [2, 4]
# Omit the beginning
li[2:] # => [4, 3]
# Omit the end
li[:3] # => [1, 2, 4]
# Select every second entry
li[::2] # =>[1, 4]
2013-11-11 23:17:34 -05:00
# Revert the list
li[::-1] # => [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]
2013-08-23 09:54:21 +03:00
# Remove arbitrary elements from a list with "del"
del li[2] # li is now [1, 2, 3]
2013-06-27 00:29:07 -07:00
# You can add lists
2014-05-01 13:53:01 -05:00
li + other_li # => [1, 2, 3, 4, 5, 6] - Note: values for li and for other_li are not modified.
2013-08-23 09:54:21 +03:00
# Concatenate lists with "extend()"
li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]
2013-08-23 09:54:21 +03:00
# Check for existence in a list with "in"
1 in li # => True
2013-08-23 09:54:21 +03:00
# Examine the length with "len()"
len(li) # => 6
# Tuples are like lists but are immutable.
2013-06-27 00:29:07 -07:00
tup = (1, 2, 3)
tup[0] # => 1
tup[0] = 3 # Raises a TypeError
# You can do all those list thingies on tuples too
len(tup) # => 3
tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
tup[:2] # => (1, 2)
2 in tup # => True
# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
2013-06-27 18:27:14 -07:00
# Now look how easy it is to swap two values
e, d = d, e # d is now 5 and e is now 4
2013-06-27 00:29:07 -07:00
# Dictionaries store mappings
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}
2013-06-27 00:29:07 -07:00
# Look up values with []
filled_dict["one"] # => 1
2013-08-23 09:54:21 +03:00
# Get all keys as a list with "keys()"
filled_dict.keys() # => ["three", "two", "one"]
2013-06-27 09:35:59 -07:00
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly.
2013-08-23 09:54:21 +03:00
# Get all values as a list with "values()"
filled_dict.values() # => [3, 2, 1]
2013-06-27 09:35:59 -07:00
# Note - Same as above regarding key ordering.
2013-08-23 09:54:21 +03:00
# Check for existence of keys in a dictionary with "in"
"one" in filled_dict # => True
1 in filled_dict # => False
2013-08-07 22:48:11 +08:00
# Looking up a non-existing key is a KeyError
filled_dict["four"] # KeyError
2013-08-23 09:54:21 +03:00
# Use "get()" method to avoid the KeyError
filled_dict.get("one") # => 1
filled_dict.get("four") # => None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4) # => 1
filled_dict.get("four", 4) # => 4
# "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5) # filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) # filled_dict["five"] is still 5
2013-06-27 00:29:07 -07:00
# Sets store ... well sets
empty_set = set()
# Initialize a "set()" with a bunch of values
some_set = set([1, 2, 2, 3, 4]) # some_set is now set([1, 2, 3, 4])
2013-06-28 21:15:33 -07:00
# Since Python 2.7, {} can be used to declare a set
filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4}
2013-06-27 00:29:07 -07:00
# Add more items to a set
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}
2013-06-27 00:29:07 -07:00
# Do set intersection with &
2013-06-29 23:13:53 -07:00
other_set = {3, 4, 5, 6}
filled_set & other_set # => {3, 4, 5}
2013-06-28 21:15:33 -07:00
2013-06-27 00:29:07 -07:00
# Do set union with |
filled_set | other_set # => {1, 2, 3, 4, 5, 6}
2013-06-28 21:15:33 -07:00
# Do set difference with -
{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
2013-06-27 00:29:07 -07:00
# Check for existence in a set with in
2 in filled_set # => True
10 in filled_set # => False
2013-06-27 09:35:59 -07:00
####################################################
## 3. Control Flow
####################################################
2013-06-27 00:29:07 -07:00
# Let's just make a variable
some_var = 5
# Here is an if statement. Indentation is significant in python!
2013-08-07 22:48:11 +08:00
# prints "some_var is smaller than 10"
2013-06-27 00:29:07 -07:00
if some_var > 10:
print("some_var is totally bigger than 10.")
2013-06-27 00:29:07 -07:00
elif some_var < 10: # This elif clause is optional.
print("some_var is smaller than 10.")
2013-06-27 00:29:07 -07:00
else: # This is optional too.
print("some_var is indeed 10.")
