mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 13:38:38 +01:00
add xiaoqi's translation
This commit is contained in:
parent
598fe61e1a
commit
0fc4b4d5d5
691
zh-cn/r-cn.html.markdown
Normal file
691
zh-cn/r-cn.html.markdown
Normal file
@ -0,0 +1,691 @@
|
||||
|
||||
# Comments start with hashtags.
|
||||
# 评论以 # 开始
|
||||
|
||||
# You can't make a multi-line comment per se,
|
||||
# but you can stack multiple comments like so.
|
||||
# 你不能在每一个se下执行多个注释,
|
||||
# 但是你可以像这样把命注释内容堆叠起来.
|
||||
# in Windows, hit COMMAND-ENTER to execute a line
|
||||
# 在windows下,点击回车键来执行一条命令
|
||||
|
||||
|
||||
###################################################################
|
||||
# Stuff you can do without understanding anything about programming
|
||||
# 素材可以使那些不懂编程的人同样得心用手
|
||||
###################################################################
|
||||
|
||||
data() # Browse pre-loaded data sets
|
||||
data() # 浏览预加载的数据集
|
||||
data(rivers) # Lengths of Major North American Rivers
|
||||
data(rivers) # 北美主要河流的长度(数据集)
|
||||
ls() # Notice that "rivers" appears in the workspace
|
||||
ls() # 在工作站中查看”河流“文件夹是否出现
|
||||
head(rivers) # peek at the dataset
|
||||
head(rivers) # 浏览数据集
|
||||
# 735 320 325 392 524 450
|
||||
length(rivers) # how many rivers were measured?
|
||||
# 141
|
||||
length(rivers) # 测量了多少条河流
|
||||
summary(rivers)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||||
#查看”河流“数据集的特征
|
||||
# 最小值. 1st Qu. 中位数 平均值 最大值
|
||||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||||
stem(rivers) #stem-and-leaf plot (like a histogram)
|
||||
stem(rivers) #茎叶图(一种类似于直方图的展现形式)
|
||||
|
||||
|
||||
|
||||
|
||||
# The decimal point is 2 digit(s) to the right of the |
|
||||
# 小数点向|右边保留两位数字
|
||||
#
|
||||
# 0 | 4
|
||||
# 2 | 011223334555566667778888899900001111223333344455555666688888999
|
||||
# 4 | 111222333445566779001233344567
|
||||
# 6 | 000112233578012234468
|
||||
# 8 | 045790018
|
||||
# 10 | 04507
|
||||
# 12 | 1471
|
||||
# 14 | 56
|
||||
# 16 | 7
|
||||
# 18 | 9
|
||||
# 20 |
|
||||
# 22 | 25
|
||||
# 24 | 3
|
||||
# 26 |
|
||||
# 28 |
|
||||
# 30 |
|
||||
# 32 |
|
||||
# 34 |
|
||||
# 36 | 1
|
||||
|
||||
stem(log(rivers)) #Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
|
||||
stem(log(rivers)) #查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
|
||||
|
||||
# The decimal point is 1 digit(s) to the left of the |
|
||||
# 小数点向|左边保留一位数字
|
||||
#
|
||||
# 48 | 1
|
||||
# 50 |
|
||||
# 52 | 15578
|
||||
# 54 | 44571222466689
|
||||
# 56 | 023334677000124455789
|
||||
# 58 | 00122366666999933445777
|
||||
# 60 | 122445567800133459
|
||||
# 62 | 112666799035
|
||||
# 64 | 00011334581257889
|
||||
# 66 | 003683579
|
||||
# 68 | 0019156
|
||||
# 70 | 079357
|
||||
# 72 | 89
|
||||
# 74 | 84
|
||||
# 76 | 56
|
