mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-08-16 19:54:38 +02:00
Merge pull request #3480 from uvtc/patch-2
[Haxe/en] whitespace and uniformity cleanups
This commit is contained in:
@@ -7,17 +7,18 @@ contributors:
|
||||
---
|
||||
|
||||
Haxe is a web-oriented language that provides platform support for C++, C#,
|
||||
Swf/ActionScript, Javascript, Java, and Neko byte code (also written by the
|
||||
Haxe author). Note that this guide is for Haxe version 3. Some of the guide
|
||||
may be applicable to older versions, but it is recommended to use other
|
||||
references.
|
||||
Swf/ActionScript, Javascript, Java, PHP, Python, Lua, HashLink, and Neko byte code
|
||||
(the latter two being also written by the Haxe author). Note that this guide is for
|
||||
Haxe version 3. Some of the guide may be applicable to older versions, but it is
|
||||
recommended to use other references.
|
||||
|
||||
```csharp
|
||||
/*
|
||||
Welcome to Learn Haxe 3 in 15 minutes. http://www.haxe.org
|
||||
This is an executable tutorial. You can compile and run it using the haxe
|
||||
compiler, while in the same directory as LearnHaxe.hx:
|
||||
$> haxe -main LearnHaxe3 -x out
|
||||
|
||||
$ haxe -main LearnHaxe3 --interp
|
||||
|
||||
Look for the slash-star marks surrounding these paragraphs. We are inside
|
||||
a "Multiline comment". We can leave some notes here that will get ignored
|
||||
@@ -26,16 +27,14 @@ references.
|
||||
Multiline comments are also used to generate javadoc-style documentation for
|
||||
haxedoc. They will be used for haxedoc if they immediately precede a class,
|
||||
class function, or class variable.
|
||||
|
||||
*/
|
||||
|
||||
// Double slashes like this will give a single-line comment
|
||||
|
||||
// Double slashes like this will give a single-line comment.
|
||||
|
||||
/*
|
||||
This is your first actual haxe code coming up, it's declaring an empty
|
||||
package. A package isn't necessary, but it's useful if you want to create a
|
||||
namespace for your code (e.g. org.yourapp.ClassName).
|
||||
package. A package isn't necessary, but it's useful if you want to create
|
||||
a namespace for your code (e.g. org.yourapp.ClassName).
|
||||
|
||||
Omitting package declaration is the same as declaring an empty package.
|
||||
*/
|
||||
@@ -47,8 +46,9 @@ package; // empty package, no namespace.
|
||||
must be lower case while module names are capitalized. A module contain one
|
||||
or more types whose names are also capitalized.
|
||||
|
||||
E.g, the class "org.yourapp.Foo" should have the folder structure org/module/Foo.hx,
|
||||
as accessible from the compiler's working directory or class path.
|
||||
E.g, the class "org.yourapp.Foo" should have the folder structure
|
||||
org/module/Foo.hx, as accessible from the compiler's working directory or
|
||||
class path.
|
||||
|
||||
If you import code from other files, it must be declared before the rest of
|
||||
the code. Haxe provides a lot of common default classes to get you started:
|
||||
@@ -64,34 +64,27 @@ import Lambda.array;
|
||||
// you can also use "*" to import all static fields
|
||||
import Math.*;
|
||||
|
||||
/*
|
||||
You can also import classes in a special way, enabling them to extend the
|
||||
functionality of other classes like a "mixin". More on 'using' later.
|
||||
*/
|
||||
// You can also import classes in a special way, enabling them to extend the
|
||||
// functionality of other classes like a "mixin". More on 'using' later.
|
||||
using StringTools;
|
||||
|
||||
/*
|
||||
Typedefs are like variables... for types. They must be declared before any
|
||||
code. More on this later.
|
||||
*/
|
||||
// Typedefs are like variables... for types. They must be declared before any
|
||||
// code. More on this later.
|
||||
typedef FooString = String;
|
||||
|
||||
// Typedefs can also reference "structural" types, more on that later as well.
|
||||
typedef FooObject = { foo: String };
|
||||
|
||||
/*
|
||||
Here's the class definition. It's the main class for the file, since it has
|
||||
the same name (LearnHaxe3).
