mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 21:49:22 +01:00
commit
273e91dcdf
@ -3,6 +3,7 @@ category: Algorithms & Data Structures
|
||||
name: Lambda Calculus
|
||||
contributors:
|
||||
- ["Max Sun", "http://github.com/maxsun"]
|
||||
- ["Yan Hui Hang", "http://github.com/yanhh0"]
|
||||
---
|
||||
|
||||
# Lambda Calculus
|
||||
@ -114,8 +115,100 @@ Using successor, we can define add:
|
||||
|
||||
**Challenge:** try defining your own multiplication function!
|
||||
|
||||
## Get even smaller: SKI, SK and Iota
|
||||
|
||||
### SKI Combinator Calculus
|
||||
|
||||
Let S, K, I be the following functions:
|
||||
|
||||
`I x = x`
|
||||
|
||||
`K x y = x`
|
||||
|
||||
`S x y z = x z (y z)`
|
||||
|
||||
We can convert an expression in the lambda calculus to an expression
|
||||
in the SKI combinator calculus:
|
||||
|
||||
1. `λx.x = I`
|
||||
2. `λx.c = Kc`
|
||||
3. `λx.(y z) = S (λx.y) (λx.z)`
|
||||
|
||||
Take the church number 2 for example:
|
||||
|
||||
`2 = λf.λx.f(f x)`
|
||||
|
||||
For the inner part `λx.f(f x)`:
|
||||
```
|
||||
λx.f(f x)
|
||||
= S (λx.f) (λx.(f x)) (case 3)
|
||||
= S (K f) (S (λx.f) (λx.x)) (case 2, 3)
|
||||
= S (K f) (S (K f) I) (case 2, 1)
|
||||
```
|
||||
|
||||
So:
|
||||
```
|
||||
2
|
||||
= λf.λx.f(f x)
|
||||
= λf.(S (K f) (S (K f) I))
|
||||
= λf.((S (K f)) (S (K f) I))
|
||||
= S (λf.(S (K f))) (λf.(S (K f) I)) (case 3)
|
||||
```
|
||||
|
||||
For the first argument `λf.(S (K f))`:
|
||||
```
|
||||
λf.(S (K f))
|
||||
= S (λf.S) (λf.(K f)) (case 3)
|
||||
= S (K S) (S (λf.K) (λf.f)) (case 2, 3)
|
||||
= S (K S) (S (K K) I) (case 2, 3)
|
||||
```
|
||||
|
||||
For the second argument `λf.(S (K f) I)`:
|
||||
```
|
||||
λf.(S (K f) I)
|
||||
= λf.((S (K f)) I)
|
||||
= S (λf.(S (K f))) (λf.I) (case 3)
|
||||
= S (S (λf.S) (λf.(K f))) (K I) (case 2, 3)
|
||||
= S (S (K S) (S (λf.K) (λf.f))) (K I) (case 1, 3)
|
||||
= S (S (K S) (S (K K) I)) (K I) (case 1, 2)
|
||||
```
|
||||
|
||||
Merging them up:
|
||||
```
|
||||
2
|
||||
= S (λf.(S (K f))) (λf.(S (K f) I))
|
||||
= S (S (K S) (S (K K) I)) (S (S (K S) (S (K K) I)) (K I))
|
||||
```
|
||||
|
||||
Expanding this, we would end up with the same expression for the
|
||||
church number 2 again.
|
||||
|
||||
### SK Combinator Calculus
|
||||
|
||||
The SKI combinator calculus can still be reduced further. We can
|
||||
remove the I combinator by noting that `I = SKK`. We can substitute
|
||||
all `I`'s with `SKK`.
|
||||
|
||||
### Iota Combinator
|
||||
|
||||
The SK combinator calculus is still not minimal. Defining:
|
||||
|
||||
```
|
||||
ι = λf.((f S) K)
|
||||
```
|
||||
|
||||
We have:
|
||||
|
||||
```
|
||||
I = ιι
|
||||
K = ι(ιI) = ι(ι(ιι))
|
||||
S = ι(K) = ι(ι(ι(ιι)))
|
||||
```
|
||||
|
||||
## For more advanced reading:
|
||||
|
||||
1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
|
||||
2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
|
||||
3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus)
|
||||
4. [Wikipedia - SKI combinator calculus](https://en.wikipedia.org/wiki/SKI_combinator_calculus)
|
||||
5. [Wikipedia - Iota and Jot](https://en.wikipedia.org/wiki/Iota_and_Jot)
|
||||
|
Loading…
x
Reference in New Issue
Block a user