||||
# 78 | 4
|
||||
# 80 |
|
||||
# 82 | 2
|
||||
|
||||
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #给river做统计频数直方图,包含了这些参数(名称,颜色,边界,空白)
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #you'll do more plotting later
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #稍后你还可以做更多的绘图,统计频数直方图,包含了这些参数(river数据集的log值,颜色,边界,空白)
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #运行同济频数直方图的这些参数
|
||||
|
||||
#Here's another neat data set that comes pre-loaded. R has tons of these. data()
|
||||
#这里还有其他一些简洁的数据集可以被提前加载。R语言包括大量这种类型的数据集
|
||||
data(discoveries)
|
||||
#数据集(发现)
|
||||
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
|
||||
#绘图(发现,颜色负值,宽度负值,X轴名称,主题:Number of important discoveries per year)
|
||||
|
||||
|
||||
|
||||
#rather than leaving the default ordering (by year) we could also sort to see what's typical
|
||||
#宁可舍弃也不执行排序(按照年份完成)我们可以分类来查看这是那些类型
|
||||
sort(discoveries) #给(发现)分类
|
||||
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
|
||||
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
|
||||
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
|
||||
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
|
||||
|
||||
stem(discoveries, scale=2)
|
||||
#茎叶图(发现,在原来的基础上降尺度扩大两倍)
|
||||
#
|
||||
# The decimal point is at the |
|
||||
# 小数点在|
|
||||
#
|
||||
# 0 | 000000000
|
||||
# 1 | 000000000000
|
||||
# 2 | 00000000000000000000000000
|
||||
# 3 | 00000000000000000000
|
||||
# 4 | 000000000000
|
||||
# 5 | 0000000
|
||||
# 6 | 000000
|
||||
# 7 | 0000
|
||||
# 8 | 0
|
||||
# 9 | 0
|
||||
# 10 | 0
|
||||
# 11 |
|
||||
# 12 | 0
|
||||
|
||||
max(discoveries)
|
||||
#最大值(发现)
|
||||
# 12
|
||||
|
||||
summary(discoveries)
|
||||
#数据集特征(发现)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 0.0 2.0 3.0 3.1 4.0 12.0
|
||||
|
||||
|
||||
|
||||
|
||||
#Basic statistical operations don't require any programming knowledge either
|
||||
#基本的统计学操作也不需要任何编程知识
|
||||
|
||||
#roll a die a few times
|
||||
#随机输出数据
|
||||
round(runif(7, min=.5, max=6.5))
|
||||
#round(产生均匀分布的随机数,进行四舍五入(7个, 最小值为0.5, max=6.5))
|
||||
# 1 4 6 1 4 6 4
|
||||
|
||||
#your numbers will differ from mine unless we set the same random.seed(31337)
|
||||
#你输出的结果将会与我们给出的不同,除非我们设置了同样的随机种子 random.seed(31337)
|
||||
|
||||
|
||||
#draw from a standard Gaussian 9 times
|
||||
#从标准高斯函数中随机的提取9次结果
|
||||
rnorm(9)
|
||||
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
|
||||
# [7] -0.59975593 0.57629164 1.08455362
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#########################
|
||||
# Basic programming stuff
|
||||
# 基本的编程素材
|
||||
#########################
|
||||
|
||||
# NUMBERS
|
||||
|
||||
# "numeric" means double-precision floating-point numbers
|
||||
#“数值”指的是双精度的浮点数
|
||||
5 # 5
|
||||
class(5) # "numeric"