|
||||
*/
|
||||
class LearnHaxe3{
|
||||
// Here's the class definition. It's the main class for the file, since it has
|
||||
// the same name (LearnHaxe3).
|
||||
class LearnHaxe3 {
|
||||
/*
|
||||
If you want certain code to run automatically, you need to put it in
|
||||
a static main function, and specify the class in the compiler arguments.
|
||||
In this case, we've specified the "LearnHaxe3" class in the compiler
|
||||
arguments above.
|
||||
*/
|
||||
static function main(){
|
||||
|
||||
static function main() {
|
||||
/*
|
||||
Trace is the default method of printing haxe expressions to the
|
||||
screen. Different targets will have different methods of
|
||||
@@ -103,17 +96,13 @@ class LearnHaxe3{
|
||||
*/
|
||||
trace("Hello World, with trace()!");
|
||||
|
||||
/*
|
||||
Trace can handle any type of value or object. It will try to print
|
||||
a representation of the expression as best it can. You can also
|
||||
concatenate strings with the "+" operator:
|
||||
*/
|
||||
trace( " Integer: " + 10 + " Float: " + 3.14 + " Boolean: " + true);
|
||||
// Trace can handle any type of value or object. It will try to print
|
||||
// a representation of the expression as best it can. You can also
|
||||
// concatenate strings with the "+" operator:
|
||||
trace("Integer: " + 10 + " Float: " + 3.14 + " Boolean: " + true);
|
||||
|
||||
/*
|
||||
In Haxe, it's required to separate expressions in the same block with
|
||||
semicolons. But, you can put two expressions on one line:
|
||||
*/
|
||||
// In Haxe, it's required to separate expressions in the same block with
|
||||
// semicolons. But, you can put two expressions on one line:
|
||||
trace('two expressions..'); trace('one line');
|
||||
|
||||
|
||||
@@ -122,14 +111,11 @@ class LearnHaxe3{
|
||||
//////////////////////////////////////////////////////////////////
|
||||
trace("***Types & Variables***");
|
||||
|
||||
/*
|
||||
You can save values and references to data structures using the
|
||||
"var" keyword:
|
||||
*/
|
||||
// You can save values and references to data structures using the
|
||||
// "var" keyword:
|
||||
var an_integer:Int = 1;
|
||||
trace(an_integer + " is the value for an_integer");
|
||||
|
||||
|
||||
/*
|
||||
Haxe is statically typed, so "an_integer" is declared to have an
|
||||
"Int" type, and the rest of the expression assigns the value "1" to
|
||||
@@ -150,46 +136,36 @@ class LearnHaxe3{
|
||||
Haxe uses platform precision for Int and Float sizes. It also
|
||||
uses the platform behavior for overflow.
|
||||
(Other numeric types and behavior are possible using special
|
||||
libraries)
|
||||
*/
|
||||
|
||||
/*
|
||||
libraries.)
|
||||
|
||||
In addition to simple values like Integers, Floats, and Booleans,
|
||||
Haxe provides standard library implementations for common data
|
||||
structures like strings, arrays, lists, and maps:
|
||||
*/
|
||||
|
||||
var a_string = "some" + 'string'; // strings can have double or single quotes
|
||||
// Strings can have double or single quotes.
|
||||
var a_string = "some" + 'string';
|
||||
trace(a_string + " is the value for a_string");
|
||||
|
||||
/*
|
||||
Strings can be "interpolated" by inserting variables into specific
|
||||
positions. The string must be single quoted, and the variable must
|
||||
be preceded with "$". Expressions can be enclosed in ${...}.
|
||||
*/
|
||||
// Strings can be "interpolated" by inserting variables into specific
|
||||
// positions. The string must be single quoted, and the variable must
|
||||
// be preceded with "$". Expressions can be enclosed in ${...}.
|
||||
var x = 1;
|
||||
var an_interpolated_string = 'the value of x is $x';
|
||||
var another_interpolated_string = 'the value of x + 1 is ${x + 1}';
|
||||
|
||||
/*
|
||||
Strings are immutable, instance methods will return a copy of
|
||||
parts or all of the string.
|
||||
(See also the StringBuf class).
