1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-08-15 11:14:24 +02:00

Merge pull request #800 from mrkline/master

C++ Improvements
This commit is contained in:
Levi Bostian
2014-10-17 20:51:37 -05:00

View File

@@ -3,326 +3,414 @@ language: c++
filename: learncpp.cpp filename: learncpp.cpp
contributors: contributors:
- ["Steven Basart", "http://github.com/xksteven"] - ["Steven Basart", "http://github.com/xksteven"]
- ["Matt Kline", "https://github.com/mrkline"]
lang: en lang: en
--- ---
I am writing this to highlight the differences and C++ is a systems programming language that,
additions that C++ has with respect to C. My [according to its inventor Bjarne Stroustrup](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote),
suggestion would be to follow the C tutorial first was designed to
then look here for the additions and differences.
- be a "better C"
- support data abstraction
- support object-oriented programming
- support generic programming
Though its syntax can be more difficult or complex than newer languages,
it is widely used because it compiles to native instructions that can be
directly run by the processor and offers tight control over hardware (like C)
while offering high-level features such as generics, exceptions, and classes.
This combination of speed and functionality makes C++
one of the most widely-used programming languages.
```c++ ```c++
/////////////////////////////////////// //////////////////
// C++ differences // Comparison to C
/////////////////////////////////////// //////////////////
// C++ is _almost_ a superset of C and shares its basic syntax for
// variable declarations, primitive types, and functions.
// However, C++ varies in some of the following ways:
//In C++ // A main() function in C++ should return an int,
//cannot use void main() // though void main() is accepted by most compilers (gcc, clang, etc.)
int main() { //or int main(int argc, char **argv) // This value serves as the program's exit status.
//cannot end with return; // See http://en.wikipedia.org/wiki/Exit_status for more information.
int main(int argc, char** argv)
{
// Command line arguments are passed in by argc and argv in the same way
// they are in C.
// argc indicates the number of arguments,
// and argv is an array of C-style strings (char*)
// representing the arguments.
// The first argument is the name by which the program was called.
// argc and argv can be omitted if you do not care about arguments,
// giving the function signature of int main()
// An exit status of 0 indicates success.
return 0; return 0;
//Can also end without return statement
} }
//In C++ // In C++, character literals are one byte.
/*
//This could lead to compiler errors and is discouraged
//#if 0 #endif pairs are encouraged instead
*/
//In C++
sizeof(10) //Typically 4
sizeof('c') == 1 sizeof('c') == 1
//In C // In C, character literals are the same size as ints.
sizeof('c') == sizeof(10) //true chars are passed as ints sizeof('c') == sizeof(10)
//In C++ strict prototyping // C++ has strict prototyping
void func(); //function which accepts no arguments void func(); // function which accepts no arguments
//In C // In C
void func(); //function which may accept arguments void func(); // function which may accept any number of arguments
// Use nullptr instead of NULL in C++
int* ip = nullptr;
//In C++ // C standard headers are available in C++,
for(int i = 0; i < 10; i++) {;} // but are prefixed with "c" and have no .h suffix.
//In C must int i must be declared before #include <cstdio>
//C++ Supports Function overloading
//Provided each function takes different
//parameters
void printing(char const *myString)
{printf("String %s\n",myString);} //Hello
void printing(int myInt)
{printf("My int is %d",myInt);} //15
int main ()
{
printing("Hello");
printing(15);
}
//C++ Default Function Arguments
void two_ints(int a = 1, int b = 4);
int main() int main()
{ {
two_ints(); // arguments: 1, 4 printf("Hello, world!\n");
two_ints(20); // arguments: 20, 4 return 0;
two_ints(20, 5); // arguments: 20, 5
} }
///////////////////////
// Function overloading
///////////////////////
//C++ added the nullptr which is different from 0 // C++ supports function overloading
int *ip = nullptr; // OK // provided each function takes different parameters.
