1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 13:38:38 +01:00

add xiaoqi's translation

This commit is contained in:
alswl 2013-08-24 23:27:50 +08:00
parent 598fe61e1a
commit 0fc4b4d5d5

691
zh-cn/r-cn.html.markdown Normal file
View File

@ -0,0 +1,691 @@
# Comments start with hashtags.
# 评论以 # 开始
# You can't make a multi-line comment per se,
# but you can stack multiple comments like so.
# 你不能在每一个se下执行多个注释,
# 但是你可以像这样把命注释内容堆叠起来.
# in Windows, hit COMMAND-ENTER to execute a line
# 在windows下,点击回车键来执行一条命令
###################################################################
# Stuff you can do without understanding anything about programming
# 素材可以使那些不懂编程的人同样得心用手
###################################################################
data() # Browse pre-loaded data sets
data() # 浏览预加载的数据集
data(rivers) # Lengths of Major North American Rivers
data(rivers) # 北美主要河流的长度(数据集)
ls() # Notice that "rivers" appears in the workspace
ls() # 在工作站中查看”河流“文件夹是否出现
head(rivers) # peek at the dataset
head(rivers) # 浏览数据集
# 735 320 325 392 524 450
length(rivers) # how many rivers were measured?
# 141
length(rivers) # 测量了多少条河流
summary(rivers)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 135.0 310.0 425.0 591.2 680.0 3710.0
#查看”河流“数据集的特征
# 最小值. 1st Qu. 中位数 平均值 最大值
# 135.0 310.0 425.0 591.2 680.0 3710.0
stem(rivers) #stem-and-leaf plot (like a histogram)
stem(rivers) #茎叶图(一种类似于直方图的展现形式)
# The decimal point is 2 digit(s) to the right of the |
# 小数点向|右边保留两位数字
#
# 0 | 4
# 2 | 011223334555566667778888899900001111223333344455555666688888999
# 4 | 111222333445566779001233344567
# 6 | 000112233578012234468
# 8 | 045790018
# 10 | 04507
# 12 | 1471
# 14 | 56
# 16 | 7
# 18 | 9
# 20 |
# 22 | 25
# 24 | 3
# 26 |
# 28 |
# 30 |
# 32 |
# 34 |
# 36 | 1
stem(log(rivers)) #Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
stem(log(rivers)) #查看数据集的方式既不是标准形式也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
# The decimal point is 1 digit(s) to the left of the |
# 小数点向|左边保留一位数字
#
# 48 | 1
# 50 |
# 52 | 15578
# 54 | 44571222466689
# 56 | 023334677000124455789
# 58 | 00122366666999933445777
# 60 | 122445567800133459
# 62 | 112666799035
# 64 | 00011334581257889
# 66 | 003683579
# 68 | 0019156
# 70 | 079357
# 72 | 89
# 74 | 84
# 76 | 56
# 78 | 4
# 80 |
# 82 | 2
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
hist(rivers, col="#333333", border="white", breaks=25) #给river做统计频数直方图,包含了这些参数(名称,颜色,边界,空白)
hist(log(rivers), col="#333333", border="white", breaks=25) #you'll do more plotting later
hist(log(rivers), col="#333333", border="white", breaks=25) #稍后你还可以做更多的绘图统计频数直方图包含了这些参数river数据集的log值颜色边界空白