|
||||
*/
|
||||
// Strings are immutable, instance methods will return a copy of
|
||||
// parts or all of the string. (See also the StringBuf class).
|
||||
var a_sub_string = a_string.substr(0,4);
|
||||
trace(a_sub_string + " is the value for a_sub_string");
|
||||
|
||||
/*
|
||||
Regexes are also supported, but there's not enough space to go into
|
||||
much detail.
|
||||
*/
|
||||
// Regexes are also supported, but there's not enough space here to go
|
||||
// into much detail.
|
||||
var re = ~/foobar/;
|
||||
trace(re.match('foo') + " is the value for (~/foobar/.match('foo')))");
|
||||
|
||||
/*
|
||||
Arrays are zero-indexed, dynamic, and mutable. Missing values are
|
||||
defined as null.
|
||||
*/
|
||||
// Arrays are zero-indexed, dynamic, and mutable. Missing values are
|
||||
// defined as null.
|
||||
var a = new Array<String>(); // an array that contains Strings
|
||||
a[0] = 'foo';
|
||||
trace(a.length + " is the value for a.length");
|
||||
@@ -197,20 +173,17 @@ class LearnHaxe3{
|
||||
trace(a.length + " is the value for a.length (after modification)");
|
||||
trace(a[3] + " is the value for a[3]"); //null
|
||||
|
||||
/*
|
||||
Arrays are *generic*, so you can indicate which values they contain
|
||||
with a type parameter:
|
||||
*/
|
||||
// Arrays are *generic*, so you can indicate which values they contain
|
||||
// with a type parameter:
|
||||
var a2 = new Array<Int>(); // an array of Ints
|
||||
var a3 = new Array<Array<String>>(); // an Array of Arrays (of Strings).
|
||||
|
||||
/*
|
||||
Maps are simple key/value data structures. The key and the value
|
||||
can be of any type.
|
||||
*/
|
||||
var m = new Map<String, Int>(); // The keys are strings, the values are Ints.
|
||||
// Maps are simple key/value data structures. The key and the value
|
||||
// can be of any type.
|
||||
// Here, the keys are strings, and the values are Ints:
|
||||
var m = new Map<String, Int>();
|
||||
m.set('foo', 4);
|
||||
// You can also use array notation;
|
||||
// You can also use array notation:
|
||||
m['bar'] = 5;
|
||||
trace(m.exists('bar') + " is the value for m.exists('bar')");
|
||||
trace(m.get('bar') + " is the value for m.get('bar')");
|
||||
@@ -219,19 +192,15 @@ class LearnHaxe3{
|
||||
var m2 = ['foo' => 4, 'baz' => 6]; // Alternative map syntax
|
||||
trace(m2 + " is the value for m2");
|
||||
|
||||
/*
|
||||
Remember, you can use type inference. The Haxe compiler will
|
||||
decide the type of the variable the first time you pass an
|
||||
argument that sets a type parameter.
|
||||
*/
|
||||
// Remember, you can use type inference. The Haxe compiler will
|
||||
// decide the type of the variable the first time you pass an
|
||||
// argument that sets a type parameter.
|
||||
var m3 = new Map();
|
||||
m3.set(6, 'baz'); // m3 is now a Map<Int,String>
|
||||
trace(m3 + " is the value for m3");
|
||||
|
||||
/*
|
||||
Haxe has some more common datastructures in the haxe.ds module, such as
|
||||
List, Stack, and BalancedTree
|
||||
*/
|
||||
// Haxe has some more common datastructures in the haxe.ds module, such
|
||||
// as List, Stack, and BalancedTree.
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
@@ -243,11 +212,11 @@ class LearnHaxe3{
|
||||
trace((4 + 3) + " is the value for (4 + 3)");
|
||||
trace((5 - 1) + " is the value for (5 - 1)");
|
||||
trace((2 * 4) + " is the value for (2 * 4)");
|
||||
trace((8 / 3) + " is the value for (8 / 3) (division always produces Floats)");
|
||||
// Division always produces Floats.
