1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 13:38:38 +01:00

Merge branch 'master' into elixir-casing

This commit is contained in:
Boris Verkhovskiy 2024-04-03 02:02:49 -07:00 committed by GitHub
commit 616e40816d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
152 changed files with 15828 additions and 2181 deletions

607
ATS.html.markdown Normal file
View File

@ -0,0 +1,607 @@
---
language: ATS
contributors:
- ["Mark Barbone", "https://github.com/mb64"]
filename: learnats.dats
---
ATS is a low-level functional programming language. It has a powerful type
system which lets you write programs with the same level of control and
efficiency as C, but in a memory safe and type safe way.
The ATS type system supports:
* Full type erasure: ATS compiles to efficient C
* Dependent types, including [LF](http://twelf.org/wiki/LF) and proving
metatheorems
* Refinement types
* Linearity for resource tracking
* An effect system that tracks exceptions, mutation, termination, and other
side effects
This tutorial is not an introduction to functional programming, dependent types,
or linear types, but rather to how they all fit together in ATS. That said, ATS
is a very complex language, and this tutorial doesn't cover it all. Not only
does ATS's type system boast a wide array of confusing features, its
idiosyncratic syntax can make even "simple" examples hard to understand. In the
interest of keeping it a reasonable length, this document is meant to give a
taste of ATS, giving a high-level overview of what's possible and how, rather
than attempting to fully explain how everything works.
You can [try ATS in your browser](http://www.ats-lang.org/SERVER/MYCODE/Patsoptaas_serve.php),
or install it from [http://www.ats-lang.org/](http://www.ats-lang.org/).
```ocaml
// Include the standard library
#include "share/atspre_define.hats"
#include "share/atspre_staload.hats"
// To compile, either use
// $ patscc -DATS_MEMALLOC_LIBC program.dats -o program
// or install the ats-acc wrapper https://github.com/sparverius/ats-acc and use
// $ acc pc program.dats
// C-style line comments
/* and C-style block comments */
(* as well as ML-style block comments *)
/*************** Part 1: the ML fragment ****************/
val () = print "Hello, World!\n"
// No currying
fn add (x: int, y: int) = x + y
// fn vs fun is like the difference between let and let rec in OCaml/F#
fun fact (n: int): int = if n = 0 then 1 else n * fact (n-1)
// Multi-argument functions need parentheses when you call them; single-argument
// functions can omit parentheses
val forty_three = add (fact 4, 19)
// let is like let in SML
fn sum_and_prod (x: int, y: int): (int, int) =
let
val sum = x + y
val prod = x * y
in (sum, prod) end
// 'type' is the type of all heap-allocated, non-linear types
// Polymorphic parameters go in {} after the function name
fn id {a:type} (x: a) = x
// ints aren't heap-allocated, so we can't pass them to 'id'
// val y: int = id 7 // doesn't compile
// 't@ype' is the type of all non-linear potentially unboxed types. It is a
// supertype of 'type'.
// Templated parameters go in {} before the function name
fn {a:t@ype} id2 (x: a) = x
val y: int = id2 7 // works
// can't have polymorphic t@ype parameters
// fn id3 {a:t@ype} (x: a) = x // doesn't compile
// explicity specifying type parameters:
fn id4 {a:type} (x: a) = id {a} x // {} for non-template parameters
fn id5 {a:type} (x: a) = id2<a> x // <> for template parameters
fn id6 {a:type} (x: a) = id {..} x // {..} to explicitly infer it
// Heap allocated shareable datatypes
// using datatypes leaks memory
datatype These (a:t@ype, b:t@ype) = This of a
| That of b
| These of (a, b)
// Pattern matching using 'case'
fn {a,b: t@ype} from_these (x: a, y: b, these: These(a,b)): (a, b) =
case these of
| This(x) => (x, y) // Shadowing of variable names is fine; here, x shadows
// the parameter x
| That(y) => (x, y)
| These(x, y) => (x, y)
// Partial pattern match using 'case-'
// Will throw an exception if passed This
fn {a,b:t@ype} unwrap_that (these: These(a,b)): b =
case- these of
| That(y) => y
| These(_, y) => y
/*************** Part 2: refinements ****************/
// Parameterize functions by what values they take and return
fn cool_add {n:int} {m:int} (x: int n, y: int m): int (n+m) = x + y
// list(a, n) is a list of n a's
fun square_all {n:int} (xs: list(int, n)): list(int, n) =
case xs of
| list_nil() => list_nil()
| list_cons(x, rest) => list_cons(x * x, square_all rest)
fn {a:t@ype} get_first {n:int | n >= 1} (xs: list(a, n)): a =
case+ xs of // '+' asks ATS to prove it's total
| list_cons(x, _) => x
// Can't run get_first on lists of length 0
// val x: int = get_first (list_nil()) // doesn't compile
// in the stdlib:
// sortdef nat = {n:int | n >= 0}
// sortdef pos = {n:int | n >= 1}
fn {a:t@ype} also_get_first {n:pos} (xs: list(a, n)): a =
let
val+ list_cons(x, _) = xs // val+ also works
in x end
// tail-recursive reverse
fun {a:t@ype} reverse {n:int} (xs: list(a, n)): list(a, n) =
let
// local functions can use type variables from their enclosing scope
// this one uses both 'a' and 'n'
fun rev_helper {i:nat} (xs: list(a, n-i), acc: list(a, i)): list(a, n) =
case xs of
| list_nil() => acc
| list_cons(x, rest) => rev_helper(rest, list_cons(x, acc))
in rev_helper(xs, list_nil) end
// ATS has three context-dependent namespaces
// the two 'int's mean different things in this example, as do the two 'n's
fn namespace_example {n:int} (n: int n): int n = n
// ^^^ sort namespace
// ^ ^^^ ^ ^^^ ^ statics namespace
// ^^^^^^^^^^^^^^^^^ ^ ^ value namespace
// a termination metric can go in .< >.
// it must decrease on each recursive call
// then ATS will prove it doesn't infinitely recurse
fun terminating_factorial {n:nat} .<n>. (n: int n): int =
if n = 0 then 1 else n * terminating_factorial (n-1)
/*************** Part 3: the LF fragment ****************/
// ATS supports proving theorems in LF (http://twelf.org/wiki/LF)
// Relations are represented by inductive types
// Proofs that the nth fibonacci number is f
dataprop Fib(n:int, m:int) =
| FibZero(0, 0)
| FibOne(1, 1)
| {n, f1, f2: int} FibInd(n, f1 + f2) of (Fib(n-1,f1), Fib(n-2,f2))
// Proved-correct fibonacci implementation
// [A] B is an existential type: "there exists A such that B"
// (proof | value)
fun fib {n:nat} .<n>. (n: int n): [f:int] (Fib(n,f) | int f) =
if n = 0 then (FibZero | 0) else
if n = 1 then (FibOne | 1) else
let
val (proof1 | val1) = fib (n-1)
val (proof2 | val2) = fib (n-2)
// the existential type is inferred
in (FibInd(proof1, proof2) | val1 + val2) end
// Faster proved-correct fibonacci implementation
fn fib_tail {n:nat} (n: int n): [f:int] (Fib(n,f) | int f) =
let
fun loop {i:int | i < n} {f1, f2: int} .<n - i>.
(p1: Fib(i,f1), p2: Fib(i+1,f2)
| i: int i, f1: int f1, f2: int f2, n: int n
): [f:int] (Fib(n,f) | int f) =
if i = n - 1
then (p2 | f2)
else loop (p2, FibInd(p2,p1) | i+1, f2, f1+f2, n)
in if n = 0 then (FibZero | 0) else loop (FibZero, FibOne | 0, 0, 1, n) end
// Proof-level lists of ints, of type 'sort'
datasort IntList = ILNil of ()
| ILCons of (int, IntList)
// ILAppend(x,y,z) iff x ++ y = z
dataprop ILAppend(IntList, IntList, IntList) =
| {y:IntList} AppendNil(ILNil, y, y)
| {a:int} {x,y,z: IntList}
AppendCons(ILCons(a,x), y, ILCons(a,z)) of ILAppend(x,y,z)
// prfuns/prfns are compile-time functions acting on proofs
// metatheorem: append is total
prfun append_total {x,y: IntList} .<x>. (): [z:IntList] ILAppend(x,y,z)
= scase x of // scase lets you inspect static arguments (only in prfuns)
| ILNil() => AppendNil
| ILCons(a,rest) => AppendCons(append_total())
/*************** Part 4: views ****************/
// views are like props, but linear; ie they must be consumed exactly once
// prop is a subtype of view
// 'type @ address' is the most basic view
fn {a:t@ype} read_ptr {l:addr} (pf: a@l | p: ptr l): (a@l | a) =
let
// !p searches for usable proofs that say something is at that address
val x = !p
in (pf | x) end
// oops, tried to dereference a potentially invalid pointer
// fn {a:t@ype} bad {l:addr} (p: ptr l): a = !p // doesn't compile
// oops, dropped the proof (leaked the memory)
// fn {a:t@ype} bad {l:addr} (pf: a@l | p: ptr l): a = !p // doesn't compile
fn inc_at_ptr {l:addr} (pf: int@l | p: ptr l): (int@l | void) =
let
// !p := value writes value to the location at p
// like !p, it implicitly searches for usable proofs that are in scope
val () = !p := !p + 1
in (pf | ()) end
// threading proofs through gets annoying
fn inc_three_times {l:addr} (pf: int@l | p: ptr l): (int@l | void) =
let
val (pf2 | ()) = inc_at_ptr (pf | p)
val (pf3 | ()) = inc_at_ptr (pf2 | p)
val (pf4 | ()) = inc_at_ptr (pf3 | p)
in (pf4 | ()) end
// so there's special syntactic sugar for when you don't consume a proof
fn dec_at_ptr {l:addr} (pf: !int@l | p: ptr l): void =
!p := !p - 1 // ^ note the exclamation point
fn dec_three_times {l:addr} (pf: !int@l | p: ptr l): void =
let
val () = dec_at_ptr (pf | p)
val () = dec_at_ptr (pf | p)
val () = dec_at_ptr (pf | p)
in () end
// dataview is like dataprop, but linear
// A proof that either the address is null, or there is a value there
dataview MaybeNull(a:t@ype, addr) =
| NullPtr(a, null)
| {l:addr | l > null} NonNullPtr(a, l) of (a @ l)
fn maybe_inc {l:addr} (pf: !MaybeNull(int, l) | p: ptr l): void =
if ptr1_is_null p
then ()
else let
// Deconstruct the proof to access the proof of a @ l
prval NonNullPtr(value_exists) = pf
val () = !p := !p + 1
// Reconstruct it again for the caller
prval () = pf := NonNullPtr(value_exists)
in () end
// array_v(a,l,n) represents and array of n a's at location l
// this gets compiled into an efficient for loop, since all proofs are erased
fn sum_array {l:addr}{n:nat} (pf: !array_v(int,l,n) | p: ptr l, n: int n): int =
let
fun loop {l:addr}{n:nat} .<n>. (
pf: !array_v(int,l,n)
| ptr: ptr l,
length: int n,
acc: int
): int = if length = 0
then acc
else let
prval (head, rest) = array_v_uncons(pf)
val result = loop(rest | ptr_add<int>(ptr, 1), length - 1, acc + !ptr)
prval () = pf := array_v_cons(head, rest)
in result end
in loop (pf | p, n, 0) end
// 'var' is used to create stack-allocated (lvalue) variables
val seven: int = let
var res: int = 3
// they can be modified
val () = res := res + 1
// addr@ res is a pointer to it, and view@ res is the associated proof
val (pf | ()) = inc_three_times(view@ res | addr@ res)
// need to give back the view before the variable goes out of scope
prval () = view@ res := pf
in res end
// References let you pass lvalues, like in C++
fn square (x: &int): void =
x := x * x // they can be modified
val sixteen: int = let
var res: int = 4
val () = square res
in res end
fn inc_at_ref (x: &int): void =
let
// like vars, references have views and addresses
val (pf | ()) = inc_at_ptr(view@ x | addr@ x)
prval () = view@ x := pf
in () end
// Like ! for views, & references are only legal as argument types
// fn bad (x: &int): &int = x // doesn't compile
// this takes a proof int n @ l, but returns a proof int (n+1) @ l
// since they're different types, we can't use !int @ l like before
fn refined_inc_at_ptr {n:int}{l:addr} (
pf: int n @ l | p: ptr l
): (int (n+1) @ l | void) =
let
val () = !p := !p + 1
in (pf | ()) end
// special syntactic sugar for returning a proof at a different type
fn refined_dec_at_ptr {n:int}{l:addr} (
pf: !int n @ l >> int (n-1) @ l | p: ptr l
): void =
!p := !p - 1
// legal but very bad code
prfn swap_proofs {v1,v2:view} (a: !v1 >> v2, b: !v2 >> v1): void =
let
prval tmp = a
prval () = a := b
prval () = b := tmp
in () end
// also works with references
fn refined_square {n:int} (x: &int n >> int (n*n)): void =
x := x * x
fn replace {a,b:vtype} (dest: &a >> b, src: b): a =
let
val old = dest
val () = dest := src
in old end
// values can be uninitialized
fn {a:vt@ype} write (place: &a? >> a, value: a): void =
place := value
val forty: int = let
var res: int
val () = write (res, 40)
in res end
// viewtype: a view and a type
viewtypedef MaybeNullPtr(a:t@ype) = [l:addr] (MaybeNull(a, l) | ptr l)
// MaybeNullPtr has type 'viewtype' (aka 'vtype')
// type is a subtype of vtype and t@ype is a subtype of vt@ype
// The most general identity function:
fn {a:vt@ype} id7 (x: a) = x
// since they contain views, viewtypes must be used linearly
// fn {a:vt@ype} duplicate (x: a) = (x, x) // doesn't compile
// fn {a:vt@ype} ignore (x: a) = () // doesn't compile
// arrayptr(a,l,n) is a convenient built-in viewtype
fn easier_sum_array {l:addr}{n:nat} (p: !arrayptr(int,l,n), n: int n): int =
let
fun loop {i:nat | i <= n} (
p: !arrayptr(int,l,n), n: int n, i: int i, acc: int
): int =
if i = n
then acc
else loop(p, n, i+1, acc + p[i])
in loop(p, n, 0, 0) end
/*************** Part 5: dataviewtypes ****************/
// a dataviewtype is a heap-allocated non-shared inductive type
// in the stdlib:
// dataviewtype list_vt(a:vt@ype, int) =
// | list_vt_nil(a, 0)
// | {n:nat} list_vt_cons(a, n+1) of (a, list_vt(a, n))
fn {a:vt@ype} length {n:int} (l: !list_vt(a, n)): int n =
let // ^ since we're not consuming it
fun loop {acc:int} (l: !list_vt(a, n-acc), acc: int acc): int n =
case l of
| list_vt_nil() => acc
| list_vt_cons(head, tail) => loop(tail, acc + 1)
in loop (l, 0) end
// vvvvv not vt@ype, because you can't easily get rid of a vt@ype
fun {a:t@ype} destroy_list {n:nat} (l: list_vt(a,n)): void =
case l of
// ~ pattern match consumes and frees that node
| ~list_vt_nil() => ()
| ~list_vt_cons(_, tail) => destroy_list tail
// unlike a datatype, a dataviewtype can be modified:
fun {a:vt@ype} push_back {n:nat} (
x: a,
l: &list_vt(a,n) >> list_vt(a,n+1)
): void =
case l of
| ~list_vt_nil() => l := list_vt_cons(x, list_vt_nil)
// @ pattern match disassembles/"unfolds" the datavtype's view, so you can
// modify its components
| @list_vt_cons(head, tail) => let
val () = push_back (x, tail)
// reassemble it with fold@
prval () = fold@ l
in () end
fun {a:vt@ype} pop_last {n:pos} (l: &list_vt(a,n) >> list_vt(a,n-1)): a =
let
val+ @list_vt_cons(head, tail) = l
in case tail of
| list_vt_cons _ => let
val res = pop_last tail
prval () = fold@ l
in res end
| ~list_vt_nil() => let
val head = head
// Deallocate empty datavtype nodes with free@
val () = free@{..}{0} l
val () = l := list_vt_nil()
in head end
/** Equivalently:
* | ~list_vt_nil() => let
* prval () = fold@ l
* val+ ~list_vt_cons(head, ~list_vt_nil()) = l
* val () = l := list_vt_nil()
* in head end
*/
end
// "holes" (ie uninitialized memory) can be created with _ on the RHS
// This function uses destination-passing-style to copy the list in a single
// tail-recursive pass.
fn {a:t@ype} copy_list {n:nat} (l: !list_vt(a, n)): list_vt(a, n) =
let
var res: ptr
fun loop {k:nat} (l: !list_vt(a, k), hole: &ptr? >> list_vt(a, k)): void =
case l of
| list_vt_nil() => hole := list_vt_nil
| list_vt_cons(first, rest) => let
val () = hole := list_vt_cons{..}{k-1}(first, _)
// ^ on RHS: a hole
val+list_vt_cons(_, new_hole) = hole
// ^ on LHS: wildcard pattern (not a hole)
val () = loop (rest, new_hole)
prval () = fold@ hole
in () end
val () = loop (l, res)
in res end
// Reverse a linked-list *in place* -- no allocations or frees
fn {a:vt@ype} in_place_reverse {n:nat} (l: list_vt(a, n)): list_vt(a, n) =
let
fun loop {k:nat} (l: list_vt(a, n-k), acc: list_vt(a, k)): list_vt(a, n) =
case l of
| ~list_vt_nil() => acc
| @list_vt_cons(x, tail) => let
val rest = replace(tail, acc)
// the node 'l' is now part of acc instead of the original list
prval () = fold@ l
in loop (rest, l) end
in loop (l, list_vt_nil) end
/*************** Part 6: miscellaneous extras ****************/
// a record
// Point has type 't@ype'
typedef Point = @{ x= int, y= int }
val origin: Point = @{ x= 0, y= 0 }
// tuples and records are normally unboxed, but there are boxed variants
// BoxedPoint has type 'type'
typedef BoxedPoint = '{ x= int, y= int }
val boxed_pair: '(int,int) = '(5, 3)
// When passing a pair as the single argument to a function, it needs to be
// written @(a,b) to avoid ambiguity with multi-argument functions
val six_plus_seven = let
fun sum_of_pair (pair: (int,int)) = pair.0 + pair.1
in sum_of_pair @(6, 7) end
// When a constructor has no associated data, such as None(), the parentheses
// are optional in expressions. However, they are mandatory in patterns
fn inc_option (opt: Option int) =
case opt of
| Some(x) => Some(x+1)
| None() => None
// ATS has a simple FFI, since it compiles to C and (mostly) uses the C ABI
%{
// Inline C code
int scanf_wrapper(void *format, void *value) {
return scanf((char *) format, (int *) value);
}
%}
// If you wanted to, you could define a custom dataviewtype more accurately
// describing the result of scanf
extern fn scanf (format: string, value: &int): int = "scanf_wrapper"
fn get_input_number (): Option int =
let
var x: int = 0
in
if scanf("%d\n", x) = 1
then Some(x)
else None
end
// extern is also used for separate declarations and definitions
extern fn say_hi (): void
// later on, or in another file:
implement say_hi () = print "hi\n"
// if you implement main0, it will run as the main function
// implmnt is an alias for implement
implmnt main0 () = ()
// as well as for axioms:
extern praxi view_id {a:view} (x: a): a
// you don't need to actually implement the axioms, but you could
primplmnt view_id x = x
// primplmnt is an alias for primplement
// Some standard aliases are:
// List0(a) = [n:nat] list(a,n) and List0_vt(a) = [n:nat] list_vt(a,n)
// t0p = t@ype and vt0p = vt@ype
fun {a:t0p} append (xs: List0 a, ys: List0 a): List0 a =
case xs of
| list_nil() => ys
| list_cons(x, xs) => list_cons(x, append(xs, ys))
// there are many ways of doing things after one another
val let_in_example = let
val () = print "thing one\n"
val () = print "thing two\n"
in () end
val parens_example = (print "thing one\n"; print "thing two\n")
val begin_end_example = begin
print "thing one\n";
print "thing two\n"; // optional trailing semicolon
end
// and many ways to use local variables
fun times_four_let x =
let
fun times_two (x: int) = x * 2
in times_two (times_two x) end
local
fun times_two (x: int) = x * 2
in
fun times_four_local x = times_two (times_two x)
end
fun times_four_where x = times_two (times_two x)
where {
fun times_two (x: int) = x * 2
}
//// The last kind of comment in ATS is an end-of-file comment.
Anything between the four slashes and the end of the file is ignored.
Have fun with ATS!
```
## Learn more
This isn't all there is to ATS -- notably, some core features like closures and
the effect system are left out, as well as other less type-y stuff like modules
and the build system. If you'd like to write these sections yourself,
contributions would be welcome!
To learn more about ATS, visit the [ATS website](http://www.ats-lang.org/), in
particular the [documentation page](http://www.ats-lang.org/Documents.html).