2013-06-27 00:45:11 -07:00
"""
For loops iterate over lists
prints:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
2013-06-27 00:29:07 -07:00
for animal in ["dog", "cat", "mouse"]:
2013-06-27 09:35:59 -07:00
# You can use % to interpolate formatted strings
print("%s is a mammal" % animal)
"""
"range(number)" returns a list of numbers
from zero to the given number
prints:
0
1
2
3
"""
for i in range(4):
print(i)
2013-06-27 00:45:11 -07:00
"""
While loops go until a condition is no longer met.
prints:
0
1
2
2013-06-27 00:45:11 -07:00
3
"""
2013-06-27 00:29:07 -07:00
x = 0
2013-06-27 00:45:11 -07:00
while x < 4:
print(x)
2013-06-27 09:35:59 -07:00
x += 1 # Shorthand for x = x + 1
2013-06-27 00:29:07 -07:00
# Handle exceptions with a try/except block
2013-06-27 18:18:05 -07:00
# Works on Python 2.6 and up:
2013-06-27 00:29:07 -07:00
try:
2013-08-23 09:54:21 +03:00
# Use "raise" to raise an error
2013-06-27 10:53:43 -07:00
raise IndexError("This is an index error")
2013-06-27 00:29:07 -07:00
except IndexError as e:
pass # Pass is just a no-op. Usually you would do recovery here.
except (TypeError, NameError):
pass # Multiple exceptions can be handled together, if required.
else: # Optional clause to the try/except block. Must follow all except blocks
print "All good!" # Runs only if the code in try raises no exceptions
2013-06-27 09:35:59 -07:00
####################################################
## 4. Functions
####################################################
2013-08-23 09:54:21 +03:00
# Use "def" to create new functions
2013-06-27 00:29:07 -07:00
def add(x, y):
print("x is %s and y is %s" % (x, y))
2013-06-27 00:29:07 -07:00
return x + y # Return values with a return statement
2013-06-27 00:29:07 -07:00
# Calling functions with parameters
add(5, 6) # => prints out "x is 5 and y is 6" and returns 11
2013-07-03 08:49:29 -07:00
2013-06-27 00:29:07 -07:00
# Another way to call functions is with keyword arguments
2013-06-27 09:35:59 -07:00
add(y=6, x=5) # Keyword arguments can arrive in any order.
2013-06-27 10:53:43 -07:00
# You can define functions that take a variable number of
# positional arguments
2013-06-27 00:29:07 -07:00
def varargs(*args):
return args
varargs(1, 2, 3) # => (1, 2, 3)
2013-06-27 10:53:43 -07:00
# You can define functions that take a variable number of
# keyword arguments, as well
2013-06-27 00:29:07 -07:00
def keyword_args(**kwargs):
return kwargs
2013-06-27 00:29:07 -07:00
# Let's call it to see what happens
keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
2013-06-27 10:53:43 -07:00
# You can do both at once, if you like
def all_the_args(*args, **kwargs):
print(args)
print(kwargs)
2013-06-27 18:18:05 -07:00
"""
all_the_args(1, 2, a=3, b=4) prints:
(1, 2)
2013-06-27 18:18:05 -07:00
{"a": 3, "b": 4}
"""
2013-06-27 10:53:43 -07:00
# When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
# Function Scope
x = 5
def setX(num):
# Local var x not the same as global variable x
x = num # => 43
print (x) # => 43
def setGlobalX(num):
global x
print (x) # => 5
x = num # global var x is now set to 6
print (x) # => 6
setX(43)
setGlobalX(6)
2013-06-27 00:29:07 -07:00
# Python has first class functions
def create_adder(x):
def adder(y):
return x + y
return adder
2013-06-27 18:22:30 -07:00
add_10 = create_adder(10)
add_10(3) # => 13
2013-06-27 00:29:07 -07:00
# There are also anonymous functions
(lambda x: x > 2)(3) # => True
2013-06-27 00:29:07 -07:00
# There are built-in higher order functions
map(add_10, [1, 2, 3]) # => [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