|
||||
trace((8 / 3) + " is the value for (8 / 3) (a Float)");
|
||||
trace((12 % 4) + " is the value for (12 % 4)");
|
||||
|
||||
|
||||
//basic comparison
|
||||
// basic comparison
|
||||
trace((3 == 2) + " is the value for 3 == 2");
|
||||
trace((3 != 2) + " is the value for 3 != 2");
|
||||
trace((3 > 2) + " is the value for 3 > 2");
|
||||
@@ -257,22 +226,23 @@ class LearnHaxe3{
|
||||
|
||||
// standard bitwise operators
|
||||
/*
|
||||
~ Unary bitwise complement
|
||||
<< Signed left shift
|
||||
>> Signed right shift
|
||||
>>> Unsigned right shift
|
||||
& Bitwise AND
|
||||
^ Bitwise exclusive OR
|
||||
| Bitwise inclusive OR
|
||||
~ Unary bitwise complement
|
||||
<< Signed left shift
|
||||
>> Signed right shift
|
||||
>>> Unsigned right shift
|
||||
& Bitwise AND
|
||||
^ Bitwise exclusive OR
|
||||
| Bitwise inclusive OR
|
||||
*/
|
||||
|
||||
//increments
|
||||
// increments
|
||||
var i = 0;
|
||||
trace("Increments and decrements");
|
||||
trace(i++); //i = 1. Post-Incrementation
|
||||
trace(++i); //i = 2. Pre-Incrementation
|
||||
trace(i--); //i = 1. Post-Decrementation
|
||||
trace(--i); //i = 0. Pre-Decrementation
|
||||
trace(i++); // i = 1. Post-Increment
|
||||
trace(++i); // i = 2. Pre-Increment
|
||||
trace(i--); // i = 1. Post-Decrement
|
||||
trace(--i); // i = 0. Pre-Decrement
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Control Structures
|
||||
@@ -281,21 +251,19 @@ class LearnHaxe3{
|
||||
|
||||
// if statements
|
||||
var j = 10;
|
||||
if (j == 10){
|
||||
if (j == 10) {
|
||||
trace("this is printed");
|
||||
} else if (j > 10){
|
||||
} else if (j > 10) {
|
||||
trace("not greater than 10, so not printed");
|
||||
} else {
|
||||
trace("also not printed.");
|
||||
}
|
||||
|
||||
// there is also a "ternary" if:
|
||||
(j == 10) ? trace("equals 10") : trace("not equals 10");
|
||||
(j == 10) ? trace("equals 10") : trace("not equals 10");
|
||||
|
||||
/*
|
||||
Finally, there is another form of control structures that operates
|
||||
at compile time: conditional compilation.
|
||||
*/
|
||||
// Finally, there is another form of control structure that operates
|
||||
// at compile time: conditional compilation.
|
||||
#if neko
|
||||
trace('hello from neko');
|
||||
#elseif js
|
||||
@@ -303,43 +271,40 @@ class LearnHaxe3{
|
||||
#else
|
||||
trace('hello from another platform!');
|
||||
#end
|
||||
/*
|
||||
The compiled code will change depending on the platform target.
|
||||
Since we're compiling for neko (-x or -neko), we only get the neko
|
||||
greeting.
|
||||
*/
|
||||
|
||||
// The compiled code will change depending on the platform target.
|
||||
// Since we're compiling for neko (-x or -neko), we only get the neko
|
||||
// greeting.
|
||||
|
||||
|
||||
trace("Looping and Iteration");
|
||||
|
||||
// while loop
|
||||
var k = 0;
|
||||
while(k < 100){
|
||||
while (k < 100) {
|
||||
// trace(counter); // will print out numbers 0-99
|
||||
k++;
|
||||
}
|
||||
|
||||
// do-while loop
|
||||
var l = 0;
|
||||
do{
|
||||
do {
|
||||
trace("do statement always runs at least once");
|
||||
} while (l > 0);
|
||||
|
||||
// for loop
|
||||
/*
|
||||
There is no c-style for loop in Haxe, because they are prone
|
||||
to error, and not necessary. Instead, Haxe has a much simpler
|
||||
and safer version that uses Iterators (more on those later).
|
||||
*/
|
||||
var m = [1,2,3];
|
||||
for (val in m){
|
||||
// There is no c-style for loop in Haxe, because they are prone
|
||||
// to error, and not necessary. Instead, Haxe has a much simpler
|
||||
// and safer version that uses Iterators (more on those later).