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
hist(rivers, col="#333333", border="white", breaks=25) #运行同济频数直方图的这些参数
#Here's another neat data set that comes pre-loaded. R has tons of these. data()
#这里还有其他一些简洁的数据集可以被提前加载。R语言包括大量这种类型的数据集
data(discoveries)
#数据集(发现)
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
#绘图发现颜色负值宽度负值X轴名称主题Number of important discoveries per year
#rather than leaving the default ordering (by year) we could also sort to see what's typical
#宁可舍弃也不执行排序(按照年份完成)我们可以分类来查看这是那些类型
sort(discoveries) #给(发现)分类
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
stem(discoveries, scale=2)
#茎叶图(发现,在原来的基础上降尺度扩大两倍)
#
# The decimal point is at the |
# 小数点在|
#
# 0 | 000000000
# 1 | 000000000000
# 2 | 00000000000000000000000000
# 3 | 00000000000000000000
# 4 | 000000000000
# 5 | 0000000
# 6 | 000000
# 7 | 0000
# 8 | 0
# 9 | 0
# 10 | 0
# 11 |
# 12 | 0
max(discoveries)
#最大值(发现)
# 12
summary(discoveries)
#数据集特征(发现)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.0 2.0 3.0 3.1 4.0 12.0
#Basic statistical operations don't require any programming knowledge either
#基本的统计学操作也不需要任何编程知识
#roll a die a few times
#随机输出数据
round(runif(7, min=.5, max=6.5))
#round(产生均匀分布的随机数,进行四舍五入(7个, 最小值为0.5, max=6.5))
# 1 4 6 1 4 6 4
#your numbers will differ from mine unless we set the same random.seed(31337)
#你输出的结果将会与我们给出的不同,除非我们设置了同样的随机种子 random.seed(31337)
#draw from a standard Gaussian 9 times
#从标准高斯函数中随机的提取9次结果
rnorm(9)
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
# [7] -0.59975593 0.57629164 1.08455362
#########################
# Basic programming stuff
# 基本的编程素材
#########################
# NUMBERS
# "numeric" means double-precision floating-point numbers
#“数值”指的是双精度的浮点数
5 # 5
class(5) # "numeric"
#定义(5)为数值型变量 # "numeric"
5e4 # 50000 #handy when dealing with large,small,or variable orders of magnitude
#5×104次方 可以手写输入改变数量级的大小将变量扩大
6.02e23 # Avogadro's number
#阿伏伽德罗常数
1.6e-35 # Planck length
#布朗克长度
# long-storage integers are written with L
#长存储整数并用L书写
5L # 5
#输出5L
class(5L) # "integer"
#5L的类型 整数型
# Try ?class for more information on the class() function
#可以自己试一试用class()功能函数定义更多的信息
# In fact, you can look up the documentation on `xyz` with ?xyz
#事实上你可以找一些文件查阅“xyz”以及xyz的差别
# or see the source for `xyz` by evaluating xyz
#或者通过评估xyz来查看“xyz”的来源
# Arithmetic
#算法
10 + 66 # 76
53.2 - 4 # 49.2
2 * 2.0 # 4
3L / 4 # 0.75
3 %% 2 # 1
# Weird number types
#超自然数的类型
class(NaN) # "numeric"
class(Inf) # "numeric"
class(-Inf) # "numeric" #used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