2013-06-27 00:29:07 -07:00
# We can use list comprehensions for nice maps and filters
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
2013-06-27 09:35:59 -07:00
####################################################
## 5. Classes
####################################################
2013-06-27 09:35:59 -07:00
# We subclass from object to get a class.
2013-06-27 00:29:07 -07:00
class Human(object):
2013-08-07 22:48:11 +08:00
# A class attribute. It is shared by all instances of this class
2013-06-27 00:29:07 -07:00
species = "H. sapiens"
2013-06-27 00:29:07 -07:00
# Basic initializer
def __init__(self, name):
2013-06-27 09:35:59 -07:00
# Assign the argument to the instance's name attribute
self.name = name
2013-06-27 00:29:07 -07:00
2013-08-23 09:54:21 +03:00
# An instance method. All methods take "self" as the first argument
2013-06-27 00:29:07 -07:00
def say(self, msg):
return "%s: %s" % (self.name, msg)
2013-06-27 00:29:07 -07:00
# A class method is shared among all instances
2013-06-27 09:35:59 -07:00
# They are called with the calling class as the first argument
2013-06-27 00:29:07 -07:00
@classmethod
def get_species(cls):
return cls.species
# A static method is called without a class or instance reference
2013-06-27 00:29:07 -07:00
@staticmethod
2013-06-27 00:45:11 -07:00
def grunt():
2013-06-27 00:29:07 -07:00
return "*grunt*"
# Instantiate a class
i = Human(name="Ian")
print(i.say("hi")) # prints out "Ian: hi"
2013-06-27 09:35:59 -07:00
j = Human("Joel")
print(j.say("hello")) # prints out "Joel: hello"
2013-06-27 00:29:07 -07:00
# Call our class method
i.get_species() # => "H. sapiens"
2013-06-27 00:29:07 -07:00
# Change the shared attribute
2013-06-28 12:59:45 -07:00
Human.species = "H. neanderthalensis"
i.get_species() # => "H. neanderthalensis"
j.get_species() # => "H. neanderthalensis"
2013-06-27 00:29:07 -07:00
# Call the static method
Human.grunt() # => "*grunt*"
####################################################
## 6. Modules
####################################################
# You can import modules
import math
print(math.sqrt(16)) # => 4
# You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7)) # => 4.0
print(floor(3.7)) # => 3.0
# You can import all functions from a module.
# Warning: this is not recommended
from math import *
# You can shorten module names
import math as m
math.sqrt(16) == m.sqrt(16) # => True
# Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.
# You can find out which functions and attributes
# defines a module.
import math
dir(math)
2014-02-16 18:36:09 +00:00
####################################################
2014-02-16 18:37:02 +00:00
## 7. Advanced
2014-02-16 18:36:09 +00:00
####################################################
# Generators help you make lazy code
def double_numbers(iterable):
for i in iterable:
yield i + i
# A generator creates values on the fly.
# Instead of generating and returning all values at once it creates one in each
# iteration. This means values bigger than 15 wont be processed in
# double_numbers.
# Note xrange is a generator that does the same thing range does.
# Creating a list 1-900000000 would take lot of time and space to be made.
# xrange creates an xrange generator object instead of creating the entire list like range does.
_xrange = xrange(1, 900000000)
2014-02-16 18:36:09 +00:00
# will double all numbers until a result >=30 found
for i in double_numbers(_xrange):
2014-02-16 18:36:09 +00:00
print(i)
if i >= 30:
break
# Decorators
# in this example beg wraps say
# Beg will call say. If say_please is True then it will change the returned
# message
2014-02-16 18:36:09 +00:00
from functools import wraps
def beg(_say):
@wraps(_say)
def wrapper(*args, **kwargs):
msg, say_please = _say(*args, **kwargs)
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
return wrapper
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
print(say()) # Can you buy me a beer?
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
2013-06-27 18:22:30 -07:00
```
2013-08-05 17:54:50 -07:00
## Ready For More?
2013-06-28 17:21:24 -07:00
2013-08-05 17:54:50 -07:00
### Free Online
2013-06-28 17:21:24 -07:00
2013-06-30 16:02:37 -07:00
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
* [The Official Docs](http://docs.python.org/2.6/)
2013-06-30 16:18:20 -07:00
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
2013-07-01 10:32:42 -07:00
* [Python Module of the Week](http://pymotw.com/2/)
* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
2013-08-05 17:54:50 -07:00
### Dead Tree
* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)