|
||||
var m = [1, 2, 3];
|
||||
for (val in m) {
|
||||
trace(val + " is the value for val in the m array");
|
||||
}
|
||||
|
||||
// Note that you can iterate on an index using a range
|
||||
// (more on ranges later as well)
|
||||
var n = ['foo', 'bar', 'baz'];
|
||||
for (val in 0...n.length){
|
||||
for (val in 0...n.length) {
|
||||
trace(val + " is the value for val (an index for n)");
|
||||
}
|
||||
|
||||
@@ -354,8 +319,11 @@ class LearnHaxe3{
|
||||
var modified_n = [for (val in n) val += '!'];
|
||||
trace(modified_n + " is the value for modified_n");
|
||||
|
||||
var filtered_and_modified_n = [for (val in n) if (val != "foo") val += "!"];
|
||||
trace(filtered_and_modified_n + " is the value for filtered_and_modified_n");
|
||||
var filtered_and_modified_n
|
||||
= [for (val in n) if (val != "foo") val += "!"];
|
||||
trace(filtered_and_modified_n
|
||||
+ " is the value for filtered_and_modified_n");
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Switch Statements (Value Type)
|
||||
@@ -370,29 +338,28 @@ class LearnHaxe3{
|
||||
*/
|
||||
var my_dog_name = "fido";
|
||||
var favorite_thing = "";
|
||||
switch(my_dog_name){
|
||||
switch(my_dog_name) {
|
||||
case "fido" : favorite_thing = "bone";
|
||||
case "rex" : favorite_thing = "shoe";
|
||||
case "spot" : favorite_thing = "tennis ball";
|
||||
default : favorite_thing = "some unknown treat";
|
||||
// case _ : favorite_thing = "some unknown treat"; // same as default
|
||||
// same as default:
|
||||
// case _ : favorite_thing = "some unknown treat";
|
||||
}
|
||||
// The "_" case above is a "wildcard" value
|
||||
// that will match anything.
|
||||
// The "_" case above is a "wildcard" value that will match anything.
|
||||
|
||||
trace("My dog's name is " + my_dog_name
|
||||
+ ", and his favorite thing is a: "
|
||||
+ favorite_thing);
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Expression Statements
|
||||
//////////////////////////////////////////////////////////////////
|
||||
trace("***EXPRESSION STATEMENTS***");
|
||||
|
||||
/*
|
||||
Haxe control statements are very powerful because every statement
|
||||
is also an expression, consider:
|
||||
*/
|
||||
// Haxe control statements are very powerful because every statement
|
||||
// is also an expression, consider:
|
||||
|
||||
// if statements
|
||||
var k = if (true) 10 else 20;
|
||||
@@ -410,6 +377,7 @@ class LearnHaxe3{
|
||||
+ ", and his other favorite thing is a: "
|
||||
+ other_favorite_thing);
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Converting Value Types
|
||||
//////////////////////////////////////////////////////////////////
|
||||
@@ -418,14 +386,14 @@ class LearnHaxe3{
|
||||
// You can convert strings to ints fairly easily.
|
||||
|
||||
// string to integer
|
||||
Std.parseInt("0"); // returns 0
|
||||
Std.parseFloat("0.4"); // returns 0.4;
|
||||
Std.parseInt("0"); // returns 0
|
||||
Std.parseFloat("0.4"); // returns 0.4
|
||||
|
||||
// integer to string
|
||||
Std.string(0); // returns "0";
|
||||
Std.string(0); // returns "0"
|
||||
// concatenation with strings will auto-convert to string.
|
||||
0 + ""; // returns "0";
|
||||
true + ""; // returns "true";
|
||||
0 + ""; // returns "0"
|
||||
true + ""; // returns "true"
|
||||
// See documentation for parsing in Std for more details.
|
||||
|
||||
|
||||
@@ -434,14 +402,13 @@ class LearnHaxe3{
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
|
||||
As mentioned before, Haxe is a statically typed language. All in
|
||||
all, static typing is a wonderful thing. It enables
|
||||
precise autocompletions, and can be used to thoroughly check the
|
||||
correctness of a program. Plus, the Haxe compiler is super fast.