416
ada.html.markdown Normal file
View File

@ -0,0 +1,416 @@
---
language: Ada
filename: learn.ada
contributors:
- ["Luke A. Guest", "https://github.com/Lucretia"]
- ["Fernando Oleo Blanco", "https://github.com/Irvise"]
- ["Fabien Chouteau", "https://github.com/Fabien-Chouteau"]
- ["Manuel", "https://github.com/mgrojo"]
---
Ada is a strong statically typed imperative, [object-oriented](https://ada-lang.io/docs/arm/AA-3/AA-3.9), [real-time](https://ada-lang.io/docs/arm/AA-D), [parallel](https://ada-lang.io/docs/arm/AA-9) and [distributed](https://ada-lang.io/docs/arm/AA-9) programming language from the Pascal/Algol family of languages, but nowadays, it only has a passing resemblance to Pascal, with the only remnants left being the ```begin/end``` keyword pair, the ```:=``` assignment symbol, records and ```if/case``` control statement structures.
Ada was originally designed to be an [object-based](https://ada-lang.io/docs/arm/AA-3/AA-3.3) language and to replace 100's of languages in use by the US government. This means that all entities are objects, not in the object-oriented sense. The language became [Object-Oriented](https://ada-lang.io/docs/arm/AA-3/AA-3.9) in 1995, and added [interfaces](https://ada-lang.io/docs/arm/AA-3/AA-3.9#Subclause_3.9.4) derived from Java in 2005. [Contract based](https://ada-lang.io/docs/arm/AA-13/AA-13.1#Subclause_13.1.1) programming was introduced with Ada 2012.
Ada was designed to be easy to read and learn, even for non-programmers, e.g. management within an organisation, therefore programs written in the language tend to be a bit more verbose.
Ada is a modern programming language, and now has a package manager like other modern languages, Alire, see below.
```ada
-- Comments are written with a double hyphen and exist until the end of
-- the line.
-- You do not need to call the entry point "Main" or "main," you should
-- name it based on what the program does.
procedure Empty is
-- This is a declarative part.
begin
-- Statements go here.
null; -- Do nothing here.
end Empty;
-- Ada compilers accept compilation units which can be library packages,
-- tasks, sub-programs, generics, etc.
-- This is where "context clauses" go, these can be pragmas or "with"
-- statements. "with" is equivalent to "include" or "import" in other
-- languages.
with Ada.Text_IO; -- Get access to a library package.
procedure Hello is
begin
Ada.Text_IO.Put_Line ("Hello, world");
Ada.Text_IO.Put ("Hello again, world");
Ada.Text_IO.New_Line;
end Hello;
-- Ada has a real module system. Modules are called packages and are split into
-- two component parts, the specification and a body.
-- It is important to introduce packages early, as you will be using them from
-- the start.
package Stuff is
-- We could add the following line in order to tell the compiler that this
-- package does not have to run any code before the "main" procedure starts.
-- pragma Preelaborate;
-- Packages can be nested within the same file or externally.
-- Nested packages are accessed via dot notation, e.g. Stuff.Things.My.
package Things is
My : constant Integer := 100;
end Things;
-- If there are sub-programs declared within the specification, the body
-- of the sub-program must be declared within the package body.
procedure Do_Something; -- If a subprogram takes no parameters, empty
-- parentheses are not required, unlike other
-- languages.
-- We can also make generic sub-programs.
generic
type Element is (<>); -- The "(<>)" notation specifies that only
-- discrete types can be passed into the generic.
procedure Swap (Left, Right : in out Element);
-- Sometimes we want to hide how a type is defined from the outside world
-- so that nobody can mess with it directly. The full type must be defined
-- within the private section below.
type Blobs is private;
-- We can also make types "limited" by putting this keyword after the "is"
-- keyword, this means that the user cannot copy objects of that type
-- around, like they normally could.
private
type Blobs is new Integer range -25 .. 25;
end Stuff;
package body Stuff is
-- Sub-program body.
procedure Do_Something is
-- We can nest sub-programs too.
-- Parameters are defined with the direction of travel, in, in out, out.
-- If the direction of travel is not specified, they are in by default.
function Times_4 (Value : in Integer) return Integer is
begin
return Value * 4;
end Times_4;
I : Integer := 4;
begin
I := Times_4 (I);
end Do_Something;
-- Generic procedure body.
procedure Swap (Left, Right : in out Element) is
Temp : Element := Left;
begin
Left := Right;
Right := Temp;
end Swap;
begin
-- If we need to initialise something within the package, we can do it
-- here.
Do_Something;
end Stuff;
with Ada.Unchecked_Conversion;
with Ada.Text_IO;
with Stuff;
procedure LearnAdaInY is
-- Indentation is 3 spaces.
-- The most important feature in Ada is the type. Objects have types and an
-- object of one type cannot be assigned to an object of another type.
-- You can, and should, define your own types for the domain you are
-- modelling. But you can use the standard types to start with and then
-- replace them later with your own types, this could be called a form of
-- gradual typing.
-- The standard types would only really be a good starting point for binding
-- to other languages, like C. Ada is the only language with a standardised
-- way to bind with C, Fortran and COBOL! See the links in the References
-- section with more information on binding to these languages.
type Degrees is range 0 .. 360; -- This is a type. Its underlying
-- representation is an Integer.
type Hues is (Red, Green, Blue, Purple, Yellow); -- So is this. Here, we
-- are declaring an
-- Enumeration.
-- This is a modular type. They behave like Integers that automatically
-- wrap around. In this specific case, the range would be 0 .. 359.
-- If we added 1 to a variable containing the value 359, we would receive
-- back 0. They are very useful for arrays.
type Degrees_Wrap is mod 360;
-- You can restrict a type's range using a subtype, this makes them
-- compatible with each other, i.e. the subtype can be assigned to an
-- object of the type, as can be seen below.
subtype Primaries is Hues range Red .. Blue; -- This is a range.
-- You can define variables or constants like this:
-- Var_Name : Type := Value;
-- 10 is a universal integer. These universal numerics can be used with
-- any type which matches the base type.
Angle : Degrees := 10;
Value : Integer := 20;
-- New_Angle : Degrees := Value; -- Incompatible types won't compile.
-- New_Value : Integer := Angle;
Blue_Hue : Primaries := Blue; -- A variable.
Red_Hue : constant Primaries := Red; -- A constant.
Yellow_Hue : constant Hues := Yellow;
Colour_1 : constant Hues := Red_Hue;
-- Colour_2 : constant Primaries := Yellow_Hue; -- uncomment to compile.
-- You can force conversions, but then you are warned by the name of the
-- package that you may be doing something unsafe.
function Degrees_To_Int is new Ada.Unchecked_Conversion
(Source => Degrees, -- Line continuations are indented by 2 spaces.
Target => Integer);
New_Value_2 : Integer := Degrees_To_Int (Angle); -- Note, space before (.
-- GNAT is the GNU Ada Translator (compiler).
-- Ada has a style guide and GNAT will warn you to adhere to it, and has
-- option to check your style so that you can correct it so that all Ada
-- source looks consistent. However, the style can be customized.
-- Yes, you can even define your own floating and fixed point types, this
-- is a very rare and unique ability. "digits" refers to the minimum
-- digit precision that the type should support. "delta" is for fixed
-- point types and refers to the smallest change that the type will support.
type Real_Angles is digits 3 range 0.0 .. 360.0;
type Fixed_Angles is delta 0.01 digits 5 range 0.0 .. 360.0;
RA : constant Real_Angles := 36.45;
FA : constant Fixed_Angles := 360.0; -- ".0" in order to make it a Float.
-- You can have normal Latin 1 based strings by default.
Str : constant String := "This is a constant string";
-- When initialising from a string literal, the compiler knows the bounds,
-- so we don't have to define them.
-- Strings are arrays. Note how parentheses are used to access elements of
-- an array? This is mathematical notation and was used because square
-- brackets were not available on all keyboards at the time Ada was
-- created. Also, because an array can be seen as a function from a
-- mathematical perspective, so it made converting between arrays and
-- functions easier.
Char : constant Character := Str (Str'First); -- "'First" is a type
-- attribute.
-- Ada 2022 includes the use of [] for array initialisation when using
-- containers, which were added in Ada 2012.
-- Arrays are usually always defined as a type.
-- They can be any dimension.
type My_Array_1 is array (1 .. 4, 3 .. 7, -20 .. 20) of Integer;
-- Yes, unlike other languages, you can index arrays with other discrete
-- types such as enumerations and modular types or arbitrary ranges.
type Axes is (X, Y, Z);
-- You can define the array's range using the 'Range attribute from
-- another type.
type Vector is array (Axes'Range) of Float;
V1 : constant Vector := (0.0, 0.0, 1.0);
-- A record is the same as a structure in C, C++.
type Entities is record
Name : String (1 .. 10); -- Always starts at a positive value,
-- inclusive range.
Position : Vector;
end record;
-- In Ada, array bounds are immutable. You therefore have to provide a
-- string literal with a value for every character.
E1 : constant Entities := ("Blob ", (0.0, 0.0, 0.0));
-- An alternative is to use an array aggregate and assign a default value
-- to every element that wasn't previously assigned in this aggregate.
-- "others" is used to indicate anything else that has not been
-- explicitly initialized.
E2 : constant Entities := (('B', 'l', 'o', 'b', others => ' '),
(0.0, 0.0, 0.0));
-- There are dynamic length strings (see references section) available in
-- the standard library.
-- We can make an object be initialised to its default values with the box
-- notation, "<>". "others" is used to indicate anything else that has not
-- been explicitly initialized.
Null_Entity : constant Entities := (others => <>);
-- Object-orientation is accomplished via an extension of record syntax,
-- tagged records, see link above in first paragraph.
-- We can rename objects (aliases) to make readability a bit better.
package IO renames Ada.Text_IO;
begin
-- We can output enumerations as names.
IO.Put_Line ("Blue_Hue = " & -- & is the string concatenation operator.
Blue'Image); -- ' accesses attributes on objects.
-- The Image attribute converts a value to a string.
-- Ada 2022 has extended Image to custom types too.
-- Access this with -gnat2022 compiler flag.
IO.Put_Line ("Yellow_Hue = " &
-- We can use the type's attribute.
Primaries'Image (Yellow_Hue));
-- We can define local variables within a declare block, this can be made
-- more readable by giving it a label.
Enum_IO : declare
package Hue_IO is new IO.Enumeration_IO (Hues);
-- Using a package makes everything inside that package visible within
-- this block, it is good practice to only do this locally and not on
-- a whole package within the context clause.
use Hue_IO;
begin
-- We can print out the enumeration values too.
Put (Purple); -- Note we don't have to prefix the Put procedure with
-- Hue_IO.
IO.New_Line; -- We still need to prefix with IO here.
Put (Red_Hue);
IO.New_Line;
end Enum_IO;
-- Loops have a consistent form. "<form> loop ... end loop".
-- Where "form" can be "while" or "for" or missing as below, if
-- you place the "loop ... end loop;" construct on their own lines,
-- you can comment out or experiment with different loop constructs more
-- easily.
declare
Counter : Positive := Positive'First; -- This is 1.
begin
-- We can label loops so we can exit from them more easily if we need to.
Infinite :
loop
IO.Put_Line ("[Infinite loop] Counter = " & Counter'Image);
Counter := Counter + 1;
-- This next line implements a repeat ... until or do ... while loop construct.
-- Comment it out for an infinite loop.
exit Infinite when Counter = 5; -- Equality tests use a single "=".
end loop Infinite; -- Useful when implementing state machines.
end;
declare -- We don't have to have a label.
Counter : Positive := Positive'First; -- This is 1.
begin
while Counter < 10
loop
IO.Put_Line ("Counter = " & Counter'Image);
Counter := Counter + 1; -- There is no explicit inc/decrement.
-- Ada 2022 introduced @ for LHS, so the above would be written as
-- Counter := @ + 1; -- Try it, -gnat2022.
end loop;
end;
declare
package Hue_IO is new IO.Enumeration_IO (Hues);
-- We can have multiple packages on one line, but I tend to use one
-- package per line for readability.
use IO, Hue_IO;
begin
Put ("Hues : "); -- Note, no prefix.
-- Because we are using the 'Range attribute, the compiler knows it is
-- safe and can omit run-time checks here.
for Hue in Hues'Range
loop
Put (Hue);
-- Types and objects know about their bounds, their First .. Last
-- values. These can be specified as range types.
if Hue /= Hues'Last then -- The /= means "not equal to" like the
-- maths symbol ≠.
Put (", ");
end if;
end loop;
IO.New_Line;
end;
-- All objects know their bounds, including strings.
declare
C : Character := Str (50); -- Warning caused and exception raised at
-- runtime.
-- The exception raised above can only be handled by an outer scope,
-- see wikibook link below.
begin
null; -- We will never get to this point because of the above.
end;
exception
when Constraint_Error =>
IO.Put_Line ("Caught the exception");
end LearnAdaInY;
```
Now, that's a lot of information for a basic intro to Ada, and I've only touched the surface, there's much more to look at in the references section below. I haven't even touched on dynamic memory allocation which includes [pools](https://ada-lang.io/docs/arm/AA-13/AA-13.11), this is because for the most part, Ada programs don't need it, you can do a lot without it.
As I stated above, Ada barely looks like Pascal and if you look at the original [Green specification](https://apps.dtic.mil/sti/trecms/pdf/ADB950587.pdf) (Warning: Huge 4575 page scanned PDF - starting on page 460), it looks nothing like it at all (page 505 of that PDF).
The above source code will compile, but also will give warnings showing the power of the strong static type system.
## Download this source
If you already have the GNAT toolchain installed, you can cut and paste the above into a new file, e.g. ```learn-ada-in-y.ada``` and then run the following:
```bash
$ gnatchop learn-ada-in-y.ada # This breaks the program into its specification ".ads" and body ".adb".
$ gnatmake empty.adb # gnatmake takes care of compilation of all units and linking.
$ gnatmake hello.adb
$ gnatmake learnadainy.adb
```
Or, download [Alire](https://alire.ada.dev), copy it to somewhere in your PATH and then do the following:
**N.B.** Alire will automatically install the toolchain for you if you don't have one installed and will ask you to select which you want to use.
```bash
$ alr search learnadainy
$ alr get learnadainy
$ cd learnadainy
$ alr run empty
$ alr run hello
$ alr run learnadainy
```
## Further Reading
* [Ada Programming Language](https://ada-lang.io)
* [Ada 2022 Reference Manual](https://ada-lang.io/docs/arm)
* [Ada Style Guide](https://ada-lang.io/docs/style-guide/Ada_Style_Guide)
* [Learn more Ada/Spark at AdaCore's site](https://learn.adacore.com)
## References from the source above
1. [wikibook](https://en.wikibooks.org/wiki/Ada_Programming/Exceptions#Exception_handlers)
2. [C](https://ada-lang.io/docs/arm/AA-B/AA-B.3)
3. [Fortran](https://ada-lang.io/docs/arm/AA-B/AA-B.5/)
4. [COBOL](https://ada-lang.io/docs/arm/AA-B/AA-B.4/)
5. [dynamic length strings](https://ada-lang.io/docs/arm/AA-A/AA-A.4#Subclause_A.4.5)
### Multi-line comments
Multi-line comments are not allowed as they are error prone.
> Such comments would require a closing comment delimiter and this would again raise the dangers associated with the (unintentional) omission of the closing delimiter: entire sections of a program could be ignored by the compiler without the programmer realizing it
>
> [Ada 83 Rationale](http://archive.adaic.com/standards/83rat/html/ratl-02-01.html#2.1)

135
ar-ar/sql-ar.html.markdown Normal file
View File

@ -0,0 +1,135 @@
---
language: SQL
filename: learnsql-ar.sql
contributors:
- ["Bob DuCharme", "http://bobdc.com/"]
translators:
- ["Ahmed Omar Eissa", "https://twitter.com/AhmedOmarEissa"]
lang: ar-ar
---
<div dir="rtl">
لغة الاستعلام الهيكلية
(SQL)
هي لغة قياسية
[ISO/IEC 9075](https://www.iso.org/standard/63555.html)
لإنشاء قواعد البيانات المخزنة في مجموعة من الجداول التعامل معها. عادةً ما تضيف التطبيقات
امتدادات خاصة بها إلى اللغة ؛ تعد
[مقارنة نسخ SQL المختلفة](http://troels.arvin.dk/db/rdbms/)
مرجعًا جيدًا لاختلافات النسخ.
توفر النسخ عادةً موجه سطر أوامر
command line prompt
حيث يمكنك إدخال الأوامر المعروضة هنا بشكل تفاعلي، كما أنها توفر طريقة لتنفيذ سلسلة من هذه الأوامر المخزنة في ملف نصي. إظهار رسالة الانتهاء من العمل مع الموجه التفاعلي مثال جيد على امكانية اضافة أوامر غير قياسية، معظم النسخ تدعم أحد أوامر
QUIT , EXIT
.أو كليهما
في الامثلة بالأسفل تعتمدالعديد من الأوامرأن قاعدة بيانات الموظفين
[MySQL employee sample database](https://dev.mysql.com/doc/employee/en/)
الموجودة على
[github](https://github.com/datacharmer/test_db)
قد تم تحميلها مسبقا. الملفات على
github
هي مجموعة من الاوامر تشبه الموجودة بالاسفل و تقوم الأوامر بإنشاء الجدوال وإدخال بيانات مجموعة من الموظفين المتخيلين في شركة. تعتمد الأوامر المستخدمة في هذا البرنامج على نسخة
SQL
التي تستخدمها،
</div>
```sql
-- تبدأ التعليقات بشرطتين. قم بإنهاء كل أمر بفاصلة منقوطة
-- حساسة لحالة الاحرف SQL لا تعتبر
-- فقط ليسهل تمييزها عن أسماه الأعمدة والجداول وقواعد البيانات UPPER-CASE الاوامر الموجودة هنا تستخدم الحالة العليا للاحرف
-- إنشاء ومسح قاعدة بيانات، أسماء قواعد البيانات والجداول حساسة لحالة الأحرف
CREATE DATABASE someDatabase;
DROP DATABASE someDatabase;
-- عرض قواعد البيانات الموجودة
SHOW DATABASES;
--استخدام قاعدة بيانات محددة
USE employees;
-- في قاعدة البيانات المستخدمة departments ارجاع كل السطور والاعمدة في جدول
-- ستظهر النتائج على الشاشة بشكل تلقائي لتتصفحها.
SELECT * FROM departments;
-- فقط dept_name و dept_no لكن سنسترجع عمودي departments استرجاع كل أسطر من جدول
-- لا مانع من تقسيم الاوامر بين السطور
SELECT dept_no,
dept_name FROM departments;
-- لكن هذه المرة سنسترجع ٥ أسطر فقط departments استرجاع كل الاعمدة من جدول
SELECT * FROM departments LIMIT 5;
--en يحتوي علي dept_name في حالة أن عمود departments من جدول dept_name استرجاع عمود
SELECT dept_name FROM departments WHERE dept_name LIKE '%en%';
-- S استرجاع كل أعمدة جدول الاقسام في حالة أن اسم القسم يبدأ بحرف
-- متبوعا بأربعة حروف
SELECT * FROM departments WHERE dept_name LIKE 'S____';
-- استرجاع قيم العناوين من جدول العناوين بدون تكرار
SELECT DISTINCT title FROM titles;
-- نفس المثال السابق مع ترتيب العناوين أبجديا
SELECT DISTINCT title FROM titles ORDER BY title;
-- اظهار عدد السطور في جدول الأقسام
SELECT COUNT(*) FROM departments;
-- en اظهار عدد السطور في جدول الأقسام التي تحتوي في عمود اسم القسم علي
SELECT COUNT(*) FROM departments WHERE dept_name LIKE '%en%';
-- ربط المعلومات بين الجداول، جدول العناوين يظهر رقم كل موظف ومسماه الوظيفي
-- ومتي حصل على هذا المسمى وإلي متى ولكن بدلا من اظهار رقم الموظف سنستخدم هذا الرقم
-- للحصول على اسم الموظف الاول والأخير من جدول الموظفين مع إظهار ١٠ سطور فقط
SELECT employees.first_name, employees.last_name,
titles.title, titles.from_date, titles.to_date
FROM titles INNER JOIN employees ON
employees.emp_no = titles.emp_no LIMIT 10;
-- إظهار كل الجدوال في كل قواعد البيانات
-- النسخ المختلفة تقدم اختصارات لمثل هذا الأمر لقاعدة البيانات المستخدمة
SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE='BASE TABLE';
-- يحتوى على عمودان في قاعدة البيانات المستخدمة tablename1 أنشاء جدول يسمى
-- يوجد العديد من الطرق لتعريف الاعمدة وأنواع البيانات في العمود
CREATE TABLE tablename1 (fname VARCHAR(20), lname VARCHAR(20));
-- هذا بافتراض ان الجدول يمكن اضافة الاسطر له .tablename1 اضافة سطر في جدول
INSERT INTO tablename1 VALUES('Richard','Mutt');
--John إلى fname سنغير قيمة عمود tablename1 في
-- Mutt هي lname في حالة أن قيمة العمود
UPDATE tablename1 SET fname='John' WHERE lname='Mutt';
-- 'M' تبدأ ب lname في حالة أن قيمة عمود tablename1 مسح السطور من جدول
DELETE FROM tablename1 WHERE lname like 'M%';
-- مع ترك الجدول فارغ tablename1 مسح جميع السطور من جدول
DELETE FROM tablename1;
-- تماما tablename1 إزالة جدول
DROP TABLE tablename1;
```
<div dir="rtl">
## اقرأ أكثر
* [Codecademy - SQL](https://www.codecademy.com/learn/learn-sql)مقدمة جيدة للتعلم عن طريق التطبيق.
* [Database System Concepts](https://www.db-book.com) الفصل رقم ٣ من الكتاب مقدمة في (SQL) تحتوى علي شرح مفصل لمفاهيم (SQL)
</div>

