1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-08-10 00:36:48 +02:00

[go/en] Fix veriadic function bug; format and clarify comments.

This commit is contained in:
Jesse Johnson
2014-01-30 18:47:55 -05:00
parent 88492baf33
commit 2655b4d056

View File

@@ -6,6 +6,7 @@ filename: learngo.go
contributors: contributors:
- ["Sonia Keys", "https://github.com/soniakeys"] - ["Sonia Keys", "https://github.com/soniakeys"]
- ["Christopher Bess", "https://github.com/cbess"] - ["Christopher Bess", "https://github.com/cbess"]
- ["Jesse Johnson", "https://github.com/holocronweaver"]
--- ---
Go was created out of the need to get work done. It's not the latest trend Go was created out of the need to get work done. It's not the latest trend
@@ -30,9 +31,10 @@ package main
// Import declaration declares library packages referenced in this file. // Import declaration declares library packages referenced in this file.
import ( import (
"fmt" // A package in the Go standard library "fmt" // A package in the Go standard library.
"net/http" // Yes, a web server! "net/http" // Yes, a web server!
"strconv" // String conversions "strconv" // String conversions.
m "math" // Math library with local alias m.
) )
// A function definition. Main is special. It is the entry point for the // A function definition. Main is special. It is the entry point for the
@@ -53,49 +55,49 @@ func beyondHello() {
x = 3 // Variable assignment. x = 3 // Variable assignment.
// "Short" declarations use := to infer the type, declare, and assign. // "Short" declarations use := to infer the type, declare, and assign.
y := 4 y := 4
sum, prod := learnMultiple(x, y) // function returns two values sum, prod := learnMultiple(x, y) // Function returns two values.
fmt.Println("sum:", sum, "prod:", prod) // simple output fmt.Println("sum:", sum, "prod:", prod) // Simple output.
learnTypes() // < y minutes, learn more! learnTypes() // < y minutes, learn more!
} }
// Functions can have parameters and (multiple!) return values. // Functions can have parameters and (multiple!) return values.
func learnMultiple(x, y int) (sum, prod int) { func learnMultiple(x, y int) (sum, prod int) {
return x + y, x * y // return two values return x + y, x * y // Return two values.
} }
// Some built-in types and literals. // Some built-in types and literals.
func learnTypes() { func learnTypes() {
// Short declaration usually gives you what you want. // Short declaration usually gives you what you want.
s := "Learn Go!" // string type s := "Learn Go!" // string type.
s2 := `A "raw" string literal s2 := `A "raw" string literal
can include line breaks.` // same string type can include line breaks.` // Same string type.
// non-ASCII literal. Go source is UTF-8. // Non-ASCII literal. Go source is UTF-8.
g := 'Σ' // rune type, an alias for uint32, holds a unicode code point g := 'Σ' // rune type, an alias for uint32, holds a unicode code point.
f := 3.14195 // float64, an IEEE-754 64-bit floating point number f := 3.14195 // float64, an IEEE-754 64-bit floating point number.
c := 3 + 4i // complex128, represented internally with two float64s c := 3 + 4i // complex128, represented internally with two float64's.
// Var syntax with an initializers. // Var syntax with an initializers.
var u uint = 7 // unsigned, but implementation dependent size as with int var u uint = 7 // Unsigned, but implementation dependent size as with int.
var pi float32 = 22. / 7 var pi float32 = 22. / 7
// Conversion syntax with a short declaration. // Conversion syntax with a short declaration.
n := byte('\n') // byte is an alias for uint8 n := byte('\n') // byte is an alias for uint8.
// Arrays have size fixed at compile time. // Arrays have size fixed at compile time.
var a4 [4]int // an array of 4 ints, initialized to all 0 var a4 [4]int // An array of 4 ints, initialized to all 0.
a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown a3 := [...]int{3, 1, 5} // An array of 3 ints, initialized as shown.