|
||||
#定义(5)为数值型变量 # "numeric"
|
||||
5e4 # 50000 #handy when dealing with large,small,or variable orders of magnitude
|
||||
#5×104次方 可以手写输入改变数量级的大小将变量扩大
|
||||
6.02e23 # Avogadro's number
|
||||
#阿伏伽德罗常数
|
||||
1.6e-35 # Planck length
|
||||
#布朗克长度
|
||||
|
||||
# long-storage integers are written with L
|
||||
#长存储整数并用L书写
|
||||
5L # 5
|
||||
#输出5L
|
||||
class(5L) # "integer"
|
||||
#(5L)的类型, 整数型
|
||||
|
||||
# Try ?class for more information on the class() function
|
||||
#可以自己试一试?用class()功能函数定义更多的信息
|
||||
# In fact, you can look up the documentation on `xyz` with ?xyz
|
||||
#事实上,你可以找一些文件查阅“xyz”以及xyz的差别
|
||||
# or see the source for `xyz` by evaluating xyz
|
||||
#或者通过评估xyz来查看“xyz”的来源
|
||||
|
||||
# Arithmetic
|
||||
#算法
|
||||
10 + 66 # 76
|
||||
53.2 - 4 # 49.2
|
||||
2 * 2.0 # 4
|
||||
3L / 4 # 0.75
|
||||
3 %% 2 # 1
|
||||
|
||||
# Weird number types
|
||||
#超自然数的类型
|
||||
class(NaN) # "numeric"
|
||||
class(Inf) # "numeric"
|
||||
class(-Inf) # "numeric" #used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
|
||||
#定义以上括号内的数均为数值型变量,利用实例中的整数(正态分布函数(X),3,Inf )消除Z轴列表
|
||||
|
||||
# but beware, NaN isn't the only weird type...
|
||||
# 但要注意,NaN并不是仅有的超自然类型。。。
|
||||
class(NA) # see below
|
||||
#定义(NA)下面的部分会理解
|
||||
class(NULL) # NULL
|
||||
#定义(NULL)无效的
|
||||
|
||||
|
||||
# SIMPLE LISTS
|
||||
#简单的数据集
|
||||
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
|
||||
#输出数值型向量(6 8 7 5 3 0 9)
|
||||
c('alef', 'bet', 'gimmel', 'dalet', 'he')
|
||||
#输出字符型变量# "alef" "bet" "gimmel" "dalet" "he"
|
||||
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
|
||||
#输出逻辑型变量FALSE FALSE FALSE FALSE
|
||||
|
||||
#some more nice built-ins
|
||||
#一些优雅的内置功能
|
||||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||||
#从5-15输出,以进度为1递增
|
||||
|
||||
seq(from=0, to=31337, by=1337)
|
||||
#输出序列(从0到31337,以1337递增)
|
||||
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
|
||||
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
|
||||
|
||||
letters
|
||||
#字符型变量,26个
|
||||
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
|
||||
# [20] "t" "u" "v" "w" "x" "y" "z"
|
||||
|
||||
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
|
||||
#表示月份的变量
|
||||
|
||||
|
||||
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
|
||||
#访问数据集名字为[n]的第n个元素
|
||||
|
||||
letters[18] # "r"
|
||||
#访问其中的第18个变量
|
||||
LETTERS[13] # "M"
|
||||
#用大写访问其中的第13个变量
|
||||
month.name[9] # "September"
|
||||
#访问名字文件中第9个变量
|
||||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||||
#访问向量中的第三个变量
|
||||
|
||||
|
||||
|
||||
# CHARACTERS
|
||||
#特性
|
||||
# There's no difference between strings and characters in R
|
||||
# 字符串和字符在R语言中没有区别
|
||||
"Horatio" # "Horatio"
|
||||
#字符输出"Horatio"
|
||||
class("Horatio") # "character"