int value = nullptr; // error: value is no pointer
void print(char const* myString)
{
printf("String %s\n", myString);
}
/////////////////////////////////////// void print(int myInt)
// C++ Additions ontop of C {
/////////////////////////////////////// printf("My int is %d", myInt);
}
///////////////////////////////////////
// C++ Namespace
///////////////////////////////////////
//Namespaces allow you to define your own
//functions and variables for use
// Use '::' to change variable (or function) scope
// Putting '::' before a function or variable will
// reference a global scope
// This allows you to make normal c library calls
// std is for standard library
using namespace std;
#include <stdio.h>
int counter = 50; // global variable
int main() int main()
{ {
for (int counter = 1; // this refers to the print("Hello"); // Resolves to void print(const char*)
counter < 2; // local variable print(15); // Resolves to void print(int)
counter++) }
/////////////////////////////
// Default function arguments
/////////////////////////////
// You can provide default arguments for a function
// if they are not provided by the caller.
void doSomethingWithInts(int a = 1, int b = 4)
{
// Do something with the ints here
}
int main()
{
doSomethingWithInts(); // a = 1, b = 4
doSomethingWithInts(20); // a = 20, b = 4
doSomethingWithInts(20, 5); // a = 20, b = 5
}
// Default arguments must be at the end of the arguments list.
void invalidDeclaration(int a = 1, int b) // Error!
{
}
/////////////
// Namespaces
/////////////
// Namespaces provide separate scopes for variable, function,
// and other declarations.
// Namespaces can be nested.
namespace First {
namespace Nested {
void foo()
{ {
printf("Global var %d local var %d\n", printf("This is First::Nested::foo\n");
::counter, // global variable }
counter); // local variable } // end namespace Nested
// => Global var 50 local var 1 } // end namespace First
namespace Second {
void foo()
{
printf("This is Second::foo\n")
} }
} }
// Namespaces can be nested void foo()
namespace myFirstNameSpace
{ {
namespace myInnerSoul printf("This is global foo\n");
{
cos(int x)
{
printf("My inner soul was made to program.");
}
}
}
namespace anotherNameSpace
{
cos(int x) {;} //does nothing
} }
int main() int main()
{ {
//Specify the full path because main is outside of both namespaces. // Assume everything is from the namespace "Second"
//Will print out My inner soul was made to program. // unless otherwise specified.
myFirstNameSpace::myInnerSoul::cos(60); using namespace Second;
foo(); // prints "This is Second::foo"
First::Nested::foo(); // prints "This is First::Nested::foo"
::foo(); // prints "This is global foo"
} }
///////////////
// Input/Output
///////////////
/////////////////////////////////////// // C++ input and output uses streams
// C++ Strings // cin, cout, and cerr represent stdin, stdout, and stderr.
/////////////////////////////////////// // << is the insertion operator and >> is the extraction operator.
//Strings in C++ are Objects and have many functions #include <iostream> // Include for I/O streams
myString = "Hello";
myOtherString = " World";
myString + myOtherString; // => "Hello World" using namespace std; // Streams are in the std namespace (standard library)
myString + ' You'; // => "Hello You"
myString != myOtherString; //True
//An example of a string method
myString.append(" Dog"); // => "Hello Dog"
///////////////////////////////////////
// C++ Input Output
///////////////////////////////////////
//C++ input and output streams
//cin, cout, cerr, << is insertion and >> is extraction operator
#include <iostream>
using namespace std;
int main() int main()
{ {
int myInt; int myInt;
//Prints to stdout (or terminal/screen) // Prints to stdout (or terminal/screen)
cout << "Enter your fav number:\n"; cout << "Enter your favorite number:\n";
//Takes in input // Takes in input
cin >> myInt; cin >> myInt;
//cout can also be formatted // cout can also be formatted
cout << "Your fav number is " << myInt << "\n"; cout << "Your favorite number is " << myInt << "\n";
//Your fav number is ## // prints "Your favorite number is <myInt>"
cerr << "Used for error messages"; cerr << "Used for error messages";
} }
//////////
// Strings
//////////
/////////////////////////////////////// // Strings in C++ are objects and have many member functions
// C++ Classes #include <string>
///////////////////////////////////////
using namespace std; // Strings are also in the namespace std (standard library)
string myString = "Hello";
string myOtherString = " World";
// + is used for concatenation.
cout << myString + myOtherString; // "Hello World"
cout << myString + " You"; // "Hello You"
// C++ strings are mutable and have value semantics.
myString.append(" Dog");
cout << myString; // "Hello Dog"
//First example of classes /////////////
// References
/////////////
// In addition to pointers like the ones in C,
// C++ has _references_.