// Slices have dynamic size. Arrays and slices each have advantages // Slices have dynamic size. Arrays and slices each have advantages
// but use cases for slices are much more common. // but use cases for slices are much more common.
s3 := []int{4, 5, 9} // compare to a3. no ellipsis here s3 := []int{4, 5, 9} // Compare to a3. No ellipsis here.
s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0 s4 := make([]int, 4) // Allocates slice of 4 ints, initialized to all 0.
var d2 [][]float64 // declaration only, nothing allocated here var d2 [][]float64 // Declaration only, nothing allocated here.
bs := []byte("a slice") // type conversion syntax bs := []byte("a slice") // Type conversion syntax.
p, q := learnMemory() // declares p, q to be type pointer to int. p, q := learnMemory() // Declares p, q to be type pointer to int.
fmt.Println(*p, *q) // * follows a pointer. This prints two ints. fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
// Maps are a dynamically growable associative array type, like the // Maps are a dynamically growable associative array type, like the
@@ -109,23 +111,23 @@ can include line breaks.` // same string type
// Output of course counts as using a variable. // Output of course counts as using a variable.
fmt.Println(s, c, a4, s3, d2, m) fmt.Println(s, c, a4, s3, d2, m)
learnFlowControl() // back in the flow learnFlowControl() // Back in the flow.
} }
// Go is fully garbage collected. It has pointers but no pointer arithmetic. // Go is fully garbage collected. It has pointers but no pointer arithmetic.
// You can make a mistake with a nil pointer, but not by incrementing a pointer. // You can make a mistake with a nil pointer, but not by incrementing a pointer.
func learnMemory() (p, q *int) { func learnMemory() (p, q *int) {
// Named return values p and q have type pointer to int. // Named return values p and q have type pointer to int.
p = new(int) // built-in function new allocates memory. p = new(int) // Built-in function new allocates memory.
// The allocated int is initialized to 0, p is no longer nil. // The allocated int is initialized to 0, p is no longer nil.
s := make([]int, 20) // allocate 20 ints as a single block of memory s := make([]int, 20) // Allocate 20 ints as a single block of memory.
s[3] = 7 // assign one of them s[3] = 7 // Assign one of them.
r := -2 // declare another local variable r := -2 // Declare another local variable.
return &s[3], &r // & takes the address of an object. return &s[3], &r // & takes the address of an object.
} }
func expensiveComputation() int { func expensiveComputation() float64 {
return 1e6 return m.Exp(10)
} }
func learnFlowControl() { func learnFlowControl() {
@@ -135,29 +137,31 @@ func learnFlowControl() {
} }
// Formatting is standardized by the command line command "go fmt." // Formatting is standardized by the command line command "go fmt."
if false { if false {
// pout // Pout.
} else { } else {
// gloat // Gloat.
} }
// Use switch in preference to chained if statements. // Use switch in preference to chained if statements.
x := 1 x := 42.0
switch x { switch x {
case 0: case 0:
case 1: case 1:
// cases don't "fall through" case 42:
case 2: // Cases don't "fall through".
// unreached case 43:
// Unreached.
} }
// Like if, for doesn't use parens either. // Like if, for doesn't use parens either.
for x := 0; x < 3; x++ { // ++ is a statement // Variables declared in for and if are local to their scope.
for x := 0; x < 3; x++ { // ++ is a statement.
fmt.Println("iteration", x) fmt.Println("iteration", x)
} }
// x == 1 here. // x == 42 here.
// For is the only loop statement in Go, but it has alternate forms. // For is the only loop statement in Go, but it has alternate forms.
for { // infinite loop for { // Infinite loop.
break // just kidding break // Just kidding.
continue // unreached continue // Unreached.
} }
// As with for, := in an if statement means to declare and assign y first, // As with for, := in an if statement means to declare and assign y first,
// then test y > x. // then test y > x.
@@ -166,30 +170,17 @@ func learnFlowControl() {
} }
// Function literals are closures. // Function literals are closures.
xBig := func() bool { xBig := func() bool {
return x > 100 // references x declared above switch statement. return x > 100 // References x declared above switch statement.
} }
fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x) fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x).
x /= 1e5 // this makes it == 10 x /= m.Exp(9) // This makes x == e.
fmt.Println("xBig:", xBig()) // false now fmt.Println("xBig:", xBig()) // false now.
// When you need it, you'll love it. // When you need it, you'll love it.
goto love goto love
love: love:
// Good stuff coming up! learnInterfaces() // Good stuff coming up!
learnVariadicParams("great", "learning", "here!")
learnInterfaces()
}
// Functions can have variadic parameters
func learnVariadicParams(myStrings ...string) {
// iterate each value of the variadic
for _, param := range myStrings {
fmt.Println("param:", param)
}
// pass variadic value as a variadic parameter
fmt.Println("params:", fmt.Sprintln(myStrings...))
} }
// Define Stringer as an interface type with one method, String. // Define Stringer as an interface type with one method, String.