|
||||
|
||||
*HOWEVER*, there are times when you just wish the compiler would let
|
||||
something slide, and not throw a type error in a given case.
|
||||
*HOWEVER*, there are times when you just wish the compiler would
|
||||
let something slide, and not throw a type error in a given case.
|
||||
|
||||
To do this, Haxe has two separate keywords. The first is the
|
||||
"Dynamic" type:
|
||||
@@ -456,11 +423,10 @@ class LearnHaxe3{
|
||||
|
||||
The other more extreme option is the "untyped" keyword:
|
||||
*/
|
||||
|
||||
untyped {
|
||||
var x:Int = 'foo'; // this can't be right!
|
||||
var y:String = 4; // madness!
|
||||
}
|
||||
untyped {
|
||||
var x:Int = 'foo'; // This can't be right!
|
||||
var y:String = 4; // Madness!
|
||||
}
|
||||
|
||||
/*
|
||||
The untyped keyword operates on entire *blocks* of code, skipping
|
||||
@@ -474,74 +440,66 @@ class LearnHaxe3{
|
||||
of the type models work should you resort to "Dynamic" or "untyped".
|
||||
*/
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Basic Object Oriented Programming
|
||||
//////////////////////////////////////////////////////////////////
|
||||
trace("***BASIC OBJECT ORIENTED PROGRAMMING***");
|
||||
|
||||
|
||||
/*
|
||||
Create an instance of FooClass. The classes for this are at the
|
||||
end of the file.
|
||||
*/
|
||||
// Create an instance of FooClass. The classes for this are at the
|
||||
// end of the file.
|
||||
var foo_instance = new FooClass(3);
|
||||
|
||||
// read the public variable normally
|
||||
trace(foo_instance.public_any + " is the value for foo_instance.public_any");
|
||||
trace(foo_instance.public_any
|
||||
+ " is the value for foo_instance.public_any");
|
||||
|
||||
// we can read this variable
|
||||
trace(foo_instance.public_read + " is the value for foo_instance.public_read");
|
||||
// but not write it
|
||||
// foo_instance.public_read = 4; // this will throw an error if uncommented:
|
||||
trace(foo_instance.public_read
|
||||
+ " is the value for foo_instance.public_read");
|
||||
// but not write it; this will throw an error if uncommented:
|
||||
// foo_instance.public_read = 4;
|
||||
// trace(foo_instance.public_write); // as will this.
|
||||
|
||||
// calls the toString method:
|
||||
// Calls the toString method:
|
||||
trace(foo_instance + " is the value for foo_instance");
|
||||
// same thing:
|
||||
trace(foo_instance.toString() + " is the value for foo_instance.toString()");
|
||||
trace(foo_instance.toString()
|
||||
+ " is the value for foo_instance.toString()");
|
||||
|
||||
|
||||
/*
|
||||
The foo_instance has the "FooClass" type, while acceptBarInstance
|
||||
has the BarClass type. However, since FooClass extends BarClass, it
|
||||
is accepted.
|
||||
*/
|
||||
// The foo_instance has the "FooClass" type, while acceptBarInstance
|
||||
// has the BarClass type. However, since FooClass extends BarClass, it
|
||||
// is accepted.
|
||||
BarClass.acceptBarInstance(foo_instance);
|
||||
|
||||
/*
|
||||
The classes below have some more advanced examples, the "example()"
|
||||
method will just run them here.
|
||||
*/
|
||||
// The classes below have some more advanced examples, the "example()"
|
||||
// method will just run them here.
|
||||
SimpleEnumTest.example();
|
||||
ComplexEnumTest.example();
|
||||
TypedefsAndStructuralTypes.example();
|
||||
UsingExample.example();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
This is the "child class" of the main LearnHaxe3 Class
|
||||
*/
|
||||
class FooClass extends BarClass implements BarInterface{
|
||||
// This is the "child class" of the main LearnHaxe3 Class.
|
||||
class FooClass extends BarClass implements BarInterface {
|
||||
public var public_any:Int; // public variables are accessible anywhere
|
||||
public var public_read (default, null): Int; // enable only public read
|
||||
public var public_write (null, default): Int; // or only public write
|
||||
public var property (get, set): Int; // use this style to enable getters/setters
|
||||
// Use this style to enable getters/setters:
|
||||
public var property (get, set): Int;
|
||||
|
||||
// private variables are not available outside the class.