// These are pointer types that cannot be reassigned once set
// and cannot be null.
// They also have the same syntax as the variable itself:
// No * is needed for dereferencing and
// & (address of) is not used for assignment.
using namespace std;
string foo = "I am foo";
string bar = "I am bar";
string& fooRef = foo; // This creates a reference to foo.
fooRef += ". Hi!"; // Modifies foo through the reference
cout << fooRef; // Prints "I am foo. Hi!"
fooRef = bar; // Error: references cannot be reassigned.
const string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified.
//////////////////////////////////////////
// Classes and object-oriented programming
//////////////////////////////////////////
// First example of classes
#include <iostream> #include <iostream>
//define a class // Declare a class.
class Doggie // Classes are usually declared in header (.h or .hpp) files.
{ class Dog {
// Member variables and functions are private by default.
std::string name; std::string name;
int weight; int weight;
// These are only the declarations // All members following this are public
//Can also have private and protected // until "private:" or "protected:" is found.
public: public:
//The public methods (can also include variables)
// Default constructor // Default constructor
Doggie(); Dog();
// Member function declarations (implementations to follow)
// Note that we use std::string here instead of placing
// using namespace std;
// above.
// Never put a "using namespace" statement in a header.
void setName(const std::string& dogsName);
void setName(std::string dogsName);
void setWeight(int dogsWeight); void setWeight(int dogsWeight);
void printDog();
//Can define functions within class declaration too // Functions that do not modify the state of the object
void dogBark() {std::cout << "Bark Bark\n"} // should be marked as const.
// This allows you to call them if given a const reference to the object.
// Also note the functions must be explicitly declared as _virtual_
// in order to be overridden in derived classes.
// Functions are not virtual by default for performance reasons.
virtual void print() const;
//Destructors are methods that free the allocated space // Functions can also be defined inside the class body.
~doggieDestructor(); // Functions defined as such are automatically inlined.
//if no destructor compiler defines the trivial destructor void bark() const { std::cout << name << " barks!\n" }
//Classes are similar to structs and must close the } with ; // Along with constructors, C++ provides destructors.
}; // These are called when an object is deleted or falls out of scope.
// This enables powerful paradigms such as RAII
// (see below)
// Destructors must be virtual to allow classes to be derived from this one.
virtual ~Dog();
// This is the implementation of the class methods }; // A semicolon must follow the class definition.
// Also called the definition
void Doggie::Doggie () { // Class member functions are usually implemented in .cpp files.
std::cout << "A doggie is born. Woof!\n"; void Dog::Dog()
{
std::cout << "A dog has been constructed\n";
} }
void Doggie::setName (std::string doggie_name) { // Objects (such as strings) should be passed by reference
// if you are modifying them or const reference if you are not.
void Dog::setName(const std::string& dogsName)
{
name = doggie_name; name = doggie_name;
} }
void Doggie::setWeight (int doggie_weight) { void Dog::setWeight(int dogsWeight)
weight = doggie_weight;
}
void Doggie::printDog () {
std::cout << "Dog is " << name << " weighs" << weight << "\n";
}
void Doggie::~doggieDestructor () {
delete[] name;
delete weight;
}
int main () {
Doggie deedee; // prints out a doggie is born. Woof!
deedee.setName ("Barkley");
deedee.setWeight(1000000);
deedee.printDog;
//prints => Dog is Barkley weighs 1000000
return 0;
}
//C++ Class inheritance
class German_Sheperd : public Doggie
{ {
//This class now inherits everything public and protected from Doggie class weight = dogsWeight;
}
//Good practice to put d_ in front of datatypes in classes // Notice that "virtual" is only needed in the declaration, not the definition.