#定义以上括号内的数均为数值型变量利用实例中的整数正态分布函数X,3,Inf 消除Z轴列表
# but beware, NaN isn't the only weird type...
# 但要注意NaN并不是仅有的超自然类型。。。
class(NA) # see below
#定义NA下面的部分会理解
class(NULL) # NULL
#定义NULL无效的
# SIMPLE LISTS
#简单的数据集
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
#输出数值型向量6 8 7 5 3 0 9
c('alef', 'bet', 'gimmel', 'dalet', 'he')
#输出字符型变量# "alef" "bet" "gimmel" "dalet" "he"
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
#输出逻辑型变量FALSE FALSE FALSE FALSE
#some more nice built-ins
#一些优雅的内置功能
5:15 # 5 6 7 8 9 10 11 12 13 14 15
#从5-15输出以进度为1递增
seq(from=0, to=31337, by=1337)
#输出序列从0到31337以1337递增
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
letters
#字符型变量26个
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
# [20] "t" "u" "v" "w" "x" "y" "z"
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
#表示月份的变量
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
#访问数据集名字为[n]的第n个元素
letters[18] # "r"
#访问其中的第18个变量
LETTERS[13] # "M"
#用大写访问其中的第13个变量
month.name[9] # "September"
#访问名字文件中第9个变量
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
#访问向量中的第三个变量
# CHARACTERS
#特性
# There's no difference between strings and characters in R
# 字符串和字符在R语言中没有区别
"Horatio" # "Horatio"
#字符输出"Horatio"
class("Horatio") # "character"
#字符串输出("Horatio") # "character"
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
#提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出)
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
#替换字符春用ø替换u
# LOGICALS
#逻辑值
# booleans
#布尔运算
class(TRUE) # "logical"
#定义为真,逻辑型
class(FALSE) # "logical"
#定义为假,逻辑型
# Behavior is normal
#表现的标准形式
TRUE == TRUE # TRUE
TRUE == FALSE # FALSE
FALSE != FALSE # FALSE
FALSE != TRUE # TRUE
# Missing data (NA) is logical, too
#缺失数据也是逻辑型的
class(NA) # "logical"
#定义NA为逻辑型
# FACTORS
#因子
# The factor class is for categorical data
#因子是分类数据的定义函数
# which can be ordered (like childrens' grade levels)
#可以使有序的(就像儿童的等级水平)
# or unordered (like gender)
#也可以是无序的(就像性别)
levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
#c("female", "male", "male", "female", "NA", "female")向量变量是字符型levels factor因子的等级水平
factor(c("female", "female", "male", "NA", "female"))
# female female male NA female
# Levels: female male NA
data(infert) #Infertility after Spontaneous and Induced Abortion
#数据集(感染) 自然以及引产导致的不育症
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
#等级(感染与教育程度) 输出
# VARIABLES
#变量
# Lots of way to assign stuff
#许多种方式用来分配素材
x = 5 # this is possible
#x = 5可能的
y <- "1" # this is preferred
#y <- "1" 优先级的
TRUE -> z # this works but is weird
#输出真实的,存在一个超自然数满足条件
# We can use coerce variables to different classes
#我们还可以使用枪支变量去进行不同的定义
as.numeric(y) # 1
#定义数值型
as.character(x) # "5"
#字符型
# LOOPS
#循环
# We've got for loops
#循环语句
for (i in 1:4) {
print(i)
}
#定义一个i从1-4输出
# We've got while loops
#我们可以获取循环结构
a <- 10
while (a > 4) {
cat(a, "...", sep = "")
a <- a - 1
}
#把10负值为aa4输出文件a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环直到a=10终止
# Keep in mind that for and while loops run slowly in R
#在R语言中牢记 for和它的循环结构
# Operations on entire vectors (i.e. a whole row, a whole column)
#牢记矢量中附带的操作(例如,整行和整列)
# or apply()-type functions (we'll discuss later) are preferred
#或者优先使用()-函数,稍后会进行讨论
# IF/ELSE
#判断分支
# Again, pretty standard
#再一次,看这些优雅的标准
if (4 > 3) {
print("Huzzah! It worked!")
} else {
print("Noooo! This is blatantly illogical!")