|
||||
#字符串输出("Horatio") # "character"
|
||||
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
|
||||
#提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出)
|
||||
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
|
||||
#替换字符春,用ø替换u
|
||||
|
||||
|
||||
|
||||
# LOGICALS
|
||||
#逻辑值
|
||||
|
||||
# booleans
|
||||
#布尔运算
|
||||
class(TRUE) # "logical"
|
||||
#定义为真,逻辑型
|
||||
class(FALSE) # "logical"
|
||||
#定义为假,逻辑型
|
||||
# Behavior is normal
|
||||
#表现的标准形式
|
||||
TRUE == TRUE # TRUE
|
||||
TRUE == FALSE # FALSE
|
||||
FALSE != FALSE # FALSE
|
||||
FALSE != TRUE # TRUE
|
||||
# Missing data (NA) is logical, too
|
||||
#缺失数据也是逻辑型的
|
||||
class(NA) # "logical"
|
||||
#定义NA为逻辑型
|
||||
|
||||
|
||||
|
||||
# FACTORS
|
||||
#因子
|
||||
# The factor class is for categorical data
|
||||
#因子是分类数据的定义函数
|
||||
# which can be ordered (like childrens' grade levels)
|
||||
#可以使有序的(就像儿童的等级水平)
|
||||
# or unordered (like gender)
|
||||
#也可以是无序的(就像性别)
|
||||
levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
|
||||
#c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平
|
||||
|
||||
factor(c("female", "female", "male", "NA", "female"))
|
||||
# female female male NA female
|
||||
# Levels: female male NA
|
||||
|
||||
data(infert) #Infertility after Spontaneous and Induced Abortion
|
||||
#数据集(感染) 自然以及引产导致的不育症
|
||||
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
|
||||
#等级(感染与教育程度) 输出
|
||||
|
||||
|
||||
|
||||
# VARIABLES
|
||||
#变量
|
||||
|
||||
# Lots of way to assign stuff
|
||||
#许多种方式用来分配素材
|
||||
x = 5 # this is possible
|
||||
#x = 5可能的
|
||||
y <- "1" # this is preferred
|
||||
#y <- "1" 优先级的
|
||||
TRUE -> z # this works but is weird
|
||||
#输出真实的,存在一个超自然数满足条件
|
||||
|
||||
# We can use coerce variables to different classes
|
||||
#我们还可以使用枪支变量去进行不同的定义
|
||||
as.numeric(y) # 1
|
||||
#定义数值型
|
||||
as.character(x) # "5"
|
||||
#字符型
|
||||
|
||||
|
||||
# LOOPS
|
||||
#循环
|
||||
|
||||
# We've got for loops
|
||||
#循环语句
|
||||
for (i in 1:4) {
|
||||
print(i)
|
||||
}
|
||||
#定义一个i,从1-4输出
|
||||
|
||||
# We've got while loops
|
||||
#我们可以获取循环结构
|
||||
a <- 10
|
||||
while (a > 4) {
|
||||
cat(a, "...", sep = "")
|
||||
a <- a - 1
|
||||
}
|
||||
#把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止
|
||||
# Keep in mind that for and while loops run slowly in R
|
||||
#在R语言中牢记 for和它的循环结构
|
||||
# Operations on entire vectors (i.e. a whole row, a whole column)
|
||||
#牢记矢量中附带的操作(例如,整行和整列)
|
||||
# or apply()-type functions (we'll discuss later) are preferred
|
||||
#或者优先使用()-函数,稍后会进行讨论
|
||||
|
||||
# IF/ELSE
|
||||
#判断分支
|
||||
|
||||
# Again, pretty standard
|
||||
#再一次,看这些优雅的标准
|
||||
if (4 > 3) {
|
||||
print("Huzzah! It worked!")
|
||||
} else {
|
||||
print("Noooo! This is blatantly illogical!")