|
||||
// see @:allow for ways around this.
|
||||
var _private:Int; // variables are private if they are not marked public
|
||||
|
||||
// a public constructor
|
||||
public function new(arg:Int){
|
||||
public function new(arg:Int) {
|
||||
// call the constructor of the parent object, since we extended BarClass:
|
||||
super();
|
||||
|
||||
this.public_any = 0;
|
||||
this._private = arg;
|
||||
|
||||
}
|
||||
|
||||
// getter for _private
|
||||
@@ -555,47 +513,40 @@ class FooClass extends BarClass implements BarInterface{
|
||||
return val;
|
||||
}
|
||||
|
||||
// special function that is called whenever an instance is cast to a string.
|
||||
public function toString(){
|
||||
// Special function that is called whenever an instance is cast to a string.
|
||||
public function toString() {
|
||||
return _private + " with toString() method!";
|
||||
}
|
||||
|
||||
// this class needs to have this function defined, since it implements
|
||||
// the BarInterface interface.
|
||||
public function baseFunction(x: Int) : String{
|
||||
public function baseFunction(x: Int) : String {
|
||||
// convert the int to string automatically
|
||||
return x + " was passed into baseFunction!";
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
A simple class to extend
|
||||
*/
|
||||
// A simple class to extend.
|
||||
class BarClass {
|
||||
var base_variable:Int;
|
||||
public function new(){
|
||||
public function new() {
|
||||
base_variable = 4;
|
||||
}
|
||||
public static function acceptBarInstance(b:BarClass){
|
||||
}
|
||||
public static function acceptBarInstance(b:BarClass) {}
|
||||
}
|
||||
|
||||
/*
|
||||
A simple interface to implement
|
||||
*/
|
||||
interface BarInterface{
|
||||
// A simple interface to implement
|
||||
interface BarInterface {
|
||||
public function baseFunction(x:Int):String;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Enums and Switch Statements
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
Enums in Haxe are very powerful. In their simplest form, enums
|
||||
are a type with a limited number of states:
|
||||
*/
|
||||
|
||||
// Enums in Haxe are very powerful. In their simplest form, enums
|
||||
// are a type with a limited number of states:
|
||||
enum SimpleEnum {
|
||||
Foo;
|
||||
Bar;
|
||||
@@ -603,12 +554,12 @@ enum SimpleEnum {
|
||||
}
|
||||
|
||||
// Here's a class that uses it:
|
||||
|
||||
class SimpleEnumTest{
|
||||
public static function example(){
|
||||
var e_explicit:SimpleEnum = SimpleEnum.Foo; // you can specify the "full" name
|
||||
class SimpleEnumTest {
|
||||
public static function example() {
|
||||
// You can specify the "full" name,
|
||||
var e_explicit:SimpleEnum = SimpleEnum.Foo;
|
||||
var e = Foo; // but inference will work as well.
|
||||
switch(e){
|
||||
switch(e) {
|
||||
case Foo: trace("e was Foo");
|
||||
case Bar: trace("e was Bar");
|
||||
case Baz: trace("e was Baz"); // comment this line to throw an error.
|
||||
@@ -621,18 +572,16 @@ class SimpleEnumTest{
|
||||
|
||||
You can also specify a default for enum switches as well:
|
||||
*/
|
||||
switch(e){
|
||||
switch(e) {
|
||||
case Foo: trace("e was Foo again");
|
||||
default : trace("default works here too");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Enums go much further than simple states, we can also enumerate
|
||||
*constructors*, but we'll need a more complex enum example
|
||||
*/
|
||||
enum ComplexEnum{
|
||||
// Enums go much further than simple states, we can also enumerate
|
||||
// *constructors*, but we'll need a more complex enum example.
|
||||
enum ComplexEnum {
|
||||
IntEnum(i:Int);
|
||||
MultiEnum(i:Int, j:String, k:Float);
|
||||
SimpleEnumEnum(s:SimpleEnum);
|
||||
@@ -641,14 +590,12 @@ enum ComplexEnum{
|
||||
// Note: The enum above can include *other* enums as well, including itself!