432
arturo.html.markdown Normal file
View File

@ -0,0 +1,432 @@
---
language: arturo
filename: learnarturo.art
contributors:
- ["Dr.Kameleon", "https://github.com/drkameleon"]
---
```red
; this is a comment
; this is another comment
;---------------------------------
; VARIABLES & VALUES
;---------------------------------
; numbers
a1: 2
a2: 3.14
a3: to :complex [1 2.0] ; 1.0+2.0i
; strings
c1: "this is a string"
c2: {
this is a multiline string
that is indentation-agnostic
}
c3: {:
this is
a verbatim
multiline string
which will remain exactly
as the original
:}
; characters
ch: `c`
; blocks/arrays
d: [1 2 3]
; dictionaries
e: #[
name: "John"
surname: "Doe"
age: 34
likes: [pizza spaghetti]
]
; yes, functions are values too
f: function [x][
2 * x
]
; dates
g: now ; 2021-05-03T17:10:48+02:00
; booleans
h1: true
h2: false
;---------------------------------
; BASIC OPERATORS
;---------------------------------
; simple arithmetic
1 + 1 ; => 2
8 - 1 ; => 7
4.2 - 1.1 ; => 3.1
10 * 2 ; => 20
35 / 4 ; => 8
35 // 4 ; => 8.75
2 ^ 5 ; => 32
5 % 3 ; => 2
; bitwise operators
and 3 5 ; => 1
or 3 5 ; => 7
xor 3 5 ; => 6
; pre-defined constants
pi ; => 3.141592653589793
epsilon ; => 2.718281828459045
null ; => null
true ; => true
false ; => false
;---------------------------------
; COMPARISON OPERATORS
;---------------------------------
; equality
1 = 1 ; => true
2 = 1 ; => false
; inequality
1 <> 1 ; => false
2 <> 1 ; => true
; more comparisons
1 < 10 ; => true
1 =< 10 ; => true
10 =< 10 ; => true
1 > 10 ; => false
1 >= 10 ; => false
11 >= 10 ; => true
;---------------------------------
; CONDITIONALS
;---------------------------------
; logical operators
and? true true ; => true
and? true false ; => false
or? true false ; => true
or? false false ; => false
and? [1=2][2<3] ; => false
; (the second block will not be evaluated)
; simple if statements
if 2 > 1 [ print "yes!"] ; yes!
if 3 <> 2 -> print "true!" ; true!
; if/else statements
if? 2 > 3 -> print "2 is greater than 3"
else -> print "2 is not greater than 3" ; 2 is not greater than 3
; switch statements
switch 2 > 3 -> print "2 is greater than 3"
-> print "2 is not greater than 3" ; 2 is not greater than 3
a: (2 > 3)["yes"]["no"] ; a: "no"
a: (2 > 3)? -> "yes" -> "no" ; a: "no" (exactly the same as above)
; case/when statements
case [1]
when? [>2] -> print "1 is greater than 2. what?!"
when? [<0] -> print "1 is less than 0. nope..."
else -> print "here we are!" ; here we are!
;---------------------------------
; LOOPS
;---------------------------------
; with `loop`
arr: [1 4 5 3]
loop arr 'x [
print ["x =" x]
]
; x = 1
; x = 4
; x = 5
; x = 3
; with loop and custom index
loop.with:'i arr 'x [
print ["item at position" i "=>" x]
]
; item at position 0 => 1
; item at position 1 => 4
; item at position 2 => 5
; item at position 3 => 3
; using ranges
loop 1..3 'x -> ; since it's a single statement
print x ; there's no need for [block] notation
; we can wrap it up using the `->` syntactic sugar
loop `a`..`c` 'ch ->
print ch
; a
; b
; c
; picking multiple items
loop 1..10 [x y] ->
print ["x =" x ", y =" y]
; x = 1 , y = 2
; x = 3 , y = 4
; x = 5 , y = 6
; x = 7 , y = 8
; x = 9 , y = 10
; looping through a dictionary
dict: #[name: "John", surname: "Doe", age: 34]
loop dict [key value][
print [key "->" value]
]
; name -> John
; surname -> Doe
; age -> 34
; while loops
i: new 0
while [i<3][
print ["i =" i]
inc 'i
]
; i = 0
; i = 1
; i = 2
;---------------------------------
; STRINGS
;---------------------------------
; case
a: "tHis Is a stRinG"
print upper a ; THIS IS A STRING
print lower a ; this is a string
print capitalize a ; tHis Is a stRinG
; concatenation
a: "Hello " ++ "World!" ; a: "Hello World!"
; strings as an array
split "hello" ; => [h e l l o]
split.words "hello world" ; => [hello world]
print first "hello" ; h
print last "hello" ; o
; conversion
to :string 123 ; => "123"
to :integer "123" ; => 123
; joining strings together
join ["hello" "world"] ; => "helloworld"
join.with:"-" ["hello" "world"] ; => "hello-world"
; string interpolation
x: 2
print ~"x = |x|" ; x = 2
; interpolation with `print`
print ["x =" x] ; x = 2
; (`print` works by calculating the given block
; and joining the different values as strings
; with a single space between them)
; templates
print render.template {
<||= switch x=2 [ ||>
Yes, x = 2
<||][||>
No, x is not 2
<||]||>
} ; Yes, x = 2
; matching
prefix? "hello" "he" ; => true
suffix? "hello" "he" ; => false
contains? "hello" "ll" ; => true
contains? "hello" "he" ; => true
contains? "hello" "x" ; => false
in? "ll" "hello" ; => true
in? "x" "hello" ; => false
;---------------------------------
; BLOCKS
;---------------------------------
; calculate a block
arr: [1 1+1 1+1+1]
@arr ; => [1 2 3]
; execute a block
sth: [print "Hello world"] ; this is perfectly valid,
; could contain *anything*
; and will not be executed...
do sth ; Hello world
; (...until we tell it to)
; array indexing
arr: ["zero" "one" "two" "three"]
print first arr ; zero
print arr\0 ; zero
print last arr ; three
print arr\3 ; three
x: 2
print get arr x ; two
print arr \ 2 ; two
; (using the `\` infix alias for get -
; notice space between the operands!
; otherwise, it'll be parsed as a path)
; setting an array element
arr\0: "nada"
set arr 2 "dos"
print arr ; nada one dos three
; adding elements to an array
arr: new []
'arr ++ "one"
'arr ++ "two"
print arr ; one two
; remove elements from an array
arr: new ["one" "two" "three" "four"]
'arr -- "two" ; arr: ["one" "three" "four"]
remove 'arr .index 0 ; arr: ["three" "four"]
; getting the size of an array
arr: ["one" 2 "three" 4]
print size arr ; 4
; getting a slice of an array
print slice ["one" "two" "three" "four"] 0 1 ; one two
; check if array contains a specific element
print contains? arr "one" ; true
print contains? arr "five" ; false
; sorting array
arr: [1 5 3 2 4]
sort arr ; => [1 2 3 4 5]
sort.descending arr ; => [5 4 3 2 1]
; mapping values
map 1..10 [x][2*x] ; => [2 4 6 8 10 12 14 16 18 20]
map 1..10 'x -> 2*x ; same as above
map 1..10 => [2*&] ; same as above
map 1..10 => [2*] ; same as above
; selecting/filtering array values
select 1..10 [x][odd? x] ; => [1 3 5 7 9]
select 1..10 => odd? ; same as above
filter 1..10 => odd? ; => [2 4 6 8 10]
; (now, we leave out all odd numbers -
; while select keeps them)
; misc operations
arr: ["one" 2 "three" 4]
reverse arr ; => [4 "three" 2 "one"]
shuffle arr ; => [2 4 "three" "one"]
unique [1 2 3 2 3 1] ; => [1 2 3]
permutate [1 2 3] ; => [[1 2 3] [1 3 2] [3 1 2] [2 1 3] [2 3 1] [3 2 1]]
take 1..10 3 ; => [1 2 3]
repeat [1 2] 3 ; => [1 2 1 2 1 2]
;---------------------------------
; FUNCTIONS
;---------------------------------
; declaring a function
f: function [x][ 2*x ]
f: function [x]-> 2*x ; same as above
f: $[x]->2*x ; same as above (only using the `$` alias
; for the `function`... function)
; calling a function
f 10 ; => 20
; returning a value
g: function [x][
if x < 2 -> return 0
res: 0
loop 0..x 'z [
res: res + z
]
return res
]
;---------------------------------
; CUSTOM TYPES
;---------------------------------
; defining a custom type
define :person [ ; define a new custom type "Person"
name ; with fields: name, surname, age
surname
age
][
; with custom post-construction initializer
init: [
this\name: capitalize this\name
]
; custom print function
print: [
render "NAME: |this\name|, SURNAME: |this\surname|, AGE: |this\age|"
]
; custom comparison operator
compare: 'age
]
; create a method for our custom type
sayHello: function [this][
ensure -> is? :person this
print ["Hello" this\name]
]
; create new objects of our custom type
a: to :person ["John" "Doe" 34] ; let's create 2 "Person"s
b: to :person ["jane" "Doe" 33] ; and another one
; call pseudo-inner method
sayHello a ; Hello John
sayHello b ; Hello Jane
; access object fields
print ["The first person's name is:" a\name] ; The first person's name is: John
print ["The second person's name is:" b\name] ; The second person's name is: Jane
; changing object fields
a\name: "Bob"
sayHello a ; Hello Bob
; verifying object type
print type a ; :person
print is? :person a ; true
; printing objects
print a ; NAME: John, SURNAME: Doe, AGE: 34
; sorting user objects (using custom comparator)
sort @[a b] ; Jane..., John...
sort.descending @[a b] ; John..., Jane...
```
## Additional resources
- [Official documentation](https://arturo-lang.io/documentation/) - Arturo official documentation & reference.
- [Online playground](https://arturo-lang.io/playground/) - Online REPL for the Arturo programming language.

View File

@ -3,7 +3,7 @@ language: asciidoc
contributors:
- ["Ryan Mavilia", "http://unoriginality.rocks/"]
- ["Abel Salgado Romero", "https://twitter.com/abelsromero"]
filename: asciidoc.md
filename: asciidoc.adoc
---
AsciiDoc is a markup language similar to Markdown and it can be used for anything from books to blogs. Created in 2002 by Stuart Rackham the language is simple but it allows for a great amount of customization.

View File

@ -0,0 +1,202 @@
---
language: Assemblyscript
contributors:
- ["Philippe Vlérick", "https://github.com/pvlerick"]
- ["Steve Huguenin-Elie", "https://github.com/StEvUgnIn"]
- ["Sebastian Speitel", "https://github.com/SebastianSpeitel"]
- ["Max Graey", "https://github.com/MaxGraey"]
filename: learnassemblyscript.ts
---
__AssemblyScript__ compiles a variant of __TypeScript__ (basically JavaScript with types) to __WebAssembly__ using __Binaryen__. It generates lean and mean WebAssembly modules while being just an `npm install` away.
This article will focus only on AssemblyScript extra syntax, as opposed to [TypeScript](/docs/typescript) and [JavaScript](/docs/javascript).
To test AssemblyScript's compiler, head to the
[Playground](https://bit.ly/asplayground) where you will be able
to type code, have auto completion and directly see the emitted WebAssembly.
```ts
// There are many basic types in AssemblyScript,
let isDone: boolean = false;
let name: string = "Anders";
// but integer type come as signed (sized from 8 to 64 bits)
let lines8: i8 = 42;
let lines16: i16 = 42;
let lines32: i32 = 42;
let lines64: i64 = 42;
// and unsigned (sized from 8 to 64 bits),
let ulines8: u8 = 42;
let ulines16: u16 = 42;
let ulines32: u32 = 42;
let ulines64: u64 = 42;
// and float has two sizes possible (32/64).
let rate32: f32 = 1.0
let rate64: f64 = 1.0
// But you can omit the type annotation if the variables are derived
// from explicit literals
let _isDone = false;
let _lines = 42;
let _name = "Anders";
// Use const keyword for constants
const numLivesForCat = 9;
numLivesForCat = 1; // Error
// For collections, there are typed arrays and generic arrays
let list1: i8[] = [1, 2, 3];
// Alternatively, using the generic array type
let list2: Array<i8> = [1, 2, 3];
// For enumerations:
enum Color { Red, Green, Blue };
let c: Color = Color.Green;
// Functions imported from JavaScript need to be declared as external
// @ts-ignore decorator
@external("alert")
declare function alert(message: string): void;
// and you can also import JS functions in a namespace
declare namespace window {
// @ts-ignore decorator
@external("window", "alert")
function alert(message: string): void;
}
// Lastly, "void" is used in the special case of a function returning nothing
export function bigHorribleAlert(): void {
alert("I'm a little annoying box!"); // calling JS function here
}
// Functions are first class citizens, support the lambda "fat arrow" syntax
// The following are equivalent, the compiler does not offer any type
// inference for functions yet, and same WebAssembly will be emitted.
export function f1 (i: i32): i32 { return i * i; }
// "Fat arrow" syntax
let f2 = (i: i32): i32 => { return i * i; }
// "Fat arrow" syntax, braceless means no return keyword needed
let f3 = (i: i32): i32 => i * i;
// Classes - members are public by default
export class Point {
// Properties
x: f64;
// Constructor - the public/private keywords in this context will generate
// the boiler plate code for the property and the initialization in the
// constructor.
// In this example, "y" will be defined just like "x" is, but with less code
// Default values are also supported
constructor(x: f64, public y: f64 = 0) {
this.x = x;
}
// Functions
dist(): f64 { return Math.sqrt(this.x * this.x + this.y * this.y); }
// Static members
static origin: Point = new Point(0, 0);
}
// Classes can be explicitly marked as extending a parent class.
// Any missing properties will then cause an error at compile-time.
export class PointPerson extends Point {
constructor(x: f64, y: f64, public name: string) {
super(x, y);
}
move(): void {}
}
let p1 = new Point(10, 20);
let p2 = new Point(25); //y will be 0
// Inheritance
export class Point3D extends Point {
constructor(x: f64, y: f64, public z: f64 = 0) {
super(x, y); // Explicit call to the super class constructor is mandatory
}
// Overwrite
dist(): f64 {
let d = super.dist();
return Math.sqrt(d * d + this.z * this.z);
}
}
// Namespaces, "." can be used as separator for sub namespaces
export namespace Geometry {
class Square {
constructor(public sideLength: f64 = 0) {
}
area(): f64 {
return Math.pow(this.sideLength, 2);
}
}
}
let s1 = new Geometry.Square(5);
// Generics
// AssemblyScript compiles generics to one concrete method or function per set
// of unique contextual type arguments, also known as [monomorphisation].
// Implications are that a module only includes and exports concrete functions
// for sets of type arguments actually used and that concrete functions can be
// shortcutted with [static type checks] at compile time, which turned out to
// be quite useful.
// Classes
export class Tuple<T1, T2> {
constructor(public item1: T1, public item2: T2) {
}
}
export class Pair<T> {
item1: T;
item2: T;
}
// And functions
export function pairToTuple <T>(p: Pair<T>): Tuple<T, T> {
return new Tuple(p.item1, p.item2);
};
let tuple = pairToTuple<string>({ item1: "hello", item2: "world" });
// Including references to a TypeScript-only definition file:
/// <reference path="jquery.d.ts" />
// Template Strings (strings that use backticks)
// String Interpolation with Template Strings
let name = 'Tyrone';
let greeting = `Hi ${name}, how are you?`
// Multiline Strings with Template Strings
let multiline = `This is an example
of a multiline string`;
let numbers: Array<i8> = [0, 1, 2, 3, 4];
let moreNumbers: Array<i8> = numbers;
moreNumbers[5] = 5; // Error, elements are read-only
moreNumbers.push(5); // Error, no push method (because it mutates array)
moreNumbers.length = 3; // Error, length is read-only
numbers = moreNumbers; // Error, mutating methods are missing
// Type inference in Arrays
let ints = [0, 1, 2, 3, 4] // will infer as Array<i32>
let floats: f32[] = [0, 1, 2, 3, 4] // will infer as Array<f32>
let doubles = [0.0, 1.0, 2, 3, 4] // will infer as Array<f64>
let bytes1 = [0 as u8, 1, 2, 3, 4] // will infer as Array<u8>
let bytes2 = [0, 1, 2, 3, 4] as u8[] // will infer as Array<u8>
let bytes3: u8[] = [0, 1, 2, 3, 4] // will infer as Array<u8>
```
## Further Reading
* [AssemblyScript Official website] (https://www.assemblyscript.org/)
* [AssemblyScript source documentation] https://github.com/AssemblyScript/website/tree/main/src)
* [Source Code on GitHub] (https://github.com/AssemblyScript/assemblyscript)