}
# =>
# [1] "Huzzah! It worked!"
# FUNCTIONS
#功能函数
# Defined like so:
#定义如下
jiggle <- function(x) {
x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise
return(x)
}
#把功能函数x负值给jiggle
# Called like any other R function:
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
#########################
# Fun with data: vectors, matrices, data frames, and arrays
# 数据参数:向量,矩阵,数据框,数组,
#########################
# ONE-DIMENSIONAL
#单维度
# You can vectorize anything, so long as all components have the same type
#你可以将任何东西矢量化,因此所有的组分都有相同的类型
vec <- c(8, 9, 10, 11)
vec # 8 9 10 11
# The class of a vector is the class of its components
#矢量class表示这一组分的类型
class(vec) # "numeric"
# If you vectorize items of different classes, weird coercions happen
#如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型
c(TRUE, 4) # 1 4
c("dog", TRUE, 4) # "dog" "TRUE" "4"
# We ask for specific components like so (R starts counting from 1)
#我们可以找寻特定的组分例如这个例子R从1算起
vec[1] # 8
# We can also search for the indices of specific components,
#我们也可以从这些特定组分中找寻这些指标
which(vec %% 2 == 0) # 1 3
# or grab just the first or last entry in the vector
#抓取矢量中第1个和最后一个字符
head(vec, 1) # 8
tail(vec, 1) # 11
#如果指数结束或不存在即"goes over" 可以获得NA
# If an index "goes over" you'll get NA:
vec[6] # NA
# You can find the length of your vector with length()
#你也可以找到矢量的长度
length(vec) # 4
# You can perform operations on entire vectors or subsets of vectors
#你可以将整个矢量或者子矢量集进行展示
vec * 4 # 16 20 24 28
#
vec[2:3] * 5 # 25 30
# and there are many built-in functions to summarize vectors
#这里有许多内置的功能函数,并且可对矢量特征进行总结
mean(vec) # 9.5
var(vec) # 1.666667
sd(vec) # 1.290994
max(vec) # 11
min(vec) # 8
sum(vec) # 38
# TWO-DIMENSIONAL (ALL ONE CLASS)
#二维函数
# You can make a matrix out of entries all of the same type like so:
#你可以建立矩阵,保证所有的变量形式相同
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
#建立mat矩阵3行2列从1到6排列默认按列排布
mat
# =>
# [,1] [,2]
# [1,] 1 4
# [2,] 2 5
# [3,] 3 6
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
class(mat) # => "matrix"
# Ask for the first row
#访问第一行的字符
mat[1,] # 1 4
# Perform operation on the first column
#优先输入第一列分别×3输出
3 * mat[,1] # 3 6 9
# Ask for a specific cell
#访问特殊的单元第3行第二列
mat[3,2] # 6
# Transpose the whole matrix
#转置整个矩阵变成2行3列
t(mat)
# =>
# [,1] [,2] [,3]
# [1,] 1 2 3
# [2,] 4 5 6
# cbind() sticks vectors together column-wise to make a matrix
把两个矩阵按列合并,形成新的矩阵
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
mat2
# =>
# [,1] [,2]
# [1,] "1" "dog"
# [2,] "2" "cat"
# [3,] "3" "bird"
# [4,] "4" "dog"
class(mat2) # matrix
#定义mat2矩阵
# Again, note what happened!
#同样的注释
# Because matrices must contain entries all of the same class,
#矩阵必须包含同样的形式
# everything got converted to the character class
#每一个变量都可以转化成字符串形式
c(class(mat2[,1]), class(mat2[,2]))