|
||||
// Note: This is what's called *Algebraic data type* in some other languages.
|
||||
|
||||
class ComplexEnumTest{
|
||||
public static function example(){
|
||||
class ComplexEnumTest {
|
||||
public static function example() {
|
||||
var e1:ComplexEnum = IntEnum(4); // specifying the enum parameter
|
||||
/*
|
||||
Now we can switch on the enum, as well as extract any parameters
|
||||
it might of had.
|
||||
*/
|
||||
switch(e1){
|
||||
// Now we can switch on the enum, as well as extract any parameters
|
||||
// it might of had.
|
||||
switch(e1) {
|
||||
case IntEnum(x) : trace('$x was the parameter passed to e1');
|
||||
default: trace("Shouldn't be printed");
|
||||
}
|
||||
@@ -662,34 +609,28 @@ class ComplexEnumTest{
|
||||
|
||||
// enums all the way down
|
||||
var e3 = ComplexEnumEnum(ComplexEnumEnum(MultiEnum(4, 'hi', 4.3)));
|
||||
switch(e3){
|
||||
// You can look for certain nested enums by specifying them explicitly:
|
||||
switch(e3) {
|
||||
// You can look for certain nested enums by specifying them
|
||||
// explicitly:
|
||||
case ComplexEnumEnum(ComplexEnumEnum(MultiEnum(i,j,k))) : {
|
||||
trace('$i, $j, and $k were passed into this nested monster');
|
||||
}
|
||||
default: trace("Shouldn't be printed");
|
||||
}
|
||||
/*
|
||||
Check out "generalized algebraic data types" (GADT) for more details
|
||||
on why these are so great.
|
||||
*/
|
||||
// Check out "generalized algebraic data types" (GADT) for more details
|
||||
// on why these are so great.
|
||||
}
|
||||
}
|
||||
|
||||
class TypedefsAndStructuralTypes {
|
||||
public static function example(){
|
||||
/*
|
||||
Here we're going to use typedef types, instead of base types.
|
||||
At the top we've declared the type "FooString" to mean a "String" type.
|
||||
*/
|
||||
public static function example() {
|
||||
// Here we're going to use typedef types, instead of base types.
|
||||
// At the top we've declared the type "FooString" to mean a "String" type.
|
||||
var t1:FooString = "some string";
|
||||
|
||||
/*
|
||||
We can use typedefs for "structural types" as well. These types are
|
||||
defined by their field structure, not by class inheritance. Here's
|
||||
an anonymous object with a String field named "foo":
|
||||
*/
|
||||
|
||||
// We can use typedefs for "structural types" as well. These types are
|
||||
// defined by their field structure, not by class inheritance. Here's
|
||||
// an anonymous object with a String field named "foo":
|
||||
var anon_obj = { foo: 'hi' };
|
||||
|
||||
/*
|
||||
@@ -699,8 +640,7 @@ class TypedefsAndStructuralTypes {
|
||||
that structure, we can use it anywhere that a "FooObject" type is
|
||||
expected.
|
||||
*/
|
||||
|
||||
var f = function(fo:FooObject){
|
||||
var f = function(fo:FooObject) {
|
||||
trace('$fo was passed in to this function');
|
||||
}
|
||||
f(anon_obj); // call the FooObject signature function with anon_obj.
|
||||
@@ -712,9 +652,7 @@ class TypedefsAndStructuralTypes {
|
||||
?optionalString: String,
|
||||
requiredInt: Int
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
Typedefs work well with conditional compilation. For instance,
|
||||
we could have included this at the top of the file:
|
||||
|
||||
@@ -728,15 +666,14 @@ class TypedefsAndStructuralTypes {
|
||||
typedef Surface = java.awt.geom.GeneralPath;
|
||||
#end
|
||||
|
||||
That would give us a single "Surface" type to work with across
|
||||
all of those platforms.
|
||||
That would give us a single "Surface" type to work with across
|
||||
all of those platforms.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
class UsingExample {
|
||||
public static function example() {
|
||||
|
||||
/*
|
||||
The "using" import keyword is a special type of class import that
|
||||
alters the behavior of any static methods in the class.
|
||||
|
Reference in New Issue
Block a user