View File

@ -135,7 +135,7 @@ Let's look at the definition of Big-O.
3 * n^2 <= c * n
```
Is there some pair of constants c, n<sub>0</sub> that satisfies this for all n > <sub>0</sub>?
Is there some pair of constants c, n<sub>0</sub> that satisfies this for all n > n<sub>0</sub>?
No, there isn't. `f(n)` is NOT O(g(n)).
### Big-Omega

View File

@ -209,7 +209,7 @@ function string_functions( localvar, arr) {
# Both return number of matches replaced
localvar = "fooooobar";
sub("fo+", "Meet me at the ", localvar); # localvar => "Meet me at the bar"
gsub("e", ".", localvar); # localvar => "m..t m. at th. bar"
gsub("e", ".", localvar); # localvar => "M..t m. at th. bar"
# Search for a string that matches a regular expression
# index() does the same thing, but doesn't allow a regular expression

432
ballerina.html.markdown Normal file
View File

@ -0,0 +1,432 @@
---
language: Ballerina
contributors:
- ["Anjana Fernando", "https://github.com/lafernando"]
filename: learn_ballerina.bal
---
[Ballerina](https://ballerina.io/) is a statically-typed programming language for making development for the cloud an enjoyable experience.
```java
// Single-line comment
// Import modules into the current source file
import ballerina/io;
import ballerina/time;
import ballerina/http;
import ballerinax/java.jdbc;
import ballerina/lang.'int as ints;
import ballerinax/awslambda;
// Module alias "af" used in code in place of the full module name
import ballerinax/azure.functions as af;
http:Client clientEP = new ("https://freegeoip.app/");
jdbc:Client accountsDB = new ({url: "jdbc:mysql://localhost:3306/AccountsDB",
username: "test", password: "test"});
// A service is a first-class concept in Ballerina, and is one of the
// entrypoints to a Ballerina program.
// The Ballerina platform also provides support for easy deployment to
// environments such as Kubernetes (https://ballerina.io/learn/deployment/kubernetes/).
service geoservice on new http:Listener(8080) {
@http:ResourceConfig {
path: "/geoip/{ip}"
}
resource function geoip(http:Caller caller, http:Request request,
string ip) returns @tainted error? {
http:Response resp = check clientEP->get("/json/" + <@untainted>ip);
check caller->respond(<@untainted> check resp.getTextPayload());
}
}
// Serverless Function-as-a-Service support with AWS Lambda.
// The Ballerina compiler automatically generates the final deployment
// artifact to be deployed.
@awslambda:Function
public function echo(awslambda:Context ctx, json input) returns json {
return input;
}
@awslambda:Function
public function notifyS3(awslambda:Context ctx,
awslambda:S3Event event) returns json {
return event.Records[0].s3.'object.key;
}
// Serverless Function-as-a-Service support with Azure Functions.
// Similar to AWS Lambda, the compiler generates the deployment artifacts.
@af:Function
public function fromQueueToQueue(af:Context ctx,
@af:QueueTrigger { queueName: "queue1" } string inMsg,
@af:QueueOutput { queueName: "queue2" } af:StringOutputBinding outMsg) {
outMsg.value = inMsg;
}
// A custom record type
public type Person record {
string id; // required field
string name;
int age?; // optional field
string country = "N/A"; // default value
};
@af:Function
public function fromHttpTriggerCosmosDBInput(
@af:HTTPTrigger { route: "c1/{country}" } af:HTTPRequest httpReq,
@af:CosmosDBInput { connectionStringSetting: "CosmosDBConnection",
databaseName: "db1", collectionName: "c1",
sqlQuery: "select * from c1 where c1.country = {country}" }
Person[] dbReq)
returns @af:HTTPOutput string|error {
return dbReq.toString();
}
public function main() returns @tainted error? {
int a = 10; // 64-bit signed integer
float b = 1.56; // 64-bit IEEE 754-2008 binary floating point number
string c = "hello"; // a unicode string
boolean d = true; // true, false
decimal e = 15.335; // decimal floating point number
var f = 20; // type inference with 'var' - 'f' is an int
int[] intArray = [1, 2, 3, 4, 5, 6];
int x = intArray.shift(); // similar to a dequeue operation
x = intArray.pop(); // removes the last element
intArray.push(10); // add to the end
// Tuples - similar to a fixed length array with a distinct type for each slot
[string, int] p1 = ["Jack", 1990];
[string, int] p2 = ["Tom", 1986];
io:println("Name: ", p1[0], " Birth Year: ", p1[1]);
string name1;
int birthYear1;
[name1, birthYear1] = p1; // tuple destructuring
var [name2, birthYear2] = p2; // declare and assign values in the same statement
// If statements
int ix = 10;
if ix < 10 {
io:println("value is less than 10");
} else if ix == 10 {
io:println("value equals to 10");
} else {
io:println("value is greater than 10");
}
// Loops
int count = 10;
int i = 0;
while i < 10 {
io:println(i);
}
// Loop from 0 to count (inclusive)
foreach var j in 0...count {
io:println(j);
}
// Loop from 0 to count (non-inclusive)
foreach var j in 0..<count {
io:println(j);
}
// Loop a list
foreach var j in intArray {
io:println(j);
}
json j1 = { "name" : name1, "birthYear" : birthYear1, "zipcode" : 90210 };
io:println(j1.name, " - ", j1.zipcode);
// New fields are added to a JSON value through "mergeJson"
var j2 = j1.mergeJson({ "id" : "90400593053"});
// XML namespace declaration
xmlns "http://example.com/ns1" as ns1;
xmlns "http://example.com/default";
// XML variable from a literal value
xml x1 = xml `<ns1:entry><name>{{name1}}</name><birthYear>{{birthYear1}}</birthYear></ns1:entry>`;
io:println(x1);
// Access specific elements in the XML value
io:println(x1/<name>);
// List all child items in the XML value
io:println(x1/*);
// Function invocations
x = add(1, 2);
io:println(multiply(2, 4));
// Invocation providing value for the defaultable parameter
io:println(multiply(3, 4, true));
// Invocation with values to a rest parameter (multi-valued)
io:println(addAll(1, 2, 3));
io:println(addAll(1, 2, 3, 4, 5));
// Function pointers
(function (int, int) returns int) op1 = getOperation("add");
(function (int, int) returns int) op2 = getOperation("mod");
io:println(op1(5, 10));
io:println(op2(13, 10));
// Closures
(function (int x) returns int) add5 = getAdder(5);
(function (int x) returns int) add10 = getAdder(10);
io:println(add5(10));
io:println(add10(10));
int[] numbers = [1, 2, 3, 4, 5, 6, 7, 8];
// Functional iteration
int[] evenNumbers = numbers.filter(function (int x) returns boolean { return x % 2 == 0; });
// Union types - "input" is of type either string or byte[]
string|byte[] uval = "XXX";
// A type test expression ("uval is string") can be used to check the
// runtime type of a variable.
if uval is string {
// In the current scope, "uval" is a string value
string data = "data:" + uval;
} else {
// Since the expression in the "if" statement ruled out that it's not a string,
// the only type left is "byte[]"; so in the current scope, "uval" will always
// be a "byte[]".
int inputLength = uval.length();
}
// Error handling
string input = io:readln("Enter number: ");
int|error result = ints:fromString(input);
if result is int {
io:println("Number: ", result);
} else {
io:println("Invalid number: ", input);
}
// A check expression can be used to directly return the error from
// the current function if its subexpression evaluated to an error
// value in the runtime.
int number = check ints:fromString(input);
// Concurrent execution using workers in a function
doWorkers();
// Asynchronous execution with futures
future<int> f10 = start fib(10);
var webresult = clientEP->get("/");
int fresult = wait f10;
if webresult is http:Response {
io:println(webresult.getTextPayload());
io:println(fresult);
}
// Mapping types
map<int> ageMap = {};
ageMap["Peter"] = 25;
ageMap["John"] = 30;
int? agePeter = ageMap["Peter"]; // int? is the union type int|() - int or nill
if agePeter is int {
io:println("Peter's age is ", agePeter);
} else {
io:println("Peter's age is not found");
}
Person person1 = { id: "p1", name : "Anne", age: 28, country: "Sri Lanka" };
Scores score1 = { physics : 80, mathematics: 95 };
score1["chemistry"] = 75;
io:println(score1["chemistry"]);
Student student1 = { id: "s1", name: "Jack", age: 25, country: "Japan" };
student1.college = "Stanford";
string? jacksCollege = student1?.college; // optional field access
if jacksCollege is string {
io:println("Jack's college is ", jacksCollege);
}
// Due to the structural type system, "student1" can be assigned to "person2",
// since the student1's structure is compatible with person2's,
// where we can say, a "Student" is a "Person" as well.
Person person2 = student1;
map<int> grades = {"Jack": 95, "Anne": 90, "John": 80, "Bill": 55};
Person px1 = {id: "px1", name: "Jack", age: 30, country: "Canada"};
Person px2 = {id: "px2", name: "John", age: 25};
Person px3 = {id: "px3", name: "Anne", age: 17, country: "UK"};
Person px4 = {id: "px4", name: "Bill", age: 15, country: "USA"};
Person[] persons = [];
persons.push(px1);
persons.push(px2);
persons.push(px3);
persons.push(px4);
// Query expressions used to execute complex queries for list data
Result[] results = from var person in persons
let int lgrade = (grades[person.name] ?: 0)
where lgrade > 75
let string targetCollege = "Stanford"
select {
name: person.name,
college: targetCollege,
grade: lgrade
};
// Compile-time taint checking for handling untrusted data
string s1 = "abc";
mySecureFunction(s1);
// Explicitely make "s2" a tainted value. External input to a Ballerina
// program such as command-line arguments and network input are by-default
// marked as tainted data.
string s2 = <@tainted> s1;
// "s2x" is now a tainted value, since its value is derived using a
// tainted value (s1).
string s2x = s2 + "abc";
// The following line uncommented will result in a compilation error,
// since we are passing a tainted value (s2x) to a function which
// exepects an untainted value.
// mySecureFunction(s2x);
// Instantiating objects
Employee emp1 = new("E0001", "Jack Smith", "Sales", 2009);
io:println("The company service duration of ", emp1.name,
" is ", emp1.serviceDuration());
// Supported operations can be executed in a transaction by enclosing the actions
// in a "transaction" block.
transaction {
// Executes the below database operations in a single local transactions
var r1 = accountsDB->update("UPDATE Employee SET balance = balance + ? WHERE id = ?", 5500.0, "ID001");
var r2 = accountsDB->update("UPDATE Employee SET balance = balance + ? WHERE id = ?", 5500.0, "ID001");
}
}
// An object is a behavioural type, which encapsulates both data and functionality.
type Employee object {
// Private fields are only visible within the object and its methods
private string empId;
// Public fields can be accessed by anyone
public string name;
public string department;
// The default qualifier is a "protected" field,
// which are accessible only within the module.
int yearJoined;
// The object initialization function; automatically called when an object is instantiated.
public function __init(string empId, string name, string department, int yearJoined) {
self.empId = empId;
self.name = name;
self.department = department;
self.yearJoined = yearJoined;
}
// An object method
public function serviceDuration() returns int {
time:Time ct = time:currentTime();
return time:getYear(ct) - self.yearJoined;
}
};
// Student is a subtype of Person
type Student record {
string id;
string name;
int age;
string college?;
string country;
};
type Scores record {
int physics;
int mathematics;
};
type Result record {
string name;
string college;
int grade;
};
public function getOperation(string op) returns (function (int, int) returns int) {
if op == "add" {
return add;
} else if op == "mod" {
return function (int a, int b) returns int { // anonymous function
return a % b;
};
} else {
return (x, y) => 0; // single expression anonymous no-op function
}
}
// Two required parameters
public function add(int a, int b) returns int {
return a + b;
}
// 'log' is a defaultable parameter
public function multiply(int a, int b, boolean log = false) returns int {
if log {
io:println("Multiplying ", a, " with ", b);
}
return a * b;
}
// 'numbers' is a rest parameter - it can have multiple values,
// similar to an array.
public function addAll(int... numbers) returns int {
int result = 0;
foreach int number in numbers {
result += number;
}
return result;
}
public function getAdder(int n) returns (function (int x) returns int) {
return function (int x) returns int { // returns closure
return x + n;
};
}
function fib(int n) returns int {
if n <= 2 {
return 1;
} else {
return fib(n - 1) + fib(n - 2);
}
}
// The code in worker blocks "w1" and "w2" are executed concurrency
// when this function is invoked. The "wait" expressions waits for
// the given workers to finish to retrieve their results.
public function doWorkers() {
worker w1 returns int {
int j = 10;
j -> w2;
int b;
b = <- w2;
return b * b;
}
worker w2 returns int {
int a;
a = <- w1;
a * 2 -> w1;
return a + 2;
}
record {int w1; int w2;} x = wait {w1, w2};
io:println(x);
}
// A function which takes in only an untainted string value.
public function mySecureFunction(@untainted string input) {
io:println(input);
}
```
### Further Reading
* [Ballerina by Example](https://ballerina.io/learn/by-example/)
* [User Guide](https://ballerina.io/learn/installing-ballerina/)
* [API Documentation](https://ballerina.io/learn/api-docs/ballerina/)
* [Language Specification](https://ballerina.io/spec/)

View File

@ -5,7 +5,7 @@ contributors:
translators:
- ["Abel Salgado Romero", "https://twitter.com/abelsromero"]
lang: ca-es
filename: asciidoc-ca.md
filename: asciidoc-ca.adoc
---
AsciiDoc és un llenguatge de marques similar a Markdown i que pot ser usat per qualsevol ús, des de llibres fins a blogs.

View File

@ -95,7 +95,7 @@ salts de línia.` // El mateix tipus
// literals Non-ASCII literal. El tipus de Go és UTF-8.
g := 'Σ' // El tipus rune, és un àlies de int32 conté un caràcter unicode.
f := 3.14195 // float64, un número de 64 bits amb coma flotant IEEE-754.
f := 3.14159 // float64, un número de 64 bits amb coma flotant IEEE-754.
c := 3 + 4i // complex128, representat internament amb dos float64.
// Sintaxi amb var i inicialitzadors.
@ -433,25 +433,25 @@ func requestServer() {
## Més informació
L'arrel de tot en Go és la web oficial [official Go web site]
(http://golang.org/). Allà es pot seguir el tutorial, jugar interactivament
(https://go.dev/). Allà es pot seguir el tutorial, jugar interactivament
i llegir molt més del que hem vist aquí.En el "tour",
[the docs](https://golang.org/doc/) conté informació sobre com escriure codi
[the docs](https://go.dev/doc/) conté informació sobre com escriure codi
net i efectiu en Go, comandes per empaquetar i generar documentació, i
història de les versions.
És altament recomanable llegir La definició del llenguatge. És fàcil de llegir
i sorprenentment curta (com la definició del llenguatge en aquests dies).
Es pot jugar amb codi a [Go playground](https://play.golang.org/p/tnWMjr16Mm).
Es pot jugar amb codi a [Go playground](https://go.dev/play/p/tnWMjr16Mm).
Prova de fer canvis en el codi i executar-lo des del navegador! Es pot fer
servir [https://play.golang.org](https://play.golang.org) com a [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) per provar coses i codi
servir [https://go.dev/play/](https://go.dev/play/) com a [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) per provar coses i codi
en el navegador sense haver d'instal·lar Go.
En la llista de lectures pels estudiants de Go hi ha
[el codi font de la llibreria estàndard](http://golang.org/src/pkg/).
[el codi font de la llibreria estàndard](https://go.dev/src/).
Ampliament comentada, que demostra el fàcil que és de llegir i entendre els
programes en Go, l'estil de programació, i les formes de treballar-hi. O es
pot clicar en un nom de funció en [la documentació](http://golang.org/pkg/)
pot clicar en un nom de funció en [la documentació](https://go.dev/pkg/)
i veure'n el codi!
Un altre gran recurs per aprendre Go és

View File

@ -90,7 +90,7 @@ může obsahovat nové řádky` // Opět typ řetězec.
// Můžeme použít ne ASCII znaky, Go používá UTF-8.
g := 'Σ' // type runa, což je alias na int32 a ukládá se do něj znak UTF-8
f := 3.14195 // float64, je IEEE-754 64-bit číslem s plovoucí čárkou.
f := 3.14159 // float64, je IEEE-754 64-bit číslem s plovoucí čárkou.
c := 3 + 4i // complex128, interně uložené jako dva float64.
// takhle vypadá var s inicializací
@ -408,20 +408,20 @@ func requestServer() {
## Kam dále
Vše hlavní o Go se nachází na [oficiálních stránkách go](http://golang.org/).
Vše hlavní o Go se nachází na [oficiálních stránkách go](https://go.dev/).
Tam najdete tutoriály, interaktivní konzolu a mnoho materiálu ke čtení.
Kromě úvodu, [dokumenty](https://golang.org/doc/) tam obsahují jak psát čistý kód v Go
Kromě úvodu, [dokumenty](https://go.dev/doc/) tam obsahují jak psát čistý kód v Go
popis balíčků (package), dokumentaci příkazové řádky a historii releasů.
Také doporučujeme přečíst si definici jazyka. Je čtivá a překvapivě krátká. Tedy alespoň proti
jiným současným jazyků.
Pokud si chcete pohrát s Go, tak navštivte [hřiště Go](https://play.golang.org/p/r46YvCu-XX).
Můžete tam spouštět programy s prohlížeče. Také můžete [https://play.golang.org](https://play.golang.org) použít jako
Pokud si chcete pohrát s Go, tak navštivte [hřiště Go](https://go.dev/play/p/r46YvCu-XX).
Můžete tam spouštět programy s prohlížeče. Také můžete [https://go.dev/play/](https://go.dev/play/) použít jako
[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop), kde si v rychlosti vyzkoušíte věci, bez instalace Go.
Na vašem knižním seznamu, by neměly chybět [zdrojáky stadardní knihovny](http://golang.org/src/pkg/).
Důkladně popisuje a dokumentuje Go, styl zápisu Go a Go idiomy. Pokud kliknete na [dokumentaci](http://golang.org/pkg/)
Na vašem knižním seznamu, by neměly chybět [zdrojáky stadardní knihovny](https://go.dev/src/).
Důkladně popisuje a dokumentuje Go, styl zápisu Go a Go idiomy. Pokud kliknete na [dokumentaci](https://go.dev/pkg/)
tak se podíváte na dokumentaci.
Dalším dobrým zdrojem informací je [Go v ukázkách](https://gobyexample.com/).

View File

@ -102,19 +102,24 @@ div.some-parent.class-name { }
/* There are some selectors called pseudo classes that can be used to select an
element only when it is in a particular state */
/* for example, when the cursor hovers over an element */
selector:hover { }
/* for example, when a link hasn't been visited */
selected:link { }
/* or a link has been visited */
selector:visited { }
/* or hasn't been visited */
selected:link { }
/* or an element is in focus */
selected:focus { }
/* any element that is the first child of its parent */
/* or when the cursor hovers over an element */
selector:hover { }
/* or when a link is clicked on */
selector:active { }
/* These pseudo classes regarding links should always be written in the above order or the code might not work as expected */
/* Any element that is the first child of its parent */
selector:first-child {}
/* any element that is the last child of its parent */

551
cue.html.markdown Normal file
View File

@ -0,0 +1,551 @@
---
name: CUE
category: language
language: cue
filename: learncue.cue
contributors:
- ["Daniel Cox", "https://github.com/danielpcox"]
- ["Coleman McFarland", "https://github.com/dontlaugh"]
---
CUE is an expressive (but not Turing-complete) JSON superset, exportable to JSON or YAML. It supports optional types and many other conveniences for working with large configuration sets. The unification engine has roots in logic programming, and as such it provides a ready solution to modern configuration management problems.
When CUE is exported to JSON, values from every processed file are unified into one giant object. Consider these two files:
```yaml
//name.cue
name: "Daniel"
```
```yaml
//disposition.cue
disposition: "oblivious"
```
Now we can unify and export to JSON:
```bash
% cue export name.cue disposition.cue
{
"name": "Daniel",
"disposition": "oblivious"
}
```
Or YAML:
```bash
% cue export --out yaml name.cue disposition.cue
name: Daniel
disposition: oblivious
```
Notice the C-style comments are not in the output. Also notice that the keys in CUE syntax did not require quotes. Some special characters do require quotes:
```yaml
works_fine: true
"needs-quotes": true
```
Unification doesn't just unify across files, it is also a *global merge* of all types and values. The following fails, because the *types* are different.
```yaml
//string_value.cue
foo: "baz"
```
```yaml
//integer_value.cue
foo: 100
```
```bash
% cue export string_value.cue integer_value.cue
foo: conflicting values "baz" and 100 (mismatched types string and int):
integer_value.cue:1:6
string_value.cue:1:6
```
But even if we quote the integer, it still fails, because the *values* conflict and there is no way to unify everything into a top-level object.
```yaml
//string_value.cue
foo: "baz"
```
```yaml
//integer_value.cue
foo: "100" // a string now
```
```bash
% cue export string_value.cue integer_value.cue
foo: conflicting values "100" and "baz":
integer_value.cue:1:6
string_value.cue:1:6
```
Types in CUE *are* values; special ones that the unification engine knows have certain behavior relative to other values. During unification it requires that values match the specified types, and when concrete values are required, you will get an error if there's only a type. So this is fine:
```yaml
street: "1 Infinite Loop"
street: string
```
While `cue export` produces YAML or JSON, `cue eval` produces CUE. This is useful for converting YAML or JSON to CUE, or for inspecting the unified output in CUE itself. It's fine to be missing concrete values in CUE (though it prefers concrete values when emitting CUE when both are available and match),
```yaml
//type-only.cue
amount: float
```
```bash
% cue eval type-only.cue
amount: float
```
but you *need* concrete values if you want to export (or if you tell `eval` to require them with `-c`):
```bash
% cue export type-only.cue
amount: incomplete value float
```
Give it a value that unifies with the type, and all is well.
```yaml
//concrete-value.cue
amount: 3.14
```
```bash
% cue export type-only.cue concrete-value.cue
{
"amount": 3.14
}
```
The method of unifying concrete values with types that share a common syntax is very powerful, and much more compact than, e.g., JSON Schema. This way, schema, defaults, and data are all expressible in CUE.
Default values may be supplied with a type using an asterisk:
```yaml
// default-port.cue
port: int | *8080
```
```bash
% cue eval default-port.cue
port: 8080
```
Enum-style options ("disjunctions" in CUE) may be specified with an `|` separator:
```yaml
//severity-enum.cue
severity: "high" | "medium" | "low"
severity: "unknown"
```
```bash
% cue eval severity-enum.cue
severity: 3 errors in empty disjunction:
severity: conflicting values "high" and "unknown":
./severity-enum.cue:1:11
./severity-enum.cue:1:48
severity: conflicting values "low" and "unknown":
./severity-enum.cue:1:31
./severity-enum.cue:1:48
severity: conflicting values "medium" and "unknown":
./severity-enum.cue:1:20
./severity-enum.cue:1:48
```
You can even have disjunctions of structs (not shown, but it works like you'd expect).
CUE has "definitions", and you can use them like you would variable declarations in other languages. They are also for defining struct types. You can apply a struct of type definitions to some concrete value(s) with `&`. Also notice you can say "a list with type #Whatever" using `[...#Whatever]`.