@@ -213,16 +204,29 @@ func learnInterfaces() {
// Brace syntax is a "struct literal." It evaluates to an initialized // Brace syntax is a "struct literal." It evaluates to an initialized
// struct. The := syntax declares and initializes p to this struct. // struct. The := syntax declares and initializes p to this struct.
p := pair{3, 4} p := pair{3, 4}
fmt.Println(p.String()) // call String method of p, of type pair. fmt.Println(p.String()) // Call String method of p, of type pair.
var i Stringer // declare i of interface type Stringer. var i Stringer // Declare i of interface type Stringer.
i = p // valid because pair implements Stringer i = p // Valid because pair implements Stringer
// Call String method of i, of type Stringer. Output same as above. // Call String method of i, of type Stringer. Output same as above.
fmt.Println(i.String()) fmt.Println(i.String())
// Functions in the fmt package call the String method to ask an object // Functions in the fmt package call the String method to ask an object
// for a printable representation of itself. // for a printable representation of itself.
fmt.Println(p) // output same as above. Println calls String method. fmt.Println(p) // Output same as above. Println calls String method.
fmt.Println(i) // output same as above fmt.Println(i) // Output same as above.
learnVariadicParams("great", "learning", "here!")
}
// Functions can have variadic parameters.
func learnVariadicParams(myStrings ...interface{}) {
// Iterate each value of the variadic.
for _, param := range myStrings {
fmt.Println("param:", param)
}
// Pass variadic value as a variadic parameter.
fmt.Println("params:", fmt.Sprintln(myStrings...))
learnErrorHandling() learnErrorHandling()
} }
@@ -237,7 +241,7 @@ func learnErrorHandling() {
} }
// An error value communicates not just "ok" but more about the problem. // An error value communicates not just "ok" but more about the problem.
if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
// prints "strconv.ParseInt: parsing "non-int": invalid syntax" // prints 'strconv.ParseInt: parsing "non-int": invalid syntax'
fmt.Println(err) fmt.Println(err)
} }
// We'll revisit interfaces a little later. Meanwhile, // We'll revisit interfaces a little later. Meanwhile,
@@ -264,19 +268,19 @@ func learnConcurrency() {
// There is no telling in what order the results will arrive! // There is no telling in what order the results will arrive!
fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator. fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
cs := make(chan string) // another channel, this one handles strings. cs := make(chan string) // Another channel, this one handles strings.
cc := make(chan chan string) // a channel of string channels. ccs := make(chan chan string) // A channel of string channels.
go func() { c <- 84 }() // start a new goroutine just to send a value go func() { c <- 84 }() // Start a new goroutine just to send a value.
go func() { cs <- "wordy" }() // again, for cs this time go func() { cs <- "wordy" }() // Again, for cs this time.
// Select has syntax like a switch statement but each case involves // Select has syntax like a switch statement but each case involves
// a channel operation. It selects a case at random out of the cases // a channel operation. It selects a case at random out of the cases
// that are ready to communicate. // that are ready to communicate.
select { select {
case i := <-c: // the value received can be assigned to a variable case i := <-c: // The value received can be assigned to a variable,
fmt.Printf("it's a %T", i) fmt.Printf("it's a %T", i)
case <-cs: // or the value received can be discarded case <-cs: // or the value received can be discarded.
fmt.Println("it's a string") fmt.Println("it's a string")
case <-cc: // empty channel, not ready for communication. case <-ccs: // Empty channel, not ready for communication.
fmt.Println("didn't happen.") fmt.Println("didn't happen.")
} }
// At this point a value was taken from either c or cs. One of the two // At this point a value was taken from either c or cs. One of the two
@@ -287,7 +291,7 @@ func learnConcurrency() {
// A single function from package http starts a web server. // A single function from package http starts a web server.
func learnWebProgramming() { func learnWebProgramming() {
// ListenAndServe first parameter is TCP address to listen at. // First parameter of ListenAndServe is TCP address to listen to.
// Second parameter is an interface, specifically http.Handler. // Second parameter is an interface, specifically http.Handler.
err := http.ListenAndServe(":8080", pair{}) err := http.ListenAndServe(":8080", pair{})
fmt.Println(err) // don't ignore errors fmt.Println(err) // don't ignore errors
@@ -295,7 +299,7 @@ func learnWebProgramming() {
// Make pair an http.Handler by implementing its only method, ServeHTTP. // Make pair an http.Handler by implementing its only method, ServeHTTP.
func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) { func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
// Serve data with a method of http.ResponseWriter // Serve data with a method of http.ResponseWriter.
w.Write([]byte("You learned Go in Y minutes!")) w.Write([]byte("You learned Go in Y minutes!"))
} }
``` ```