std::string d_type; void Dog::print() const
{
std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
}
public: void Dog::~Dog()
void dogType() {d_type = "German Sheperd";} {
cout << "Goodbye " << name << "\n";
}
int main() {
Dog myDog; // prints "A dog has been constructed"
myDog.setName("Barkley");
myDog.setWeight(10);
myDog.printDog(); // prints "Dog is Barkley and weighs 10 kg"
return 0;
} // prints "Goodbye Barkley"
// Inheritance:
// This class inherits everything public and protected from the Dog class
class OwnedDog : public Dog {
void setOwner(const std::string& dogsOwner)
// Override the behavior of the print function for all OwnedDogs. See
// http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
// for a more general introduction if you are unfamiliar with
// subtype polymorphism.
// The override keyword is optional but makes sure you are actually
// overriding the method in a base class.
void print() const override;
private:
std::string owner;
}; };
// Meanwhile, in the corresponding .cpp file:
void OwnedDog::setOwner(const std::string& dogsOwner)
///////////////////////////////////////
// C++ Exception Handling
///////////////////////////////////////
try {
throw 12.25; // throws a double no handler declared
} catch (int errorNum)
{ {
std::cout << "I caught an int " << errorNum << "\n"; owner = dogsOwner;
//default catcher
} catch (...)
{
std::cout << "I got an error. Not sure what but I can pass it up.";
throw;
} }
void OwnedDog::print() const
{
Dog::print(); // Call the print function in the base Dog class
std::cout << "Dog is owned by " << owner << "\n";
// Prints "Dog is <name> and weights <weight>"
// "Dog is owned by <owner>"
}
/////////////////////////////////////// //////////////////////////////////////////
// C++ Operator Overloading // Initialization and Operator Overloading
/////////////////////////////////////// //////////////////////////////////////////
// In C++ you can overload operators such as +, -, new, etc. // In C++ you can overload the behavior of operators such as +, -, *, /, etc.
// This is done by defining a function which is called
// whenever the operator is used.
#include <iostream> #include <iostream>
using namespace std; using namespace std;
class Vector { class Point {
public: public:
double x,y; // Member variables can be given default values in this manner.
Vector () {}; double x = 0;
Vector (double a, double b) : x(a), y(b) {} double y = 0;
Vector operator + (const CVector&);
Vector operator += (const CVector&); // Define a default constructor which does nothing
// but initialize the Point to the default value (0, 0)
Point() { };
// The following syntax is known as an initialization list
// and is the proper way to initialize class member values
Point (double a, double b) :
x(a),
y(b)
{ /* Do nothing except initialize the values */ }
// Overload the + operator.
Point operator+(const Point& rhs) const;
// Overload the += operator
Point& operator+=(const Point& rhs);
// It would also make sense to add the - and -= operators,
// but we will skip those for brevity.
}; };
Vector Vector::operator+ (const Vector& rhs) Point Point::operator+(const Point& rhs) const
{ {
Vector temp; // Create a new point that is the sum of this one and rhs.
temp.x = x + rhs.x; return Point(x + rhs.x, y + rhs.y);
temp.y = y + rhs.y;
return temp;
} }
Vector Vector::operator+= (const Vector& rhs) Point& Point::operator+=(const Point& rhs)
{ {
x += rhs.x; x += rhs.x;
y += rhs.y; y += rhs.y;
@@ -330,19 +418,173 @@ Vector Vector::operator+= (const Vector& rhs)
} }
int main () { int main () {
Vector up (0,1); Point up (0,1);
Vector right (1,0); Point right (1,0);
Vector result; // This calls the Point + operator
// This calls the Vector + operator // Point up calls the + (function) with right as its paramater
// Vector up calls the + (function) with right as its paramater Point result = up + right;
result = up + right; // Prints "Result is upright (1,1)"
// prints out => Result is upright (1,1)
cout << "Result is upright (" << result.x << ',' << result.y << ")\n"; cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
return 0; return 0;
} }
``` /////////////////////
Futher Reading // Exception Handling
/////////////////////
for more resources see: http://www.icce.rug.nl/documents/cplusplus/ // The standard library provides a few exception types
for other reference material: http://www.cplusplus.com/doc/tutorial/ // (see http://en.cppreference.com/w/cpp/error/exception)
// but any type can be thrown an as exception
#include <exception>
// All exceptions thrown inside the _try_ block can be caught by subsequent
// _catch_ handlers.
try {
// Do not allocate exceptions on the heap using _new_.
throw std::exception("A problem occurred");
}
// Catch exceptions by const reference if they are objects
catch (const std::exception& ex)
{
std::cout << ex.what();
// Catches any exception not caught by previous _catch_ blocks
} catch (...)