```yaml
// definitions.cue
#DashboardPort: 1337
configs: {
host: "localhost"
port: #DashboardPort
}
#Address: {
street: string
city: string
zip?: int // ? makes zip optional
}
some_address: #Address & {
street: "1 Rocket Rd"
city: "Hawthorne"
}
more_addresses: [...#Address] & [
{street: "1600 Amphitheatre Parkway", city: "Mountain View", zip: "94043"},
{street: "1 Hacker Way", city: "Menlo Park"}
]
```
```bash
% cue export --out yaml definitions.cue
configs:
host: localhost
port: 1337
some_address:
street: 1 Rocket Rd
city: Hawthorne
more_addresses:
- street: 1600 Amphitheatre Parkway
city: Mountain View
zip: "94043"
- street: 1 Hacker Way
city: Menlo Park
```
CUE supports more complex values and validation:
```yaml
#Country: {
name: =~"^\\p{Lu}" // Must start with an upper-case letter
pop: >800 & <9_000_000_000 // More than 800, fewer than 9 billion
}
vatican_city: #Country & {
name: "Vatican City"
pop: 825
}
```
CUE may save you quite a bit of time with all the sugar it provides on top of mere JSON. Here we're defining, "modifying", and validating a nested structure in three lines: (Notice the `[]` syntax used around `string` to signal to the engine that `string` is a constraint, not a string in this case.)
```yaml
//paths.cue
// path-value pairs
outer: middle1: inner: 3
outer: middle2: inner: 7
// collection-constraint pair
outer: [string]: inner: int
```
```bash
% cue export paths.cue
{
"outer": {
"middle1": {
"inner": 3
},
"middle2": {
"inner": 7
}
}
}
```
In the same vein, CUE supports "templates", which are a bit like functions of a single argument. Here `Name` is bound to each string key immediately under `container` while the struct underneath *that* is evaluated.
```yaml
//templates.cue
container: [Name=_]: {
name: Name
replicas: uint | *1
command: string
}
container: sidecar: command: "envoy"
container: service: {
command: "fibonacci"
replicas: 2
}
```
```bash
% cue eval templates.cue
container: {
sidecar: {
name: "sidecar"
replicas: 1
command: "envoy"
}
service: {
name: "service"
command: "fibonacci"
replicas: 2
}
}
```
And while we're talking about references like that, CUE supports scoped references.
```yaml
//scopes-and-references.cue
v: "top-level v"
b: v // a reference
a: {
b: v // matches the top-level v
}
let V = v
a: {
v: "a's inner v"
c: v // matches the inner v
d: V // matches the top-level v now shadowed by a.v
}
av: a.v // matches a's v
```
```bash
% cue eval --out yaml scopes-and-references.cue
```
```yaml
v: top-level v
b: top-level v
a:
b: top-level v
v: a's inner v
c: a's inner v
d: top-level v
av: a's inner v
```
I changed the order of the keys in the output for clarity. Order doesn't actually matter, and notice that duplicate keys at a given level are *all* unified.
You can hide fields be prefixing them with `_` (quote the field if you need a `_` prefix in an emitted field)
```yaml
//hiddens.cue
"_foo": 2
_foo: 3
foo: 4
_#foo: 5
#foo : 6
```
```bash
% cue eval hiddens.cue
"_foo": 2
foo: 4
#foo: 6
% cue export hiddens.cue
{
"_foo": 2,
"foo": 4
}
```
Notice the difference between `eval` and `export` with respect to definitions. If you want to hide a definition in CUE, you can prefix *that* with `_`.
Interpolation of values and fields:
```yaml
//interpolation.cue
#expense: 90
#revenue: 100
message: "Your profit was $\( #revenue - #expense)"
cat: {
type: "Cuddly"
"is\(type)": true
}
```
```bash
% cue export interpolation.cue
{
"message": "Your profit was $10",
"cat": {
"type": "Cuddly",
"isCuddly": true
}
}
```
Operators, list comprehensions, conditionals, imports...:
```yaml
//getting-out-of-hand-now.cue
import "strings" // we'll come back to this
// operators are nice
g: 5 / 3 // CUE can do math
h: 3 * "blah" // and Python-like string repetition
i: 3 * [1, 2, 3] // with lists too
j: 8 < 10 // and supports boolean ops
// conditionals are also nice
price: number
// Require a justification if price is too high
if price > 100 {
justification: string
}
price: 200
justification: "impulse buy"
// list comprehensions are powerful and compact
#items: [ 1, 2, 3, 4, 5, 6, 7, 8, 9]
comp: [ for x in #items if x rem 2 == 0 {x*x}]
// and... well you can do this too
#a: [ "Apple", "Google", "SpaceX"]
for k, v in #a {
"\( strings.ToLower(v) )": {
pos: k + 1
name: v
nameLen: len(v)
}
}
```
```bash
% cue export getting-out-of-hand-now.cue
```
```json
{
"g": 1.66666666666666666666667,
"h": "blahblahblah",
"i": [1, 2, 3, 1, 2, 3, 1, 2, 3],
"j": true,
"apple": {
"pos": 1,
"name": "Apple",
"nameLen": 5
},
"google": {
"pos": 2,
"name": "Google",
"nameLen": 6
},
"price": 200,
"justification": "impulse buy",
"comp": [
4,
16,
36,
64
],
"spacex": {
"pos": 3,
"name": "SpaceX",
"nameLen": 6
}
}
```
At this point it's worth mentioning that CUE may not be Turing-complete, but it *is* powerful enough for you to shoot yourself in the foot, so do try to keep it clear. It's easy to go off the deep end and make your config *harder* to work with if you're not careful. Make use of those comments, at least, and/or...
To that end, CUE supports packages and modules. CUE files are standalone by default, but if you put a package clause at the top, you're saying that file is unifiable with other files "in" the same package.
```yaml
//a.cue
package config
foo: 100
bar: int
```
```yaml
//b.cue
package config
bar: 200
```
If you create these two files in a new directory and run `cue eval` (no arguments), it will unify them like you'd expect. It searches the current directory for .cue files, and if they all have the same package, they will be unified.
Packages are more clear in the context of "modules". Modules are the *largest* unit of organization. Basically every time you have a project that spans multiple files, you should create a module and name it with something that looks like the domain and path of a URL, e.g., `example.com/something`. When you import anything from this module, even from *within* the module, you must do so using the fully-qualified module path which will be prefixed with this module name.
You can create a new module like so:
```bash
mkdir mymodule && cd mymodule
cue mod init example.com/mymodule
```
This creates a `cue.mod/` subdirectory within that `mymodule` directory, and `cue.mod/` contains the following file and subdirectories:
- `module.cue` (which defines your module name, in this case with `module: "example.com/mymodule"`)
- pkg/
- gen/
- usr/
For a different perspective on this and details about what's in there, see https://cuelang.org/docs/concepts/packages/. For my purposes here, I'll say you don't need to think about the contents of this directory *at all*, except that your module name will be the prefix for all imports within your module.
Where will your module file hierarchy go? All files and directories for your module are rooted in `mymodule/`, the directory that also contains `cue.mod/`. If you want to import a package, you'll prefix it with `example.com/mymodule`, followed by a relative path rooted in `mymodule/`.
To make it concrete, consider the following:
```
mymodule
├── config
│   ├── a.cue
│   └── b.cue
├── cue.mod
│   ├── module.cue
│   ├── pkg
│   └── usr
└── main.cue
```
`cue.mod/` and the files underneath it were created by `cue mod init example.com/mymodule`. I then created the `config/` subdirectory with `a.cue` and `b.cue` inside. Then I created `main.cue` to act as my top-level file to rule them all.
Running `eval` (no arguments) checks to see if there's only one package in all .cue files in the current directory, and if so, it unifies them and outputs the result. In this case, there's only main.cue with package `main` (nothing special about "main" there, it just seemed appropriate), so that's the one.
```bash
% cue eval
configuredBar: 200
```
The contents of `main.cue` is:
```yaml
//main.cue
package main
import "example.com/mymodule/config"
configuredBar: config.bar
```
`config/a.cue` and `config/b.cue` are files from earlier, except now they've both got `package config` at the top:
```yaml
//a.cue
package config
foo: 100
bar: int
```
```yaml
//b.cue
package config
bar: 200
```
So there you go. If you want to verify that it's actually unifying both files under `config/`, you can change `bar: int` to `bar: string` in `a.cue` and re-run `cue eval` to get a nice type error:
```
cue eval 2022-01-06 17:51:24
configuredBar: conflicting values string and 200 (mismatched types string and int):
./config/a.cue:4:6
./config/b.cue:3:6
./main.cue:5:16
```
That's it for now. I understand there are more package management features coming in the future and the design decisions around `cue.mod` are looking ahead to that.
Finally, CUE has built-in modules with powerful functionality. We saw one of these earlier, when we imported "strings" and used `strings.ToLower`. Imports without fully-qualified module names are assumed to be built-ins. The full list and documentation for each is here: https://pkg.go.dev/cuelang.org/go/pkg
This has been a condensation of the official docs and tutorials, so go give the source material some love: https://cuelang.org/docs/tutorials/

View File

@ -45,7 +45,7 @@ const CONSTANT_VALUE = "I CANNOT CHANGE";
CONSTANT_VALUE = "DID I?"; //Error
/// Final is another variable declaration that cannot be change once it has been instantiated. Commonly used in classes and functions
/// `final` can be declared in pascalCase.
final finalValue = "value cannot be change once instantiated";
final finalValue = "value cannot be changed once instantiated";
finalValue = "Seems not"; //Error
/// `var` is another variable declaration that is mutable and can change its value. Dart will infer types and will not change its data type
@ -79,7 +79,8 @@ example1() {
/// Anonymous functions don't include a name
example2() {
nested1(fn) {
//// Explicit return type.
nested1(void Function() fn) {
fn();
}
nested1(() => print("Example2 nested 1"));

View File

@ -4,7 +4,7 @@ contributors:
- ["Ryan Mavilia", "http://unoriginality.rocks/"]
translators:
- ["Dennis Keller", "https://github.com/denniskeller"]
filename: asciidoc-de.md
filename: asciidoc-de.adoc
lang: de-de
---

View File

@ -0,0 +1,561 @@
---
language: crystal
contributors:
- ["Vitalii Elenhaupt", "http://veelenga.com"]
- ["Arnaud Fernandés", "https://github.com/TechMagister/"]
translators:
- ["caminsha", "https://github.com/caminsha"]
filename: learncrystal-de.cr
lang: de-de
---
```crystal
# Das ist ein Kommentar
# Alles ist ein Objekt
nil.class # => Nil
100.class # => Int32
true.class # => Bool
# Falschwerte sind: nil, false und Nullpointer
!nil # => true : Bool
!false # => true : Bool
!0 # => false : Bool
# Integer
1.class # => Int32
# Fünf vorzeichenbehaftete Ganzzahlen
1_i8.class # => Int8
1_i16.class # => Int16
1_i32.class # => Int32
1_i64.class # => Int64
1_i128.class # => Int128
# Fünf vorzeichenlose Ganzzahlen
1_u8.class # => UInt8
1_u16.class # => UInt16
1_u32.class # => UInt32
1_u64.class # => UInt64
1_u128.class # => UInt128
2147483648.class # => Int64
9223372036854775808.class # => UInt64
# Binäre Zahlen
0b1101 # => 13 : Int32
# Oktalzahlen
0o123 # => 83 : Int32
# Hexadezimalzahlen
0xFE012D # => 16646445 : Int32
0xfe012d # => 16646445 : Int32
# Gleitkommazahlen (floats)
1.0.class # => Float64
# Es gibt zwei Typen von Gleitkommazahlen
1.0_f32.class # => Float32
1_f32.class # => Float32
1e10.class # => Float64
1.5e10.class # => Float64
1.5e-7.class # => Float64
# Chars (einzelne Zeichen)
'a'.class # => Char
# Oktale Schreibweise
'\101' # => 'A' : Char
# Unicode Schreibweise
'\u0041' # => 'A' : Char
# Strings (Zeichenketten)
"s".class # => String
# Strings sind unveränderlich
s = 'hello, " # => "hello, " : String
s.object_id # => 1234667712 : UInt64
s += "Crystal" # => "hello, Crystal" : String
s.object_id # => 142528472 : UInt64
# Interpolation wird unterstützt
"sum = #{1 + 2}" # => "sum = 3" : String
# Mehrzeilige Strings
" Dies ist ein
mehrzeiliger String."
# String mit doppeltem Anführungszeichen
%(hello "world") # => "hello \"world\""
# Symbole
# Unveränderbare, wiederverwendbare Konstanten, welche intern als Int32 Integer
# Werte repräsentiert werden.
# Symbole werden oft anstelle von Strings verwendet, um bestimmte Werte zu bestimmen.
:symbol.class # => Symbol
sentence = :question? # :"question?" : Symbol
sentence = :question? # => true : Bool
sentence = :exclamation! # => false : Bool
sentence = "question?" # => false : Bool
# Arrays
[1, 2, 3].class # => Array(Int32)
[1, "hello", 'x'].class # => Array(Int32 | String | Char)
# Leere Arrays sollten einen Typen definieren
[] # => Syntaxfehler: für leere Arrays,
# verwende `[] of ElementType`
[] of Int32 # => [] : Array(Int32)
Array(Int32).new # => [] : Array(Int32)
# Arrays können indiziert werden
array = [1, 2, 3, 4, 5] # => [1, 2, 3, 4, 5] : Array(Int32)
array[0] # => 1 : Int32
array[10] # führt zu einem IndexError
array[-6] # führt zu einem IndexError
array[10]? # => nil : (Int32 | Nil)
array[-6]? # => nil : (Int32 | Nil)
# Starte am Ende des Arrays
array[-1] # => 5
# Mit einem Startindex und einer Länge
array[2, 4] # => [3, 4, 5]
# oder mit einem Bereich
array[1..3] # => [2, 3, 4]
# Füge etwas zu einem Array hinzu
array << 6 # => [1, 2, 3, 4, 5, 6]
# Entferne Einträge am Ende des Arrays
array.pop # => 6
array # => [1, 2, 3, 4, 5]
# Entferne ersten Eintrag im Array
array.shift # => 1
array # => [2, 3, 4, 5]
# Überprüfe, ob ein Element in einem Array existiert
array.includes? 3 # => true
# Spezielle Syntax für String-Arrays und Symbol-Arrays
%w(one two three) # => ["one", "two", "three"] : Array(String)
%i(one two three) # 0> [:one, :two, :three] : Array(Symbol)
# Es gibt auch für andere Arrays eine spezielle Syntax, wenn die Methoden
# `.new` und `#<<` definiert werden.
set = Set{1, 2, 3} # => [1, 2, 3]
set.class # => Set(Int32)
# Das obere ist äquivalent zu:
set = Set(typeof(1, 2, 3)).new
set << 1
set << 2
set << 3
# Hashes
{1 => 2, 3 => 4}.class # => Hash(Int32, Int32)
{1 => 2, 'a' => 3}.class # => Hash (Int32 | Char, Int32)
# Leere Hashes sollten einen Typen spezifieren
{} # Syntaxfehler
{} of Int32 => Int32 # {}
Hash(Int32, Int32).new # {}
# Hashes können schnell mit dem Key nachgeschaut werden
hash = {"color" => "green", "number" => 5}
hash["color"] # => "green"
hash["no_such_key"] # => Fehlender hash key: "no_such_key" (KeyError)
hash["no_such_key"]? # => nil
# Überprüfe die Existenz eines Hashkeys
hash.has_key? "color" # => true
# Spezielle Schreibweise für Symbol- und Stringkeys
{key1: 'a', key2: 'b'} # {:key1 => 'a', :key2 => 'b'}
{"key1": 'a', "key2": 'b'} # {"key1" => 'a', "key2" => 'b'}
# Die spezielle Syntax für Hash-Literale gibt es auch für andere Typen, sofern
# diese die Methoden `.new` und `#[]=` Methoden definieren.
class MyType
def []=(key, value)
puts "do stuff"
end
end
MyType{"foo" => "bar"}
# Das obere ist äquivalent zu:
tmp = MyType.new
tmp["foo"] = "bar"
tmp
# Ranges (Bereiche)
1..10 # => Range(Int32, Int32)
Range.new(1,10).class # => Range(Int32, Int32)
# Ranges können inklusiv oder exklusiv sein.
(3..5).to_a # => [3, 4, 5]
(3...5).to_a # => [3, 4]
# Überprüfe, ob ein Range einen Wert enthält oder nicht.
(1..8).includes? 2 # => true
# Tupel sind unveränderliche, Stack-zugewiese Folgen von Werten mit fester
# Größe und möglicherweise unterschiedlichen Typen
{1, "hello", 'x'}.class # => Tuple(Int32, String, Char)
# Erhalte den Wert eines Tupels über den Index
tuple = {:key1, :key2}
tuple[1] # => :key2
tuple[2] # syntax error: Index out of bound
# Können auf mehrere Variablen erweitert werden
a, b, c = {:a, 'b', "c"}
a # => :a
b # => 'b'
c # => "c"
# Procs repräsentieren ein Funktionspointer mit einem optionalen Kontext.
# Normalerweise wird ein Proc mit einem proc-Literal erstellt.
proc = ->(x : Int32) { x.to_s }
proc.class # => Print(Int32, String)
# Außerdem kann man auch mit der Methode `new` ein Proc erstellen.
Proc(Int32, String).new { |x| x.to_s }
# Rufe ein Proc auf mit der Methode `call`
proc.call 10 # => "10"
# Kontrollstatements
if true
"if statement"
elsif false
"else-f, optional"
else
"else, auch optional"
end
puts "if as a suffix" if true # => if as a suffix
# If als Ausdruck
a = if 2 > 1
3
else
4
end
a # => 3
# Bedingter ternärer Ausdruck
a = 1 > 2 ? 3 : 4 # => 4
# Case-Statement
cmd = "move"
action = case cmd
when "create"
"Creating..."
when "copy"
"Copying..."
when "move"
"Moving..."
when "delete"
"Deleting..."
end
action # => "Moving..."
# Schleifen
index = 0
while index <= 3
puts "Index: #{index}"
index += 1
end
# Index: 0
# Index: 1
# Index: 2
# Index: 3
index = 0
until index > 3
puts "Index: #{index}"
index += 1
end
# Index: 0
# Index: 1
# Index: 2
# Index: 3
# Der bevorzugte Weg, ist `each` zu verwenden.
(1..3).each do |index|
puts "Index: #{index}"
end
# Index: 1
# Index: 2
# Index: 3
# Der Typ der Variablen hängt vom Typen innerhalb der Kontrollanweisung ab
if a < 3
a = "hello"
else
a = true
end
typeof a # => (Bool | String)
if a && b
# Hier wird garantiert, dass weder a noch b vom Typ Nil sind
end
if a.is_a? String
a.class # => String
end
# Funktionen
def double(x)
x * 2
end
# Funktionen geben implizit den Wert der letzten Anweisung zurück
# Dies ist auch bei anderen Blöcken der Fall.
double(2) # => 4
# Klammern müssen nicht gesetzt werden, wenn der Aufruf eindeutig ist
double 3 # => 6
double double 3 # => 12
def sum(x, y)
x + y
end
# Funktionsargumente werden mit einem Komma separiert.
sum 3, 4 # => 7
sum sum(3, 4), 5 # => 12
# yield
# Alle Methoden haben einen impliziten, optionalen Blockparameter.
# Dieser kann mit dem Schlüsselwort `yield` aufgerufen werden.
def surround
puts '{'
yield
puts '}'
end
surround { puts "Hallo Welt" }
# {
# Hallo Welt
# }
# Du kannst ein Block einer Funktion übergeben.
# "&" kennzeichnet eine Referenz zu einem übergebenen Block
def guests(&block)
block.call "some_argument"
end
# Du kannst eine Liste von Argumenten mitgeben, welche zu einem Array
# umgewandelt werden.
# Hierfür ist der Splat-Operator ("*")
def guests(*array)
array.each { |guest| puts guest }
end
# Wenn eine Methode ein Array zurückgibt, kann destrukturiende Zuordnung
# verwendet werden.
def foods
["pancake", "sandwich", "quesadilla"]
end
breakfast, lunch, dinner = foods
breakfast # => "pancake"
dinner # => "quesadilla"
# Gemäß der Konvention enden alle Methoden, welchen einen Boolean zurückgeben
# mit einem Fragezeichen.
5.even? # false
5.odd? # true
# Und wenn eine Methode mit einem Ausrufezeichen endet, macht sie etwas
# destruktives. Zum Beispiel wird der Aufrufer verändert. Einige Methoden haben
# eine !-Version, um eine Änderung zu machen und eine Nicht-!-Version, welche
# lediglich eine neue veränderte Version zurückgibt.
company_name = "Dunder Mifflin"
company_name.gsub "Dunder", "Donald" # => "Donald Mifflin"
company_name # => "Dunder Mifflin"
company_name.gsub! "Dunder", "Donald"
company_name # => "Donald Mifflin"
# definiere eine Klasse mit dem Schlüsselwort `class`.
class Human
# eine Klassenvariable. Diese wird mit allen Instanzen dieser Klasse geteilt.
@@species = "H. sapiens"
# type of name is String
@name: String
# Grundlegender Intialisierer
# Weise das Argument der Instanz-Variable "name" zu
# Wenn kein Alter angegeben wird, wird der Default (hier 0) genommen.
def initialize(@name, @age = 0)
end
# Einfache Setter-Methode
def name=(name)
@name = name
end
# einfache Getter-Methode
def name
@name
end
# Die obere Funktionalität kann mit der property-Methode gekapselt werden:
property :name
# Getter/Setter-Methoden können auch individuell erstellt werden:
getter :name
setter :name
# eine Klassenmethode verwendet `self` um sich von Instanzmethoden zu
# unterscheiden. Diese kann lediglich von einer Klasse aufgerufen werden,
# nicht von einer Instanz.
def self.say(msg)
puts msg
end
def species
@@species
end
end
# Eine Klasse instanzieren
jim = Human.new("Jim Halpert")
dwight = Human.new("Dwight K. Schrute")
# Lass uns ein paar Methoden aufrufen
jim.species # => "H. sapiens"
jim.name # => "Jim Halpert"
jim.name = "Jim Halpert II" # => "Jim Halpert II"
jim.name # => "Jim Halpert II"
dwight.species # => "H. sapiens"
dwight.name # => "Dwight K. Schrute"
# Rufe die Klassenmethode auf
Human.say("Hi") # => gibt Hi aus und gibt `nil` zurück
# Variablen, welche mit @ starten, sind im Scope der Instanz
class TestClass
@var = "Ich bin eine Instanzvariable"
end
# Variablen, welche mit @@ starten, sind im Scope der Klasse
class TestClass
@@var = "Ich bin eine Klassenvariable"
end
# Variablen, welche mit einem Großbuchstaben starten, sind Konstanten.
Var = "Ich bin eine Konstante"
Var = "Ich kann nicht aktualisiert werden." # Die Konstante Var wurde bereits
# initialisiert.
# In Crystal ist Class auch ein Objekt. Dadurch können Klassen Instanzvariablen
# haben. Klassenvariablen werden mit der Klasse und allen Subklassen geteilt.
# Basisklasse
class Human
@@foo = 0
def self.foo
@@foo
end
def self.foo=(value)
@@foo = value
end
end
# abgeleitete Klasse
class Worker < Human
end
Human.foo # => 0
Worker.foo # => 0
Human.foo = 2 # => 2
Worker.foo # => 0
Worker.foo = 3 # => 3
Human.foo # => 2
Worker.foo # => 3
module ModuleExample
def foo
"foo"
end
end
# Wenn ein Modul mit include eingeschlossen wird, so werden die Methoden an die
# Instanzen gebunden.
# Wenn eine Klasse mit einem Modul erweitert wird, so werden die Methoden an die
# Klasse selbst gebunden.
class Person
include ModuleExample
end
class Book
extend ModuleExample
end
Person.foo # => undefinierte Methode 'foo' für Person:Class
Person.new.foo # => 'foo'
Book.foo # => 'foo'
Book.new.foo # => undefinierte Methode für Book
# Ausnahmebehandlung
# Definiere eine neue Ausnahme
class MyException < Exception
end
# Definiere eine weitere Ausnahme
class MyAnotherException < Exception; end
ex = begin
raise MyException.new
rescue ex1 : IndexError
"ex1"
rescue ex2 : MyException | MyAnotherException
"ex2"
rescue ex3 : Exception
"ex3"
rescue ex4 # fange alle Ausnahmen ab
"ex4"
end
ex # => "ex2"
```
## Weitere Unterlagen
- [offizielle Dokumentation, englisch](https://crystal-lang.org/)

View File

@ -82,7 +82,7 @@ Zeilenumbrüche beinhalten.` // Selber Zeichenketten-Typ
// nicht-ASCII Literal. Go Quelltext ist UTF-8 kompatibel.
g := 'Σ' // Ein Runen-Typ, alias int32, gebraucht für unicode code points.
f := 3.14195 // float64, eine IEEE-754 64-bit Dezimalzahl
f := 3.14159 // float64, eine IEEE-754 64-bit Dezimalzahl
c := 3 + 4i // complex128, besteht intern aus zwei float64-er
// "var"-Syntax mit Initalwert
@ -308,13 +308,13 @@ func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
```
## Weitere Resourcen
Informationen zu Go findet man auf der [offiziellen Go Webseite](http://golang.org/).
Informationen zu Go findet man auf der [offiziellen Go Webseite](https://go.dev/).
Dort gibt es unter anderem ein Tutorial und interaktive Quelltext-Beispiele, vor
allem aber Dokumentation zur Sprache und den Paketen.
Auch zu empfehlen ist die Spezifikation von Go, die nach heutigen Standards sehr
kurz und gut verständlich formuliert ist. Auf der Leseliste von Go-Neulingen
ist außerdem der Quelltext der [Go standard Bibliothek](http://golang.org/src/pkg/)
ist außerdem der Quelltext der [Go standard Bibliothek](https://go.dev/src/)
einzusehen. Dieser kann als Referenz für leicht zu verstehendes und im idiomatischen Stil
verfasstes Go dienen. Erreichbar ist der Quelltext auch durch das Klicken der Funktionsnamen
in der [offiziellen Dokumentation von Go](http://golang.org/pkg/).
in der [offiziellen Dokumentation von Go](https://go.dev/pkg/).