# rbind() sticks vectors together row-wise to make a matrix
#按行合并两个向量,建立新的矩阵
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
mat3
# =>
# [,1] [,2] [,3] [,4]
# [1,] 1 2 4 5
# [2,] 6 7 0 4
# Aah, everything of the same class. No coercions. Much better.
# TWO-DIMENSIONAL (DIFFERENT CLASSES)
##二维函数(不同的变量类型)
# For columns of different classes, use the data frame
利用数组可以将不同类型放在一起
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
#dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
names(dat) <- c("number", "species") # name the columns
#给每一个向量命名
class(dat) # "data.frame"
#建立数据集dat
dat
# =>
# number species
# 1 5 dog
# 2 2 cat
# 3 1 bird
# 4 4 dog
class(dat$number) # "numeric"
class(dat[,2]) # "factor"
# The data.frame() function converts character vectors to factor vectors
#数据集,将字符特征转化为因子矢量
# There are many twisty ways to subset data frames, all subtly unalike
#这里有许多种生成数据集的方法,所有的都很巧妙但又不相似
dat$number # 5 2 1 4
dat[,1] # 5 2 1 4
dat[,"number"] # 5 2 1 4
# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
#多维函数
# Arrays creates n-dimensional tables
#利用数组创造一个n维的表格
# You can make a two-dimensional table (sort of like a matrix)
#你可以建立一个2维表格(类型和矩阵相似)
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成2行4列
# =>
# [,1] [,2] [,3] [,4]
# [1,] 1 4 8 3
# [2,] 2 5 9 6
# You can use array to make three-dimensional matrices too
#你也可以利用数组建立一个三维的矩阵
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
# =>
# , , 1
#
# [,1] [,2]
# [1,] 2 8
# [2,] 300 9
# [3,] 4 0
#
# , , 2
#
# [,1] [,2]
# [1,] 5 66
# [2,] 60 7
# [3,] 0 847
# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
#列表(多维的,不同类型的)
# Finally, R has lists (of vectors)
#R语言有列表的形式
list1 <- list(time = 1:40)
list1$price = c(rnorm(40,.5*list1$time,4)) # random
list1
# You can get items in the list like so
#你可以获得像上面列表的形式
list1$time
# You can subset list items like vectors
#你也可以获取他们的子集,一种类似于矢量的形式
list1$price[4]
#########################
# The apply() family of functions
#apply()函数家族的应用
#########################
# Remember mat?
#输出mat矩阵
mat
# =>
# [,1] [,2]
# [1,] 1 4
# [2,] 2 5
# [3,] 3 6
# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
# over rows (MAR = 1) or columns (MAR = 2)
#规定行列其边界分别为1,2
# That is, R does FUN to each row (or column) of X, much faster than a
#即就是R定义一个function使每一行/列的x快于一个for或者while循环
# for or while loop would do
apply(mat, MAR = 2, myFunc)
# =>
# [,1] [,2]
# [1,] 3 15
# [2,] 7 19
# [3,] 11 23
# Other functions: ?lapply, ?sapply
其他的功能函数,
# Don't feel too intimidated; everyone agrees they are rather confusing
#不要被这些吓到,许多人在此都会容易混淆
# The plyr package aims to replace (and improve upon!) the *apply() family.
#plyr程序包的作用是用来改进family函数家族
install.packages("plyr")
require(plyr)
?plyr
#########################
# Loading data
#########################
# "pets.csv" is a file on the internet
#"pets.csv" 是网上的一个文本
pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
#首先读取这个文本
pets
head(pets, 2) # first two rows
#显示前两行
tail(pets, 1) # last row
#显示最后一行
# To save a data frame or matrix as a .csv file
#以.csv格式来保存数据集或者矩阵
write.csv(pets, "pets2.csv") # to make a new .csv file
#输出新的文本pets2.csv
# set working directory with setwd(), look it up with getwd()
#改变工作路径setwd()查找工作路径getwd()
# Try ?read.csv and ?write.csv for more information
#试着做一做以上学到的,或者运行更多的信息
#########################
# Plots
#画图
#########################
# Scatterplots!
#散点图
plot(list1$time, list1$price, main = "fake data")
#作图横轴list1$time纵轴list1$price主题fake data
# Regressions!
#退回
linearModel <- lm(price ~ time, data = list1)
# 线性模型数据集为list1以价格对时间做相关分析模型
linearModel # outputs result of regression
#输出拟合结果,并退出
# Plot regression line on existing plot
#将拟合结果展示在图上,颜色设为红色
abline(linearModel, col = "red")
# Get a variety of nice diagnostics
#也可以获取各种各样漂亮的分析图
plot(linearModel)
# Histograms!
#直方图
hist(rpois(n = 10000, lambda = 5), col = "thistle")
#统计频数直方图
# Barplots!
#柱状图
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
#作图柱的高度负值c(1,4,5,1,2各个柱子的名称"red","blue","purple","green","yellow"
# Try the ggplot2 package for more and better graphics
#可以尝试着使用ggplot2程序包来美化图片
install.packages("ggplot2")
require(ggplot2)
?ggplot2