|
||||
}
|
||||
|
||||
# =>
|
||||
# [1] "Huzzah! It worked!"
|
||||
|
||||
# FUNCTIONS
|
||||
#功能函数
|
||||
|
||||
# Defined like so:
|
||||
#定义如下
|
||||
jiggle <- function(x) {
|
||||
x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise
|
||||
return(x)
|
||||
}
|
||||
#把功能函数x负值给jiggle,
|
||||
|
||||
# Called like any other R function:
|
||||
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
|
||||
|
||||
#########################
|
||||
# Fun with data: vectors, matrices, data frames, and arrays
|
||||
# 数据参数:向量,矩阵,数据框,数组,
|
||||
#########################
|
||||
|
||||
# ONE-DIMENSIONAL
|
||||
#单维度
|
||||
# You can vectorize anything, so long as all components have the same type
|
||||
#你可以将任何东西矢量化,因此所有的组分都有相同的类型
|
||||
vec <- c(8, 9, 10, 11)
|
||||
vec # 8 9 10 11
|
||||
# The class of a vector is the class of its components
|
||||
#矢量class表示这一组分的类型
|
||||
class(vec) # "numeric"
|
||||
# If you vectorize items of different classes, weird coercions happen
|
||||
#如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型
|
||||
c(TRUE, 4) # 1 4
|
||||
c("dog", TRUE, 4) # "dog" "TRUE" "4"
|
||||
|
||||
# We ask for specific components like so (R starts counting from 1)
|
||||
#我们可以找寻特定的组分,例如这个例子(R从1算起)
|
||||
vec[1] # 8
|
||||
# We can also search for the indices of specific components,
|
||||
#我们也可以从这些特定组分中找寻这些指标
|
||||
which(vec %% 2 == 0) # 1 3
|
||||
# or grab just the first or last entry in the vector
|
||||
#抓取矢量中第1个和最后一个字符
|
||||
head(vec, 1) # 8
|
||||
tail(vec, 1) # 11
|
||||
#如果指数结束或不存在即"goes over" 可以获得NA
|
||||
# If an index "goes over" you'll get NA:
|
||||
vec[6] # NA
|
||||
# You can find the length of your vector with length()
|
||||
#你也可以找到矢量的长度
|
||||
length(vec) # 4
|
||||
|
||||
# You can perform operations on entire vectors or subsets of vectors
|
||||
#你可以将整个矢量或者子矢量集进行展示
|
||||
vec * 4 # 16 20 24 28
|
||||
#
|
||||
vec[2:3] * 5 # 25 30
|
||||
# and there are many built-in functions to summarize vectors
|
||||
#这里有许多内置的功能函数,并且可对矢量特征进行总结
|
||||
mean(vec) # 9.5
|
||||
var(vec) # 1.666667
|
||||
sd(vec) # 1.290994
|
||||
max(vec) # 11
|
||||
min(vec) # 8
|
||||
sum(vec) # 38
|
||||
|
||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||
#二维函数
|
||||
|
||||
# You can make a matrix out of entries all of the same type like so:
|
||||
#你可以建立矩阵,保证所有的变量形式相同
|
||||
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
|
||||
#建立mat矩阵,3行2列,从1到6排列,默认按列排布
|
||||
mat
|
||||
# =>
|
||||
# [,1] [,2]
|
||||
# [1,] 1 4
|
||||
# [2,] 2 5
|
||||
# [3,] 3 6
|
||||
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
|
||||
class(mat) # => "matrix"
|
||||
# Ask for the first row
|
||||
#访问第一行的字符
|
||||
mat[1,] # 1 4
|
||||
# Perform operation on the first column
|
||||
#优先输入第一列,分别×3输出
|
||||
3 * mat[,1] # 3 6 9
|
||||
# Ask for a specific cell
|
||||
#访问特殊的单元,第3行第二列
|
||||
mat[3,2] # 6
|
||||
# Transpose the whole matrix
|
||||
#转置整个矩阵,变成2行3列
|
||||
t(mat)