View File

@ -162,13 +162,13 @@ case bestellungsStatus
//- <p class="warn">Deine Bestellung steht noch aus</p>
//- --INCLUDE--
//- File path -> "includes/nav.png"
//- File path -> "includes/nav.pug"
h1 Firmenname
nav
a(href="index.html") Home
a(href="about.html") Über uns
//- Dateipfad -> "index.png"
//- Dateipfad -> "index.pug"
html
body
include includes/nav.pug

View File

@ -0,0 +1,290 @@
---
language: Visual Basic
contributors:
- ["Brian Martin", "http://brianmartin.biz"]
translators:
- ["Enno Nagel", "https://github.com/konfekt"]
filename: learnvisualbasic-de.vb
lang: de-de
---
```
Module Modul1
Sub Main()
' Ein kurzer Blick auf Visual Basic-Konsolenanwendungen
' bevor wir tiefer in das Thema eintauchen.
' Das Hochkomma leitet eine Kommentarzeile ein.
' Um dieses Tutorial innerhalb des Visual Basic Compilers zu erkunden,
' habe ich ein Navigationssystem erstellt.
' Dieses System wird im weiteren Verlauf des Tutorials erklärt;
' Sie werden nach und nach verstehen, was das alles bedeutet.
Console.Title = ("Lerne X in Y Minuten")
Console.WriteLine ("NAVIGATION") 'Anzeige
Console.WriteLine ("")
Console.ForegroundColor = ConsoleColor.Green
Console.WriteLine ("1. Ausgabe von 'Hallo, Welt'")
Console.WriteLine ("2. Eingabe 'Hallo, Welt'")
Console.WriteLine ("3. ganze Zahlen berechnen")
Console.WriteLine ("4. Berechne Dezimalzahlen")
Console.WriteLine ("5. ein funktionaler Taschenrechner")
Console.WriteLine ("6. 'Do While'-Schleifen verwenden")
Console.WriteLine ("7. Verwendung von 'For While'-Schleifen")
Console.WriteLine ("8. Bedingte Anweisungen")
Console.WriteLine ("9. Ein Getränk auswählen")
Console.WriteLine ("50. Über")
Console.WriteLine ("Wählen Sie eine Zahl aus der obigen Liste")
Dim selection As String = Console.Readline()
Select Case auswahl
Case "1" 'Ausgabe "Hallo, Welt"
Console.Clear() 'Löscht die Konsole und öffnet die private Subroutine
AusgabeHalloWelt() 'Öffnet die genannte private Subroutine
Case "2" 'Eingabe "hallo, Welt"
Console.Clear()
EingabeHalloWelt()
Case "3" 'Berechne ganze Zahlen
Console.Clear()
BerechneGanzeZahlen()
Case "4" 'Dezimalzahlen berechnen
Console.Clear()
BerechneDezimalZahlen()
Case "5" 'Ein funktionaler Taschenrechner
Console.Clear()
Taschenrechner()
Case "6" 'Verwendung von "Do While"-Schleifen
Console.Clear()
WhileSchleife()
Case "7" 'Verwendung von "For While"-Schleifen
Console.Clear()
ForSchleife()
Case "8" 'Bedingte Anweisungen
Console.Clear()
BedingteAnweisung()
Case "9" 'If/Else-Anweisung
Console.Clear()
IfElseAnweisung() 'Ein Getränk auswählen
Case "50" '"Über" Infobox
Console.Clear()
Console.Title = ("Lernen Sie X in Y Minuten :: Über")
MsgBox ("Tutorial geschrieben von Brian Martin (@BrianMartinn)")
Console.Clear()
Main()
Console.ReadLine()
End Select
End Sub
'Eins - Ich habe Zahlen verwendet, um mich durch das obige Navigationssystem zu
'führen auf das ich später zurückkomme, um es zu implementieren.
'wir verwenden private Unterprogramme, um verschiedene Abschnitte des Programms
'zu trennen.
Private Sub AusgabeHalloWelt()
'Titel der Konsolenanwendung
Console.Title = "Ausgabe 'Hallo, Welt' | Lerne X in Y Minuten"
'Verwenden Sie Console.Write("") oder Console.WriteLine(""), um die Ausgabe
'anzuzeigen, gefolgt von Console.Read(), oder Console.Readline()
'Console.ReadLine() zeigt die Ausgabe auf der Konsole an.
Console.WriteLine ("Hallo, Welt")
Console.ReadLine()
End Sub
'Zwei
Private Sub EingabeHalloWelt()
Console.Title = "Hallo, Welt, ich bin.. | Lerne X in Y Minuten"
'Variablen
'Vom Benutzer eingegebene Daten müssen gespeichert werden.
'Variablen beginnen ebenfalls mit Dim und enden mit As VariableType.
'In diesem Lernprogramm wollen wir Ihren Namen wissen und das Programm
'auf ihn antworten.
Dim nutzername As String
' Wir verwenden "String", weil es sich um eine textbasierte Variable handelt.
Console.WriteLine ("Hallo, wie ist Ihr Name?") 'Frage nach dem Benutzernamen.
nutzername = Console.ReadLine() 'Benutzernamen speichern.
Console.WriteLine ("Hallo, " + nutzername) 'Ausgabe ist Hallo, Name
Console.ReadLine() 'Die obige Ausgabe anzeigen.
'Der obige Code stellt Ihnen eine Frage und zeigt die Antwort an.
'Neben anderen Variablentypen gibt es Integer, den wir für ganze Zahlen
'verwenden werden.
End Sub
'Drei
Private Sub BerechneGanzeZahlen()
Console.Title = "Berechne ganze Zahlen | Lerne X in Y Minuten"
Console.Write ("Erste Zahl: ") 'Schreiben Sie eine ganze Zahl, 1, 2, 104, usw
Dim a As Integer = Console.ReadLine()
Console.Write ("Zweite Zahl: ") 'Schreiben Sie eine weitere ganze Zahl.
Dim b As Integer = Console.ReadLine()
Dim c As Integer = a + b
Console.WriteLine (c)
Console.ReadLine()
'Dies ist ein einfacher Taschenrechner
End Sub
'Vier
Private Sub BerechneDezimalZahlen()
Console.Title = "Berechne mit dem Typ Double | Lerne X in Y Minuten"
'Natürlich würden wir gerne Dezimalzahlen addieren.
'Also könnten wir von Integer auf Double umstellen.
'Schreiben Sie eine Bruchzahl, 1.2, 2.4, 50.1, 104.9 usw
Console.Write ("Erste Zahl: ")
Dim a As Double = Console.Readline()
Console.Write ("Zweite Zahl: ") 'Schreiben Sie die zweite Zahl.
Dim b As Double = Console.Readline()
Dim c As Double = a + b
Console.WriteLine (c)
Console.ReadLine()
'Dieses Programm kann 1.1 und 2.2 addieren
End Sub
'Fünf
Private Sub Taschenrechner()
Console.Title = "Der Funktionsrechner | Lerne X in Y Minuten"
'Wenn Sie aber wollen, dass der Rechner subtrahiert, dividiert,
'multipliziert und addiert.
'Kopieren Sie den obigen Text und fügen Sie ihn ein.
Console.Write ("Erste Zahl: ")
Dim a As Double = Console.Readline()
Console.Write ("Zweite Zahl: ")
Dim b As Integer = Console.Readline()
Dim c As Integer = a + b
Dim d As Integer = a * b
Dim e As Integer = a - b
Dim f As Integer = a / b
'Mit den folgenden Zeilen können wir die Werte a und b
'subtrahieren, multiplizieren und dividieren
Console.Write (a.ToString() + " + " + b.ToString())
'Wir wollen den Ergebnissen einen linken Rand von 3 Leerzeichen geben.
Console.WriteLine (" = " + c.ToString.PadLeft(3))
Console.Write (a.ToString() + " * " + b.ToString())
Console.WriteLine (" = " + d.ToString.PadLeft(3))
Console.Write (a.ToString() + " - " + b.ToString())
Console.WriteLine (" = " + e.ToString.PadLeft(3))
Console.Write (a.ToString() + " / " + b.ToString())
Console.WriteLine (" = " + f.ToString.PadLeft(3))
Console.ReadLine()
End Sub
'Sechs
Private Sub WhileSchleife()
'Gleich zur vorherigen privaten Subroutine.
'Diesmal fragen wir den Benutzer, ob er fortfahren möchte (ja oder nein?).
'Wir verwenden die Do While-Schleife, weil wir nicht wissen, ob der Benutzer
'das Programm mehr als einmal verwenden möchte.
Console.Title = "Do While-Schleifen verwenden | X in Y Minuten lernen"
Dim antwort As String 'Wir verwenden "String", weil die Antwort ein Text ist
Do 'Wir beginnen das Programm mit
Console.Write ("Erste Zahl: ")
Dim a As Double = Console.Readline()
Console.Write ("Zweite Zahl: ")
Dim b As Integer = Console.Readline()
Dim c As Integer = a + b
Dim d As Integer = a * b
Dim e As Integer = a - b
Dim f As Integer = a / b
Console.Write (a.ToString() + " + " + b.ToString())
Console.WriteLine (" = " + c.ToString.PadLeft(3))
Console.Write (a.ToString() + " * " + b.ToString())
Console.WriteLine (" = " + d.ToString.PadLeft(3))
Console.Write (a.ToString() + " - " + b.ToString())
Console.WriteLine (" = " + e.ToString.PadLeft(3))
Console.Write (a.ToString() + " / " + b.ToString())
Console.WriteLine (" = " + f.ToString.PadLeft(3))
Console.ReadLine()
'Fragen Sie den Benutzer, ob er fortfahren möchte. Unglücklicherweise
'werden Groß- und Kleinschreibung unterschieden.
Console.Write ("Möchten Sie fortfahren? (j / n)")
'Das Programm nimmt die Variable, zeigt sie an und beginnt von vorne.
antwort = Console.Readline()
'Der Befehl, der diese Variable zum Laufen bringt, ist in diesem Fall "j"
Loop While antwort = "j"
End Sub
'Sieben
Private Sub ForSchleife()
'Manchmal muss das Programm nur einmal ausgeführt werden.
'In diesem Programm werden wir von 10 loszählen.
Console.Title = "Mit "For"-Schleifen | X in Y Minuten lernen"
'Deklarieren Sie die Variable und ab welcher Zahl in Schritt -1 gezählt
'werden soll, Schritt -2, Schritt -3, usw.
For i As Integer = 10 To 0 Schritt -1
Console.WriteLine (i.ToString) 'Zählerwert anzeigen
Next i 'Berechne den neuen Wert
Console.WriteLine ("Start") 'Starten wir das Programm, baby!!!!
Console.ReadLine() 'BANG!!!! - Vielleicht war ich zu aufgeregt :)
End Sub
'Acht
Private Sub BedingteAnweisung()
Console.Title = "Bedingte Anweisungen | X in Y Minuten lernen"
Dim username As String = Console.Readline()
'Aufforderung zur Eingabe des Benutzernamens.
Console.WriteLine ("Hallo, wie ist Ihr Name?")
username = Console.ReadLine() 'Benutzernamen speichern.
If username = "Adam" Then
Console.WriteLine ("Hallo, Adam")
Console.WriteLine ("Danke, dass Sie diese nützliche Website erstellt haben")
Console.ReadLine()
Else
Console.WriteLine ("Hallo, " + Benutzername)
Console.WriteLine ("Haben Sie www.learnxinyminutes.com besucht?")
Console.ReadLine() 'Beendet und zeigt die obige Anweisung an.
End If
End Sub
'Neun
Private Sub IfElseAnweisung()
Console.Title = "If / Else-Anweisung | X in Y Minuten lernen"
'Manchmal ist es wichtig, mehr als zwei Alternativen in Betracht zu ziehen.
'Manchmal sind einige von ihnen besser.
'In diesem Fall brauchen wir mehr als eine "if"-Anweisung.
'Eine "if"-Anweisung ist für Verkaufsautomaten geeignet.
'Der Benutzer gibt einen Code ein (A1, A2, A3), aus dem er wählen kann.
'Alle Auswahlmöglichkeiten können in einer einzigen "if"-Anweisung
'kombiniert werden.
Dim auswahl As String = Console.ReadLine 'Der Wert der Auswahl
Console.WriteLine ("A1. für 7Up")
Console.WriteLine ("A2. für Fanta")
Console.WriteLine ("A3. für Dr. Pepper")
Console.WriteLine ("A4. für Coca-Cola")
Console.ReadLine()
If auswahl = "A1" Dann
Console.WriteLine ("7up")
Console.ReadLine()
ElseIf auswahl = "A2" Then
Console.WriteLine ("fanta")
Console.ReadLine()
ElseIf auswahl = "A3" Then
Console.WriteLine ("Dr. Pfeffer")
Console.ReadLine()
ElseIf auswahl = "A4" Then
Console.WriteLine ("Coca-Cola")
Console.ReadLine()
Else
Console.WriteLine ("Ein Produkt auswählen")
Console.ReadLine()
End If
End Sub
End Module
```
## Referenzen
Für diejenigen, die mehr wissen wollen, hat Brian Martin ein umfassenderes
[Visual Basic Tutorial](http://www.vbbootcamp.co.uk/ "Visual Basic Tutorial")
erstellt.
Die gesamte Syntax sollte gültig sein.
Kopieren Sie den Code und fügen Sie ihn in den Visual Basic Compiler ein und
führen Sie das Programm aus (F5).