{
std::cout << "Unknown exception caught";
throw; // Re-throws the exception
}
///////
// RAII
///////
// RAII stands for Resource Allocation Is Initialization.
// It is often considered the most powerful paradigm in C++,
// and is the simple concept that a constructor for an object
// acquires that object's resources and the destructor releases them.
// To understand how this is useful,
// consider a function that uses a C file handle:
void doSomethingWithAFile(const char* filename)
{
// To begin with, assume nothing can fail.
FILE* fh = fopen(filename, "r"); // Open the file in read mode.
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
fclose(fh); // Close the file handle.
}
// Unfortunately, things are quickly complicated by error handling.
// Suppose fopen can fail, and that doSomethingWithTheFile and
// doSomethingElseWithIt return error codes if they fail.
// (Exceptions are the preferred way of handling failure,
// but some programmers, especially those with a C background,
// disagree on the utility of exceptions).
// We now have to check each call for failure and close the file handle
// if a problem occurred.
bool doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r"); // Open the file in read mode
if (fh == nullptr) // The returned pointer is null on failure.
reuturn false; // Report that failure to the caller.
// Assume each function returns false if it failed
if (!doSomethingWithTheFile(fh)) {
fclose(fh); // Close the file handle so it doesn't leak.
return false; // Propagate the error.
}
if (!doSomethingElseWithIt(fh)) {
fclose(fh); // Close the file handle so it doesn't leak.
return false; // Propagate the error.
}
fclose(fh); // Close the file handle so it doesn't leak.
return true; // Indicate success
}
// C programmers often clean this up a little bit using goto:
bool doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r");
if (fh == nullptr)
reuturn false;
if (!doSomethingWithTheFile(fh))
goto failure;
if (!doSomethingElseWithIt(fh))
goto failure;
fclose(fh); // Close the file
return true; // Indicate success
failure:
fclose(fh);
return false; // Propagate the error
}
// If the functions indicate errors using exceptions,
// things are a little cleaner, but still sub-optimal.
void doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r"); // Open the file in read mode
if (fh == nullptr)
throw std::exception("Could not open the file.");
try {
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
}
catch (...) {
fclose(fh); // Be sure to close the file if an error occurs.
throw; // Then re-throw the exception.
}
fclose(fh); // Close the file
// Everything succeeded
}
// Compare this to the use of C++'s file stream class (fstream)
// fstream uses its destructor to close the file.
// Recall from above that destructors are automatically called
// whenver an object falls out of scope.
void doSomethingWithAFile(const std::string& filename)
{
// ifstream is short for input file stream
std::ifstream fh(filename); // Open the file
// Do things with the file
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
} // The file is automatically closed here by the destructor
// This has _massive_ advantages:
// 1. No matter what happens,
// the resource (in this case the file handle) will be cleaned up.
// Once you write the destructor correctly,
// It is _impossible_ to forget to close the handle and leak the resource.
// 2. Note that the code is much cleaner.
// The destructor handles closing the file behind the scenes
// without you having to worry about it.
// 3. The code is exception safe.
// An exception can be thrown anywhere in the function and cleanup
// will still occur.
// All idiomatic C++ code uses RAII extensively for all resources.
// Additional examples include
// - Memory using unique_ptr and shared_ptr
// - Containers - the standard library linked list,
// vector (i.e. self-resizing array), hash maps, and so on
// all automatically destroy their contents when they fall out of scope.
// - Mutexes using lock_guard and unique_lock
```
Futher Reading:
An up-to-date language reference can be found at
<http://cppreference.com/w/cpp>
Additional resources may be found at <http://cplusplus.com>