|
||||
# =>
|
||||
# [,1] [,2] [,3]
|
||||
# [1,] 1 2 3
|
||||
# [2,] 4 5 6
|
||||
|
||||
# cbind() sticks vectors together column-wise to make a matrix
|
||||
把两个矩阵按列合并,形成新的矩阵
|
||||
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
|
||||
mat2
|
||||
# =>
|
||||
# [,1] [,2]
|
||||
# [1,] "1" "dog"
|
||||
# [2,] "2" "cat"
|
||||
# [3,] "3" "bird"
|
||||
# [4,] "4" "dog"
|
||||
class(mat2) # matrix
|
||||
#定义mat2矩阵
|
||||
# Again, note what happened!
|
||||
#同样的注释
|
||||
# Because matrices must contain entries all of the same class,
|
||||
#矩阵必须包含同样的形式
|
||||
# everything got converted to the character class
|
||||
#每一个变量都可以转化成字符串形式
|
||||
c(class(mat2[,1]), class(mat2[,2]))
|
||||
|
||||
# rbind() sticks vectors together row-wise to make a matrix
|
||||
#按行合并两个向量,建立新的矩阵
|
||||
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
|
||||
mat3
|
||||
# =>
|
||||
# [,1] [,2] [,3] [,4]
|
||||
# [1,] 1 2 4 5
|
||||
# [2,] 6 7 0 4
|
||||
# Aah, everything of the same class. No coercions. Much better.
|
||||
|
||||
# TWO-DIMENSIONAL (DIFFERENT CLASSES)
|
||||
##二维函数(不同的变量类型)
|
||||
|
||||
# For columns of different classes, use the data frame
|
||||
利用数组可以将不同类型放在一起
|
||||
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
|
||||
#dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
|
||||
names(dat) <- c("number", "species") # name the columns
|
||||
#给每一个向量命名
|
||||
class(dat) # "data.frame"
|
||||
#建立数据集dat
|
||||
dat
|
||||
# =>
|
||||
# number species
|
||||
# 1 5 dog
|
||||
# 2 2 cat
|
||||
# 3 1 bird
|
||||
# 4 4 dog
|
||||
class(dat$number) # "numeric"
|
||||
class(dat[,2]) # "factor"
|
||||
# The data.frame() function converts character vectors to factor vectors
|
||||
#数据集,将字符特征转化为因子矢量
|
||||
|
||||
# There are many twisty ways to subset data frames, all subtly unalike
|
||||
#这里有许多种生成数据集的方法,所有的都很巧妙但又不相似
|
||||
dat$number # 5 2 1 4
|
||||
dat[,1] # 5 2 1 4
|
||||
dat[,"number"] # 5 2 1 4
|
||||
|
||||
# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
|
||||
#多维函数
|
||||
# Arrays creates n-dimensional tables
|
||||
#利用数组创造一个n维的表格
|
||||
# You can make a two-dimensional table (sort of like a matrix)
|
||||
#你可以建立一个2维表格(类型和矩阵相似)
|
||||
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
|
||||
#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列
|
||||
# =>
|
||||
# [,1] [,2] [,3] [,4]
|
||||
# [1,] 1 4 8 3
|
||||
# [2,] 2 5 9 6
|
||||
# You can use array to make three-dimensional matrices too
|
||||
#你也可以利用数组建立一个三维的矩阵
|
||||
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
|
||||
# =>
|
||||
# , , 1
|
||||
#
|
||||
# [,1] [,2]
|
||||
# [1,] 2 8
|
||||
# [2,] 300 9
|
||||
# [3,] 4 0
|
||||
#
|
||||
# , , 2
|
||||
#
|
||||
# [,1] [,2]
|
||||
# [1,] 5 66
|
||||
# [2,] 60 7
|
||||
# [3,] 0 847
|
||||
|
||||
# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
|
||||
#列表(多维的,不同类型的)
|
||||
|
||||
# Finally, R has lists (of vectors)
|
||||
#R语言有列表的形式
|
||||
list1 <- list(time = 1:40)
|
||||
list1$price = c(rnorm(40,.5*list1$time,4)) # random
|
||||
list1
|
||||
|
||||
# You can get items in the list like so
|
||||
#你可以获得像上面列表的形式
|
||||
list1$time
|
||||
# You can subset list items like vectors
|
||||
#你也可以获取他们的子集,一种类似于矢量的形式
|
||||
list1$price[4]