View File

@ -187,7 +187,7 @@ $ docker exec -it 7b272 bash
# directory. Here 7b272 was our ubuntu container and the above command would
# help us interact with the container by opening a bash session.
$docker logs <container-id>
$ docker logs <container-id>
# Displays the information logged by the specified container
# root@7b27222e4bb7:/# whoami
# root
@ -245,11 +245,11 @@ image to run ( or build) it.
```bash
$docker build <path-to-dockerfile>
$ docker build <path-to-dockerfile>
# used to build an image from the specified Dockerfile
# instead of path we could also specify a URL
# -t tag is optional and used to name and tag your images for e.g.
# `$docker build -t my-image:0.1 ./home/app`
# `$ docker build -t my-image:0.1 ./home/app`
# rebuild images everytime you make changes in the dockerfile
```
@ -264,15 +264,15 @@ as part of the source image name. We need to create the target image with the
tag name of username/image-name much like GitHub repositories.
```bash
$docker login
$ docker login
# to login to Docker Hub using your username and password
$docker tag <src-image>[:<src-tag>] <target-image>[:<target-tag>]
$ docker tag <src-image>[:<src-tag>] <target-image>[:<target-tag>]
# this tags a local src-image to a public target-image
# e.g. `docker tag my-sample-app:1.0.0 akshitadixit/my-sample-app`
# if tags are not specified, they're defaulted to `latest`
$docker push <target-image>[:<target-tag>]
$ docker push <target-image>[:<target-tag>]
# uploads our image to Docker Hub
# e.g. `docker push akshitadixit/my-sample-app`
# this image will be accessible under your profile's repositories as

View File

@ -59,5 +59,3 @@ for i=0 to n-1
* [Optimal Substructure Property](https://www.geeksforgeeks.org/dynamic-programming-set-2-optimal-substructure-property/)
* [How to solve a DP problem](https://www.geeksforgeeks.org/solve-dynamic-programming-problem/)
* [How to write DP solutions](https://www.quora.com/Are-there-any-good-resources-or-tutorials-for-dynamic-programming-DP-besides-the-TopCoder-tutorial/answer/Michal-Danilák)
And a [quiz](https://www.commonlounge.com/discussion/cdbbfe83bcd64281964b788969247253) to test your knowledge.

View File

@ -62,7 +62,7 @@ fn add2(x: i32, y: i32) -> i32 {
fn main() {
// Αριθμοί //
// Αμετάβλητη σύνδεση
// Αμετάβλητη δέσμευση (η τιμή που αντιστοιχεί στο όνομα "x" δεν μπορεί να αλλάξει)
let x: i32 = 1;
// Καταλήξεις integer/float
@ -80,7 +80,8 @@ fn main() {
// Πράξεις
let sum = x + y + 13;
// Μη-αμετάβλητη αξία (με την έννοια ότι μπορεί να αλλάξει)
// Μεταβλητές (με την έννοια των προστακτικών γλωσσών προγραμματισμού).
// Στη Rust η αμετάβλητη δέσμευση είναι στάνταρ. Το mut δηλώνει μεταβλητότητα.
let mut mutable = 1;
mutable = 4;
mutable += 2;
@ -96,7 +97,7 @@ fn main() {
// A `String` a heap-allocated string
let s: String = "καλημέρα κόσμε".to_string();
// Ένα κομμάτι αλφαριθμητικού (string slice) μια μη-μεταβλητή οπτική γωνία προς ένα άλλο αλφαριθμητικό
// Ένα κομμάτι αλφαριθμητικού (string slice) μια αμετάβλητη οπτική γωνία προς ένα άλλο αλφαριθμητικό
// Το αλφαριθμητικό μπορεί να είναι στατικό όπως τα σταθερά αλφαριθμητικά, ή να περιλαμβάνεται σε ένα άλλο,
// δυναμικό αντικείμενο (σε αυτή την περίπτωση τη μεταβλητή `s`)
let s_slice: &str = &s;
@ -112,7 +113,7 @@ fn main() {
let mut vector: Vec<i32> = vec![1, 2, 3, 4];
vector.push(5);
// Ένα κομμάτι μια μη-μεταβλητή οπτική γωνία προς ένα διάνυσμα ή πίνακα
// Ένα κομμάτι μια αμετάβλητη οπτική γωνία προς ένα διάνυσμα ή πίνακα
// Είναι παρόμοιο με το κομμάτι αλφαριθμητικού που είδαμε προηγουμένως
let slice: &[i32] = &vector;
@ -121,10 +122,10 @@ fn main() {
// Tuples (πλειάδες) //
// Ένα tuple είναι μια σταθερού μεγέθους σειρά από αξίες (πιθανά διαφορετικού τύπου)
// Ένα tuple είναι μια σταθερού μεγέθους σειρά από τιμές (πιθανά διαφορετικού τύπου)
let x: (i32, &str, f64) = (1, "καλημέρα", 3.4);
// Μπορούμε να χρησιμοποιήσουμε το `let` και ένα tuple για να δώσουμε πολλές αξίες σε πολλές μεταβλητές ταυτόχρονα
// Μπορούμε να χρησιμοποιήσουμε το `let` και ένα tuple για να δώσουμε πολλές τιμές σε πολλές μεταβλητές ταυτόχρονα
// (destructuring `let`)
let (a, b, c) = x;
println!("{} {} {}", a, b, c); // 1 καλημέρα 3.4
@ -185,7 +186,7 @@ fn main() {
fn bar(&self) -> &T { // Δανειζόμαστε το self
&self.bar
}
fn bar_mut(&mut self) -> &mut T { // Δανειζόμαστε το self ως μη-αμετάβλητη αξία
fn bar_mut(&mut self) -> &mut T { // Γίνεται "μεταβλητός δανεισμός" του self (μπορούμε να το τροποποιήσουμε)
&mut self.bar
}
fn into_bar(self) -> T { // Εδώ το self καταναλώνεται
@ -240,7 +241,7 @@ fn main() {
// 4. Έλεγχος ροής //
/////////////////////
// Βρόγχοι `for`
// Βρόχοι `for`
let array = [1, 2, 3];
for i in array {
println!("{}", i);
@ -253,7 +254,7 @@ fn main() {
println!("");
// Τυπώνει `0 1 2 3 4 5 6 7 8 9 `
// Βρόγχοι `if`
// `if` (υπό συνθήκη διακλάδωση)
if 1 == 1 {
println!("Τα μαθηματικά δουλεύουν!");
} else {
@ -267,17 +268,17 @@ fn main() {
"κακό"
};
// Βρόγχοι `while`
// Βρόχοι `while`
while 1 == 1 {
println!("Το σύμπαν λειτουργεί κανονικά.");
// Μπορούμε να βγούμε από το βρόγχο με το `break`
// Μπορούμε να βγούμε από το βρόχο με το `break`
break
}
// Ατέρμονος βρόχγος
// Ατέρμονος βρόχος
loop {
println!("Καλημέρα!");
// Μπορούμε να βγούμε από το βρόγχο με το `break`
// Μπορούμε να βγούμε από το βρόχο με το `break`
break
}
@ -294,11 +295,11 @@ fn main() {
*now_its_mine += 2;
println!("{}", now_its_mine); // 7
// println!("{}", mine); // Αυτό παράγει λάθος κατά τη μεταγλώττιση διότι τώρα ο δείκτης ανοίκει στο `now_its_mine`
// println!("{}", mine); // Αυτό παράγει λάθος κατά τη μεταγλώττιση διότι τώρα ο δείκτης ανήκει στο `now_its_mine`
// Reference (αναφορά) ένας αμετάβλητος δείκτης που αναφέρεται σε άλλα δεδομένα
// Όταν μια αναφορά δίνεται σε μια αξία, λέμε πως η αξία έχει "δανειστεί".
// Όταν μια αξία δανείζεται αμετάβλητα, δεν μπορεί να είναι mutated (να μεταβληθεί) ή να μετακινηθεί.
// Όταν μια αναφορά δίνεται σε μια τιμή, λέμε πως η τιμή έχει "δανειστεί".
// Όταν μια τιμή δανείζεται αμετάβλητα, δεν μπορεί να είναι mutated (να μεταβληθεί) ή να μετακινηθεί.
// Ένας "δανεισμός" παραμένει ενεργός μέχρι την τελευταία χρήση της μεταβλητής που δανείζεται.
let mut var = 4;
var = 3;
@ -313,13 +314,13 @@ fn main() {
var = 2; // Η `ref_var` δεν χρησιμοποιείται από εδώ και στο εξής, άρα ο "δανεισμός" τελειώνει
// Μεταβλητή αναφορά
// Όσο μια αξία είναι μεταβλητά δανεισμένη, παραμένει τελείως απροσβάσιμη.
// Όσο μια τιμή είναι μεταβλητά δανεισμένη, παραμένει τελείως απροσβάσιμη.
let mut var2 = 4;
let ref_var2: &mut i32 = &mut var2;
*ref_var2 += 2; // Ο αστερίσκος (*) χρησιμοποιείται ως δείκτης προς την μεταβλητά δανεισμένη `var2`
println!("{}", *ref_var2); // 6 , // Αν είχαμε `var2` εδώ θα προκαλούνταν λάθος μεταγλώττισης.
// O τύπος της `ref_var2` είναι &mut i32, άρα αποθηκεύει μια αναφορά προς μια αξία i32, όχι την αξία την ίδια.
// O τύπος της `ref_var2` είναι &mut i32, άρα αποθηκεύει μια αναφορά προς μια τιμή i32, όχι την τιμή την ίδια.
// var2 = 2; // Λάθος μεταγλώττισης, γιατί η `var2` είναι δανεισμένη.
ref_var2; // Εντολή no-op (τίποτα δεν εκτελείται από τον επεξεργαστή), η οποία όμως μετράει ως χρήση και κρατά τον
// "δανεισμό" ενεργό

View File

@ -3,6 +3,7 @@ language: elisp
contributors:
- ["Bastien Guerry", "https://bzg.fr"]
- ["Saurabh Sandav", "http://github.com/SaurabhSandav"]
- ["rilysh", "https://github.com/rilysh"]
filename: learn-emacs-lisp.el
---
@ -12,11 +13,11 @@ filename: learn-emacs-lisp.el
;; First make sure you read this text by Peter Norvig:
;; http://norvig.com/21-days.html
;;
;; Then install GNU Emacs 24.3:
;; Then install latest version of GNU Emacs:
;;
;; Debian: apt-get install emacs (or see your distro instructions)
;; OSX: http://emacsformacosx.com/emacs-builds/Emacs-24.3-universal-10.6.8.dmg
;; Windows: http://ftp.gnu.org/gnu/windows/emacs/emacs-24.3-bin-i386.zip
;; OSX: https://emacsformacosx.com/
;; Windows: https://ftp.gnu.org/gnu/emacs/windows/
;;
;; More general information can be found at:
;; http://www.gnu.org/software/emacs/#Obtaining
@ -76,12 +77,12 @@ filename: learn-emacs-lisp.el
;; `C-j' inserts the result of the evaluation in the buffer.
;; `C-xC-e' displays the same result in Emacs bottom line,
;; called the "minibuffer". We will generally use `C-xC-e',
;; called the "echo area". We will generally use `C-xC-e',
;; as we don't want to clutter the buffer with useless text.
;; `setq' stores a value into a variable:
(setq my-name "Bastien")
;; `C-xC-e' => "Bastien" (displayed in the mini-buffer)
;; `C-xC-e' => "Bastien" (displayed in the echo area)
;; `insert' will insert "Hello!" where the cursor is:
(insert "Hello!")
@ -343,3 +344,9 @@ filename: learn-emacs-lisp.el
;; To read an online introduction to Emacs Lisp:
;; https://www.gnu.org/software/emacs/manual/html_node/eintr/index.html
```
### Further Reading
- [GNU Elisp Manual](https://www.gnu.org/software/emacs/manual/html_node/eintr/index.html)
- [Emacs Wiki](https://www.emacswiki.org/emacs/LearningEmacs)
- [Emacs Docs](https://emacsdocs.org/docs/elisp/Emacs-Lisp)
- [Mpre Elisp Docs](https://www.math.utah.edu/docs/info/elisp_22.html)

View File

@ -224,7 +224,7 @@ List.map : (a -> b) -> List a -> List b
-- Comparable allows you to order numbers and strings, like a < b.
-- Appendable things can be combined with a ++ b.
{-- Type Aliases and Union Types --}
{-- Type Aliases and Custom Types --}
-- When you write a record or tuple, its type already exists.
-- (Notice that record types use colon and record values use equals.)
@ -244,28 +244,28 @@ otherOrigin =
-- But it's still the same type, so you can equate them.
origin == otherOrigin -- True
-- By contrast, defining a union type creates a type that didn't exist before.
-- A union type is so called because it can be one of many possibilities.
-- Each of the possibilities is represented as a "tag".
-- By contrast, defining a custom type creates a type that didn't exist before.
-- A custom type is so called because it can be one of many possibilities.
-- Each of the possibilities is represented as a "type variant".
type Direction =
North | South | East | West
-- Tags can carry other values of known type. This can work recursively.
-- Type variants can carry other values of known type. This can work recursively.
type IntTree =
Leaf | Node Int IntTree IntTree
-- "Leaf" and "Node" are the tags. Everything following a tag is a type.
-- "Leaf" and "Node" are the type variants. Everything following a type variant is a type.
-- Tags can be used as values or functions.
-- Type variants can be used as values or functions.
root : IntTree
root =
Node 7 Leaf Leaf
-- Union types (and type aliases) can use type variables.
-- Custom types (and type aliases) can use type variables.
type Tree a =
Leaf | Node a (Tree a) (Tree a)
-- "The type tree-of-a is a leaf, or a node of a, tree-of-a, and tree-of-a."
-- Pattern match union tags. The uppercase tags will be matched exactly. The
-- Pattern match variants in a custom type. The uppercase variants will be matched exactly. The
-- lowercase variables will match anything. Underscore also matches anything,
-- but signifies that you aren't using it.
leftmostElement : Tree a -> Maybe a
@ -289,7 +289,7 @@ module Name where
-- By default, everything is exported. You can specify exports explicitly.
module Name (MyType, myValue) where
-- One common pattern is to export a union type but not its tags. This is known
-- One common pattern is to export a custom type but not its type variants. This is known
-- as an "opaque type", and is frequently used in libraries.
-- Import code from other modules to use it in this one.

View File

@ -5,7 +5,7 @@ contributors:
translators:
- ["Abel Salgado Romero", "https://twitter.com/abelsromero"]
lang: es-es
filename: asciidoc-es.md
filename: asciidoc-es.adoc
---
AsciiDoc es un lenguaje de marcas similar a Markdown que puede ser usado para cualquier uso, desde libros a blogs.

View File

@ -196,7 +196,7 @@ function string_functions( localvar, arr) {
# Ambas regresan el número de matches remplazados.
localvar = "fooooobar"
sub("fo+", "Meet me at the ", localvar) # localvar => "Meet me at the bar"
gsub("e", ".", localvar) # localvar => "m..t m. at th. bar"
gsub("e", ".", localvar) # localvar => "M..t m. at th. bar"
# Buscar una cadena que haga match con una expresión regular
# index() hace lo mismo, pero no permite expresiones regulares

File diff suppressed because it is too large Load Diff

View File

@ -1,327 +0,0 @@
---
language: css
contributors:
- ["Mohammad Valipour", "https://github.com/mvalipour"]
- ["Marco Scannadinari", "https://github.com/marcoms"]
- ["Geoffrey Liu", "https://github.com/g-liu"]
- ["Connor Shea", "https://github.com/connorshea"]
- ["Deepanshu Utkarsh", "https://github.com/duci9y"]
- ["Brett Taylor", "https://github.com/glutnix"]
- ["Tyler Mumford", "https://tylermumford.com"]
translators:
- ["miky ackerman", "https://github.com/mikyackerman"]
lang: es-es
filename: learncss-es.css
---
Paginas web estan contruidas en HTML, lo cual especifica el contenido de una pagina
CSS(Hoja de Estilos en Cascada) es un lenguaje separado el cual especifica
la **apariencia** de una pagina.
codigo CSS esta hecho de *reglas* estaticas. Cada regla toma uno o mas *selectores* y da *valores* especificos a un numero de *propiedades* visuales. Esas propiedades estan entonces aplicadas a los elementos indicados en una pagina por los selectores
Esta guia ha sido escrita con CSS 2 en mente, la cual es extendida por una nueva caracterica de CSS 3.
**NOTA:** Debido a que CSS produce resultados visuales, para aprenderlo, necesitas
Probar todo en un patio de juegos CSS como [dabblet] (http://dabblet.com/).
El objetivo principal de este artículo es la sintaxis y algunos consejos generales.
## Sintaxis
```css
/* Los comentarios aparecen dentro de un diagonal-asterisco, justo como esta linea
no hay "comentarios en una linea"; este es el unico estilo de comentario.*/
/* ####################
## SELECTORS
#################### */
/* el selector es usado para apuntar a un elemento de la pagina. */
selector { property: value; /* more properties...*/ }
/*
Here is an example element:
<div class='class1 class2' id='anID' attr='value' otherAttr='en-us foo bar' />
*/
/* You can target it using one of its CSS classes */
.class1 { }
/* or both classes! */
.class1.class2 { }
/* or its name */
div { }
/* or its id */
#anID { }
/* or using the fact that it has an attribute! */
[attr] { font-size:smaller; }
/* or that the attribute has a specific value */
[attr='value'] { font-size:smaller; }
/* starts with a value (CSS 3) */
[attr^='val'] { font-size:smaller; }
/* or ends with a value (CSS 3) */
[attr$='ue'] { font-size:smaller; }
/* or contains a value in a space-separated list */
[otherAttr~='foo'] { }
[otherAttr~='bar'] { }
/* or contains a value in a dash-separated list, e.g., "-" (U+002D) */
[otherAttr|='en'] { font-size:smaller; }
/* You can combine different selectors to create a more focused selector. Don't
put spaces between them. */
div.some-class[attr$='ue'] { }
/* You can select an element which is a child of another element */
div.some-parent > .class-name { }
/* or a descendant of another element. Children are the direct descendants of
their parent element, only one level down the tree. Descendants can be any
level down the tree. */
div.some-parent .class-name { }
/* Warning: the same selector without a space has another meaning.
Can you guess what? */
div.some-parent.class-name { }
/* You may also select an element based on its adjacent sibling */
.i-am-just-before + .this-element { }
/* or any sibling preceding it */
.i-am-any-element-before ~ .this-element { }
/* There are some selectors called pseudo classes that can be used to select an
element only when it is in a particular state */
/* for example, when the cursor hovers over an element */
selector:hover { }
/* or a link has been visited */
selector:visited { }
/* or hasn't been visited */
selected:link { }
/* or an element is in focus */
selected:focus { }
/* any element that is the first child of its parent */
selector:first-child {}
/* any element that is the last child of its parent */
selector:last-child {}
/* Just like pseudo classes, pseudo elements allow you to style certain parts of
a document */
/* matches a virtual first child of the selected element */
selector::before {}
/* matches a virtual last child of the selected element */
selector::after {}
/* At appropriate places, an asterisk may be used as a wildcard to select every
element */
* { } /* all elements */
.parent * { } /* all descendants */
.parent > * { } /* all children */
/* ####################
## PROPERTIES
#################### */
selector {
/* Units of length can be absolute or relative. */
/* Relative units */
width: 50%; /* percentage of parent element width */
font-size: 2em; /* multiples of element's original font-size */
font-size: 2rem; /* or the root element's font-size */
font-size: 2vw; /* multiples of 1% of the viewport's width (CSS 3) */
font-size: 2vh; /* or its height */
font-size: 2vmin; /* whichever of a vh or a vw is smaller */
font-size: 2vmax; /* or greater */
/* Absolute units */
width: 200px; /* pixels */
font-size: 20pt; /* points */
width: 5cm; /* centimeters */
min-width: 50mm; /* millimeters */
max-width: 5in; /* inches */
/* Colors */
color: #F6E; /* short hex format */
color: #FF66EE; /* long hex format */
color: tomato; /* a named color */
color: rgb(255, 255, 255); /* as rgb values */
color: rgb(10%, 20%, 50%); /* as rgb percentages */
color: rgba(255, 0, 0, 0.3); /* as rgba values (CSS 3) Note: 0 <= a <= 1 */
color: transparent; /* equivalent to setting the alpha to 0 */
color: hsl(0, 100%, 50%); /* as hsl percentages (CSS 3) */
color: hsla(0, 100%, 50%, 0.3); /* as hsl percentages with alpha */
/* Borders */
border-width:5px;
border-style:solid;
border-color:red; /* similar to how background-color is set */
border: 5px solid red; /* this is a short hand approach for the same */
border-radius:20px; /* this is a CSS3 property */
/* Images as backgrounds of elements */
background-image: url(/img-path/img.jpg); /* quotes inside url() optional */
/* Fonts */
font-family: Arial;
/* if the font family name has a space, it must be quoted */
font-family: "Courier New";
/* if the first one is not found, the browser uses the next, and so on */
font-family: "Courier New", Trebuchet, Arial, sans-serif;
}
```
## Usage
Save a CSS stylesheet with the extension `.css`.
```html
<!-- You need to include the css file in your page's <head>. This is the
recommended method. Refer to http://stackoverflow.com/questions/8284365 -->
<link rel='stylesheet' type='text/css' href='path/to/style.css'>
<!-- You can also include some CSS inline in your markup. -->
<style>
a { color: purple; }
</style>
<!-- Or directly set CSS properties on the element. -->
<div style="border: 1px solid red;">
</div>
```
## Precedence or Cascade
An element may be targeted by multiple selectors and may have a property set on
it in more than once. In these cases, one of the rules takes precedence over
others. Rules with a more specific selector take precedence over a less specific
one, and a rule occurring later in the stylesheet overwrites a previous one
(which also means that if two different linked stylesheets contain rules for an
element and if the rules are of the same specificity, then order of linking
would take precedence and the sheet linked latest would govern styling) .
This process is called cascading, hence the name Cascading Style Sheets.
Given the following CSS:
```css
/* A */
p.class1[attr='value']
/* B */
p.class1 { }
/* C */
p.class2 { }
/* D */
p { }
/* E */
p { property: value !important; }
```
and the following markup:
```html
<p style='/*F*/ property:value;' class='class1 class2' attr='value'>
```
The precedence of style is as follows. Remember, the precedence is for each
**property**, not for the entire block.
* `E` has the highest precedence because of the keyword `!important`. It is
recommended that you avoid its usage.
* `F` is next, because it is an inline style.
* `A` is next, because it is more "specific" than anything else. It has 3
specifiers: The name of the element `p`, its class `class1`, an attribute
`attr='value'`.
* `C` is next, even though it has the same specificity as `B`.
This is because it appears after `B`.
* `B` is next.
* `D` is the last one.
## Media Queries
CSS Media Queries are a feature in CSS 3 which allows you to specify when certain CSS rules should be applied, such as when printed, or when on a screen with certain dimensions or pixel density. They do not add to the selector's specificity.
```css
/* A rule that will be used on all devices */
h1 {
font-size: 2em;
color: white;
background-color: black;
}
/* change the h1 to use less ink on a printer */
@media print {
h1 {
color: black;
background-color: white;
}
}
/* make the font bigger when shown on a screen at least 480px wide */
@media screen and (min-width: 480px) {
h1 {
font-size: 3em;
font-weight: normal;
}
}
```
Media queries can include these features:
`width`, `height`, `device-width`, `device-height`, `orientation`, `aspect-ratio`, `device-aspect-ratio`, `color`, `color-index`, `monochrome`, `resolution`, `scan`, `grid`. Most of these features can be prefixed with `min-` or `max-`.
The `resolution` feature is not supported by older devices, instead use `device-pixel-ratio`.
Many smartphones and tablets will attempt to render the page as if it were on a desktop unless you provide a `viewport` meta-tag.
```html
<head>
<meta name="viewport" content="width=device-width; initial-scale=1.0">
</head>
```
## Compatibility
Most of the features in CSS 2 (and many in CSS 3) are available across all
browsers and devices. But it's always good practice to check before using
a new feature.
## Resources
* [CanIUse](http://caniuse.com) (Detailed compatibility info)
* [Dabblet](http://dabblet.com/) (CSS playground)
* [Mozilla Developer Network's CSS documentation](https://developer.mozilla.org/en-US/docs/Web/CSS) (Tutorials and reference)
* [Codrops' CSS Reference](http://tympanus.net/codrops/css_reference/) (Reference)
## Further Reading
* [Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade](http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/)
* [Selecting elements using attributes](https://css-tricks.com/almanac/selectors/a/attribute/)
* [QuirksMode CSS](http://www.quirksmode.org/css/)
* [Z-Index - The stacking context](https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context)
* [SASS](http://sass-lang.com/) and [LESS](http://lesscss.org/) for CSS pre-processing
* [CSS-Tricks](https://css-tricks.com)