|
||||
|
||||
#########################
|
||||
# The apply() family of functions
|
||||
#apply()函数家族的应用
|
||||
#########################
|
||||
|
||||
# Remember mat?
|
||||
#输出mat矩阵
|
||||
mat
|
||||
# =>
|
||||
# [,1] [,2]
|
||||
# [1,] 1 4
|
||||
# [2,] 2 5
|
||||
# [3,] 3 6
|
||||
# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
|
||||
#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
|
||||
# over rows (MAR = 1) or columns (MAR = 2)
|
||||
#规定行列,其边界分别为1,2
|
||||
# That is, R does FUN to each row (or column) of X, much faster than a
|
||||
#即就是,R定义一个function使每一行/列的x快于一个for或者while循环
|
||||
# for or while loop would do
|
||||
apply(mat, MAR = 2, myFunc)
|
||||
# =>
|
||||
# [,1] [,2]
|
||||
# [1,] 3 15
|
||||
# [2,] 7 19
|
||||
# [3,] 11 23
|
||||
# Other functions: ?lapply, ?sapply
|
||||
其他的功能函数,
|
||||
|
||||
# Don't feel too intimidated; everyone agrees they are rather confusing
|
||||
#不要被这些吓到,许多人在此都会容易混淆
|
||||
# The plyr package aims to replace (and improve upon!) the *apply() family.
|
||||
#plyr程序包的作用是用来改进family函数家族
|
||||
|
||||
install.packages("plyr")
|
||||
require(plyr)
|
||||
?plyr
|
||||
|
||||
#########################
|
||||
# Loading data
|
||||
#########################
|
||||
|
||||
# "pets.csv" is a file on the internet
|
||||
#"pets.csv" 是网上的一个文本
|
||||
pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
|
||||
#首先读取这个文本
|
||||
pets
|
||||
head(pets, 2) # first two rows
|
||||
#显示前两行
|
||||
tail(pets, 1) # last row
|
||||
#显示最后一行
|
||||
|
||||
# To save a data frame or matrix as a .csv file
|
||||
#以.csv格式来保存数据集或者矩阵
|
||||
write.csv(pets, "pets2.csv") # to make a new .csv file
|
||||
#输出新的文本pets2.csv
|
||||
# set working directory with setwd(), look it up with getwd()
|
||||
#改变工作路径setwd(),查找工作路径getwd()
|
||||
|
||||
# Try ?read.csv and ?write.csv for more information
|
||||
#试着做一做以上学到的,或者运行更多的信息
|
||||
|
||||
#########################
|
||||
# Plots
|
||||
#画图
|
||||
#########################
|
||||
|
||||
# Scatterplots!
|
||||
#散点图
|
||||
plot(list1$time, list1$price, main = "fake data")
|
||||
#作图,横轴list1$time,纵轴list1$price,主题fake data
|
||||
# Regressions!
|
||||
#退回
|
||||
linearModel <- lm(price ~ time, data = list1)
|
||||
# 线性模型,数据集为list1,以价格对时间做相关分析模型
|
||||
linearModel # outputs result of regression
|
||||
#输出拟合结果,并退出
|
||||
# Plot regression line on existing plot
|
||||
#将拟合结果展示在图上,颜色设为红色
|
||||
abline(linearModel, col = "red")
|
||||
# Get a variety of nice diagnostics
|
||||
#也可以获取各种各样漂亮的分析图
|
||||
plot(linearModel)
|
||||
|
||||
# Histograms!
|
||||
#直方图
|
||||
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
||||
#统计频数直方图()
|
||||
|
||||
# Barplots!
|
||||
#柱状图
|
||||
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
|
||||
#作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow"
|
||||
|
||||
# Try the ggplot2 package for more and better graphics
|
||||
#可以尝试着使用ggplot2程序包来美化图片
|
||||
install.packages("ggplot2")
|
||||
require(ggplot2)
|
||||
?ggplot2
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user