View File

@ -1,253 +1,327 @@
---
language: css
filename: learncss-es.css
contributors:
- ["Mohammad Valipour", "https://github.com/mvalipour"]
- ["Marco Scannadinari", "https://github.com/marcoms"]
- ["Geoffrey Liu", "https://github.com/g-liu"]
- ["Connor Shea", "https://github.com/connorshea"]
- ["Deepanshu Utkarsh", "https://github.com/duci9y"]
- ["Brett Taylor", "https://github.com/glutnix"]
- ["Tyler Mumford", "https://tylermumford.com"]
translators:
- ["Daniel Zendejas","https://github.com/DanielZendejas"]
- ["miky ackerman", "https://github.com/mikyackerman"]
lang: es-es
filename: learncss-es.css
---
Tutorial de CSS en español
Paginas web estan contruidas en HTML, lo cual especifica el contenido de una pagina
CSS(Hoja de Estilos en Cascada) es un lenguaje separado el cual especifica
la **apariencia** de una pagina.
En los primeros días de la web no había elementos visuales, todo
era texto plano. Pero después, con el desarrollo de los navegadores,
las páginas con contenido visual empezaron a ser más comunes.
CSS es el lenguaje estándar que existe para separar el contenido
(HTML) y el aspecto visual de las páginas web.
codigo CSS esta hecho de *reglas* estaticas. Cada regla toma uno o mas *selectores* y da *valores* especificos a un numero de *propiedades* visuales. Esas propiedades estan entonces aplicadas a los elementos indicados en una pagina por los selectores
Lo que CSS hace es proveer con una sintaxis que te permite apuntar a distintos
elementos HTML y asignarles diferentes propiedades visuales.
Esta guia ha sido escrita con CSS 2 en mente, la cual es extendida por una nueva caracterica de CSS 3.
CSS, como cualquier otro lenguaje, tiene múltiples versiones. Aquí nos enfocamos
en CSS 2.0. No es la versión más reciente pero la más soportada y compatible.
**NOTA:** Debido a que CSS produce resultados visuales, para aprenderlo, necesitas
Probar todo en un patio de juegos CSS como [dabblet] (http://dabblet.com/).
El objetivo principal de este artículo es la sintaxis y algunos consejos generales.
**NOTA:** Como los resultados de CSS son efectos visuales, para aprenderlo,
necesitarás probar todo tipo de cosas en ambientes como
[dabblet](http://dabblet.com/). Este artículo se enfoca, principalmente, en
la sintaxis y consejos generales.
## Sintaxis
```css
/* ¡Los comentarios aparecen dentro de diagonal-asterisco, justo como esta línea! */
/* Los comentarios aparecen dentro de un diagonal-asterisco, justo como esta linea
no hay "comentarios en una linea"; este es el unico estilo de comentario.*/
/* ####################
## SELECTORES
####################*/
## SELECTORS
#################### */
/* Generalmente, la sentencia principal en CSS es muy simple. */
selector { propiedad: valor; /* más propiedades separados por punto y coma...*/ }
/* El selector es usado para apuntar a (seleccionar) un elemento en la página.
¡Puedes apuntar a todos los elementos en la página con el asterisco! */
* { color:red; }
/* el selector es usado para apuntar a un elemento de la pagina. */
selector { property: value; /* more properties...*/ }
/*
Dado un elemento como este en la página:
Here is an example element:
<div class='una-clase clase2' id='unaId' attr='valor' />
<div class='class1 class2' id='anID' attr='value' otherAttr='en-us foo bar' />
*/
/* puedes seleccionar el <div> por el nombre de su clase */
.una-clase { }
/* You can target it using one of its CSS classes */
.class1 { }
/*¡O por sus dos clases! */
.una-clase.clase2 { }
/* or both classes! */
.class1.class2 { }
/* O por el nombre de su elemento */
/* or its name */
div { }
/* O por su Id */
#unaId { }
/* or its id */
#anID { }
/* ¡O por el hecho de que tiene un atributo! */
/* or using the fact that it has an attribute! */
[attr] { font-size:smaller; }
/* O por el hecho de que el atributo tiene un valor determinado */
[attr='valor'] { font-size:smaller; }
/* or that the attribute has a specific value */
[attr='value'] { font-size:smaller; }
/* Empieza con un valor ('val' en este caso)*/
/* starts with a value (CSS 3) */
[attr^='val'] { font-size:smaller; }
/* O termina con un valor ('or' en este caso) */
[attr$='or'] { font-size:smaller; }
/* or ends with a value (CSS 3) */
[attr$='ue'] { font-size:smaller; }
/* O incluso contiene un valor ('lo' en este caso) */
[attr~='lo'] { font-size:smaller; }
/* or contains a value in a space-separated list */
[otherAttr~='foo'] { }
[otherAttr~='bar'] { }
/*Más importante, puedes combinar estos criterios de búsqueda entre .
No debe existir ningún espacio entre estas partes porque hace que el
significado cambie.*/
div.una-clase[attr$='or'] { }
/* or contains a value in a dash-separated list, e.g., "-" (U+002D) */
[otherAttr|='en'] { font-size:smaller; }
/* También puedes seleccionar un elemento HTML basándote en sus padres*/
/* Un elemento que es hijo directo de otro elemento (Seleccionado de la forma que
vimos anteriormente) */
/* You can combine different selectors to create a more focused selector. Don't
put spaces between them. */
div.some-class[attr$='ue'] { }
div.un-padre > .nombre-clase {}
/* You can select an element which is a child of another element */
div.some-parent > .class-name { }
/* O cualquiera de sus ancestros en la jerarquía*/
/* La siguiente sentencia selecciona a cualquier elemento que tenga una clase
"nombre-clase" y sea hijo de un div con clase "un-padre" EN CUALQUIER PROFUNDIDAD*/
div.un-padre .nombre-clase {}
/* or a descendant of another element. Children are the direct descendants of
their parent element, only one level down the tree. Descendants can be any
level down the tree. */
div.some-parent .class-name { }
/* advertencia: el mismo selector sin espacio tiene otro significado. ¿Puedes
identificar la diferencia?*/
/* Warning: the same selector without a space has another meaning.
Can you guess what? */
div.some-parent.class-name { }
/* También puedes seleccionar un elemento basado en su hermano inmediato previo*/
.yo-estoy-antes + .este-elemento { }
/* You may also select an element based on its adjacent sibling */
.i-am-just-before + .this-element { }
/*o cualquier hermano previo */
.yo-soy-cualquiera-antes ~ .estes-elemento {}
/* or any sibling preceding it */
.i-am-any-element-before ~ .this-element { }
/* Existen algunas pseudo-clases que permiten seleccionar un elemento
basado en el comportamiendo de la página (a diferencia de la estructura de
la página) */
/* There are some selectors called pseudo classes that can be used to select an
element only when it is in a particular state */
/* Por ejemplo, para cuando pasas el mouse por encima de un elemento */
:hover {}
/* for example, when the cursor hovers over an element */
selector:hover { }
/* o una liga visitada*/
:visited {}
/* or a link has been visited */
selector:visited { }
/* o una liga no visitada aún*/
:link {}
/* or hasn't been visited */
selected:link { }
/* o un elemento de un formulario que esté seleccionado */
:focus {}
/* or an element is in focus */
selected:focus { }
/* any element that is the first child of its parent */
selector:first-child {}
/* any element that is the last child of its parent */
selector:last-child {}
/* Just like pseudo classes, pseudo elements allow you to style certain parts of
a document */
/* matches a virtual first child of the selected element */
selector::before {}
/* matches a virtual last child of the selected element */
selector::after {}
/* At appropriate places, an asterisk may be used as a wildcard to select every
element */
* { } /* all elements */
.parent * { } /* all descendants */
.parent > * { } /* all children */
/* ####################
## PROPIEDADES
####################*/
## PROPERTIES
#################### */
selector {
/* Unidades */
width: 50%; /* en porcentaje */
font-size: 2em; /* dos veces el tamaño de la fuente actual */
width: 200px; /* en pixeles */
font-size: 20pt; /* en puntos */
width: 5cm; /* en centimetros */
width: 50mm; /* en milimetros */
width: 5in; /* en pulgadas */
/* Colores */
background-color: #F6E; /* en hexadecimal corto */
background-color: #F262E2; /* en hexadecimal largo */
background-color: tomato; /* puede ser un color con nombre */
background-color: rgb(255, 255, 255); /* en rgb */
background-color: rgb(10%, 20%, 50%); /* en rgb percent */
background-color: rgba(255, 0, 0, 0.3); /* en rgb semi-transparente (con valor alfa)*/
/* Imagenes */
background-image: url(/ruta-a-la-imagen/imagen.jpg);
/* Fuentes */
font-family: Arial;
font-family: "Courier New"; /* si el nombre contiene espacios, debe ir entre comillas */
font-family: "Courier New", Trebuchet, Arial; /* si la primera fuente no se encontró
entonces se busca la seguna, o la tercera, así recursivamente*/
}
/* Units of length can be absolute or relative. */
/* Relative units */
width: 50%; /* percentage of parent element width */
font-size: 2em; /* multiples of element's original font-size */
font-size: 2rem; /* or the root element's font-size */
font-size: 2vw; /* multiples of 1% of the viewport's width (CSS 3) */
font-size: 2vh; /* or its height */
font-size: 2vmin; /* whichever of a vh or a vw is smaller */
font-size: 2vmax; /* or greater */
/* Absolute units */
width: 200px; /* pixels */
font-size: 20pt; /* points */
width: 5cm; /* centimeters */
min-width: 50mm; /* millimeters */
max-width: 5in; /* inches */
/* Colors */
color: #F6E; /* short hex format */
color: #FF66EE; /* long hex format */
color: tomato; /* a named color */
color: rgb(255, 255, 255); /* as rgb values */
color: rgb(10%, 20%, 50%); /* as rgb percentages */
color: rgba(255, 0, 0, 0.3); /* as rgba values (CSS 3) Note: 0 <= a <= 1 */
color: transparent; /* equivalent to setting the alpha to 0 */
color: hsl(0, 100%, 50%); /* as hsl percentages (CSS 3) */
color: hsla(0, 100%, 50%, 0.3); /* as hsl percentages with alpha */
/* Borders */
border-width:5px;
border-style:solid;
border-color:red; /* similar to how background-color is set */
border: 5px solid red; /* this is a short hand approach for the same */
border-radius:20px; /* this is a CSS3 property */
/* Images as backgrounds of elements */
background-image: url(/img-path/img.jpg); /* quotes inside url() optional */
/* Fonts */
font-family: Arial;
/* if the font family name has a space, it must be quoted */
font-family: "Courier New";
/* if the first one is not found, the browser uses the next, and so on */
font-family: "Courier New", Trebuchet, Arial, sans-serif;
}
```
## Uso
## Usage
Guarda cualquier CSS que quieras en un archivo con extensión `.css`.
Save a CSS stylesheet with the extension `.css`.
```xml
<!-- Necesitas incluir tu archivo CSS en el elemento <head> de tu HTML: -->
<link rel='stylesheet' type='text/css' href='ruta/archivoDeEstilos.css' />
```html
<!-- You need to include the css file in your page's <head>. This is the
recommended method. Refer to http://stackoverflow.com/questions/8284365 -->
<link rel='stylesheet' type='text/css' href='path/to/style.css'>
<!--
también puedes incluir CSS dentro del archivo HTML. Esta no es una buena práctica
y debe ser evitada.
-->
<!-- You can also include some CSS inline in your markup. -->
<style>
selector { propiedad:valor; }
a { color: purple; }
</style>
<!--
También se pueden aplicar propiedades al elemento directamente.
Esta práctica también debe ser evitada a toda costa
-->
<div style='propiedad:valor;'>
<!-- Or directly set CSS properties on the element. -->
<div style="border: 1px solid red;">
</div>
```
## Preferencia y orden
## Precedence or Cascade
Como te habrás dado cuenta un elemento puede ser seleccionado por más
de un selector. En este caso alguna de las reglas cobra preferencia
sobre las otras:
An element may be targeted by multiple selectors and may have a property set on
it in more than once. In these cases, one of the rules takes precedence over
others. Rules with a more specific selector take precedence over a less specific
one, and a rule occurring later in the stylesheet overwrites a previous one
(which also means that if two different linked stylesheets contain rules for an
element and if the rules are of the same specificity, then order of linking
would take precedence and the sheet linked latest would govern styling) .
Dado el siguiente CSS:
This process is called cascading, hence the name Cascading Style Sheets.
Given the following CSS:
```css
/*A*/
p.clase1[attr='valor']
/* A */
p.class1[attr='value']
/*B*/
p.clase1 {}
/* B */
p.class1 { }
/*C*/
p.clase2 {}
/* C */
p.class2 { }
/*D*/
p {}
/*E*/
p { propiedad: valor !important; }
/* D */
p { }
/* E */
p { property: value !important; }
```
Y el siguiente HTML:
and the following markup:
```xml
<p style='/*F*/ propiedad:valor;' class='clase1 clase2' attr='valor'>
</p>
```html
<p style='/*F*/ property:value;' class='class1 class2' attr='value'>
```
El orden respetado es el siguiente:
Recuerda, la preferencia es por cada **property**, no para el bloque completo.
The precedence of style is as follows. Remember, the precedence is for each
**property**, not for the entire block.
* `E` tiene la preferencia más elevada gracias a la palabra `!important`.
Es recomendado evitar esto a menos que sea estrictamente necesario incluirlo.
* `F` le sigue, porque es estilo incrustado directamente en el HTML.
* `A` le sigue, porque es más específico que cualquier otra opción.
más específico = más especificadores. Aquí hay tres especificadores: elemento `p` +
nombre de la clase `clase1` + un atributo `attr='valor'`
* `C` le sigue. Aunque tiene el mismo número de especificadores como `B`
pero aparece después.
* Luego va `B`
* y al final `D`.
* `E` has the highest precedence because of the keyword `!important`. It is
recommended that you avoid its usage.
* `F` is next, because it is an inline style.
* `A` is next, because it is more "specific" than anything else. It has 3
specifiers: The name of the element `p`, its class `class1`, an attribute
`attr='value'`.
* `C` is next, even though it has the same specificity as `B`.
This is because it appears after `B`.
* `B` is next.
* `D` is the last one.
## Compatibilidad
## Media Queries
La mayoría de las funcionalidades de CSS2 (y gradualmente de CSS3) son compatibles
en todos los navegadores y dispositivos. Pero siempre es vital tener en mente la
compatibilidad y disponibilidad del CSS que uses con respecto a los navegadores
y dispositivos para los que desarrolles.
CSS Media Queries are a feature in CSS 3 which allows you to specify when certain CSS rules should be applied, such as when printed, or when on a screen with certain dimensions or pixel density. They do not add to the selector's specificity.
[QuirksMode CSS](http://www.quirksmode.org/css/) es una excelente referencia para esto.
```css
/* A rule that will be used on all devices */
h1 {
font-size: 2em;
color: white;
background-color: black;
}
## Recursos
/* change the h1 to use less ink on a printer */
@media print {
h1 {
color: black;
background-color: white;
}
}
* Para ejecutar un test de compatibilidad, revisa [CanIUse](http://caniuse.com).
* CSS Playground [Dabblet](http://dabblet.com/).
* [Mozilla Developer Network's CSS documentation](https://developer.mozilla.org/en-US/docs/Web/CSS).
* [Codrops' CSS Reference](http://tympanus.net/codrops/css_reference/).
/* make the font bigger when shown on a screen at least 480px wide */
@media screen and (min-width: 480px) {
h1 {
font-size: 3em;
font-weight: normal;
}
}
```
## Otras lecturas
Media queries can include these features:
`width`, `height`, `device-width`, `device-height`, `orientation`, `aspect-ratio`, `device-aspect-ratio`, `color`, `color-index`, `monochrome`, `resolution`, `scan`, `grid`. Most of these features can be prefixed with `min-` or `max-`.
* [Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade](http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/).
* [Selecting elements using attributes](https://css-tricks.com/almanac/selectors/a/attribute/).
* [QuirksMode CSS](http://www.quirksmode.org/css/).
The `resolution` feature is not supported by older devices, instead use `device-pixel-ratio`.
Many smartphones and tablets will attempt to render the page as if it were on a desktop unless you provide a `viewport` meta-tag.
```html
<head>
<meta name="viewport" content="width=device-width; initial-scale=1.0">
</head>
```
## Compatibility
Most of the features in CSS 2 (and many in CSS 3) are available across all
browsers and devices. But it's always good practice to check before using
a new feature.
## Resources
* [CanIUse](http://caniuse.com) (Detailed compatibility info)
* [Dabblet](http://dabblet.com/) (CSS playground)
* [Mozilla Developer Network's CSS documentation](https://developer.mozilla.org/en-US/docs/Web/CSS) (Tutorials and reference)
* [Codrops' CSS Reference](http://tympanus.net/codrops/css_reference/) (Reference)
## Further Reading
* [Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade](http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/)
* [Selecting elements using attributes](https://css-tricks.com/almanac/selectors/a/attribute/)
* [QuirksMode CSS](http://www.quirksmode.org/css/)
* [Z-Index - The stacking context](https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context)
* [SASS](http://sass-lang.com/) y [LESS](http://lesscss.org/) para preprocesamiento CSS.
* [CSS-Tricks](https://css-tricks.com).
* [SASS](http://sass-lang.com/) and [LESS](http://lesscss.org/) for CSS pre-processing
* [CSS-Tricks](https://css-tricks.com)

View File

@ -88,7 +88,7 @@ saltos de línea.` // mismo tipo cadena
// Literal no ASCII. Los ficheros fuente de Go son UTF-8.
g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
f := 3.14159 // float64, el estándar IEEE-754 de coma flotante 64-bit.
c := 3 + 4i // complex128, representado internamente por dos float64.
// Sintaxis var con iniciadores.
var u uint = 7 // Sin signo, pero la implementación depende del tamaño
@ -425,7 +425,7 @@ func consultaAlServidor() {
## Más información
La raíz de todas las cosas sobre Go es el
[sitio web oficial de Go](http://golang.org/).
[sitio web oficial de Go](https://go.dev/).
Allí puedes seguir el tutorial, jugar interactivamente y leer mucho más.
La definición del lenguaje es altamente recomendada. Es fácil de leer y
@ -433,17 +433,17 @@ sorprendentemente corta (como la definición del lenguaje Go en estos
días).
Puedes jugar con el código en el
[parque de diversiones Go](https://play.golang.org/p/ncRC2Zevag). ¡Trata
[parque de diversiones Go](https://go.dev/play/p/ncRC2Zevag). ¡Trata
de cambiarlo y ejecutarlo desde tu navegador! Ten en cuenta que puedes
utilizar [https://play.golang.org]( https://play.golang.org) como un
utilizar [https://go.dev/play/]( https://go.dev/play/) como un
[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) para probar
cosas y el código en el navegador, sin ni siquiera instalar Go.
En la lista de lecturas para estudiantes de Go está el
[código fuente de la biblioteca estándar](http://golang.org/src/pkg/).
[código fuente de la biblioteca estándar](https://go.dev/src/).
Ampliamente documentado, que demuestra lo mejor del legible y comprensible
Go, con su característico estilo y modismos. ¡O puedes hacer clic en un
nombre de función en [la documentación](http://golang.org/pkg/) y
nombre de función en [la documentación](https://go.dev/pkg/) y
aparecerá el código fuente!
Otro gran recurso para aprender Go está en

View File

@ -16,7 +16,7 @@ LaTeX.
```r
# Los comentariso inician con símbolos numéricos.
# Los comentarios inician con símbolos numéricos.
# No puedes hacer comentarios de múltiples líneas
# pero puedes agrupar múltiples comentarios de esta manera.

469
fa-ir/vim-fa.html.markdown Normal file
View File

@ -0,0 +1,469 @@
---
category: tool
tool: vim
contributors:
- ["RadhikaG", "https://github.com/RadhikaG"]
translators:
- ["Moein Halvaei", "https://github.com/mo1ein"]
lang: fa-ir
filename: LearnVim-fa.txt
---
<p dir="rtl">
[Vim](http://www.vim.org) (Vi رشدیافته) یک کلون از ادیتور مشهور vi است برای unix. ادیتورمتنی‌ست که برای سرعت و افزایش بهره‌وری طراحی شده‌ و در همه جا به ویژه در سیستم های unix-based دیده می‌شود. شورتکات کلید های بی‌شماری برای سرعت جهت‌یابی به نقاط ویژه‌ي فایل ها و تغییر سریع، دارد.
<br />
`vimtutor` یک برنامه‌ي عالیست که به شما چگونگی استفاده از `vim` را آموزش می‌دهد.
این به همراه پکیج های vim هنگام نصب کردن، نصب می‌شود. شما باید بتوانید با ران کردن `vimtutor` در کامندلاین از آموزش ها استفاده کنید. این همه‌ی ویژگی های عمده‌ی `vim` را به شما راهنمایی می‌کند.
</p>
<h3>
<p dir="rtl">
مکان‌یابی اولیه vim
</p>
</h3>
<p dir="rtl">
باز کردن `<filename>` در ویم
</p>
```
vim <filename> # Open <filename> in vim
```
<p dir="rtl">
باز کردن help docs های `<topic>` اگر وجود داشته باشد
</p>
```
:help <topic> # Open up built-in help docs about <topic> if any exists
```
```
:q # خروج از ویم
:w # ذخیره کردن فایل فعلی
:wq # ذخیره کردن و خارج شدن از ویم
ZZ # ذخیره کردن و خارج شدن از ویم
:q! # خارج شدن بدون ذخیره کردن فایل
! *forces* :q to execute, hence quiting vim without saving
ZQ # خارج شدن بدون ذخیره کردن فایل
```
<p dir="rtl">ذخیره کردن و خارج شدن از vim ورژن خلاصه شده‌ی wq:</p>
```
:x # Save file and quit vim, shorter version of :wq
```
<p dir="rtl">برگشت به عقب</p>
```
u # Undo
```
<p dir="rtl">رفتن به جلو</p>
```
CTRL+R # Redo
```
<p dir="rtl">راه رفتن در صفحه</p>
```
h # رفتن یک کاراکتر به چپ
j # رفتن یک کاراکتر به پایین
k # رفتن یک کاراکتر به بالا
l # رفتن یک کاراکتر به راست
Ctrl+B # جابه‌جا شدن به عقب به اندازه یک صفحه
Ctrl+F # جابه‌جا شدن به جلو به اندازه یک صفحه
Ctrl+D # جابه‌جا شدن به جلو به اندازه نصف صفحه
Ctrl+U # جابه‌جا شدن به عقب به اندازه نصف صفحه
```
<p dir="rtl"><strong>جابه‌جا شدن در خط</strong></p>
```
0 # رفتن به اول خط
$ # رفتن به آخر خط
^ # رفتن به اولین کاراکتر غیرخالی در خط
```
<p dir="rtl"><strong>جست و جو در متن</strong></p>
```
/word # هایلایت کردن همه‌ی کلمه های بعد کِرسر
?word # هایلایت کردن همه‌ی کلمه های قبل کِرسر
n # جابه‌جایی کِرسر به کلمه های بعدی پیدا شده
N # جابه‌جایی کِرسر به کلمه های قبلی پیدا شده
```
<p dir="rtl">عوض کردن 'foo' به 'bar' در هر خط از فایل</p>
```
:%s/foo/bar/g # Change 'foo' to 'bar' on every line in the file
```
<p dir="rtl">عوض کردن 'foo' به 'bar' در خط فعلی</p>
```
:s/foo/bar/g # Change 'foo' to 'bar' on the current line
```
<p dir="rtl">جایگزینی کاراکتر های خط جدید با کاراکتر های خط جدید</p>
```
:%s/\n/\r/g # Replace new line characters with new line characters
```
<p dir="rtl"><strong>پرش به کاراکتر ها</strong></p>
<p dir="rtl">پرش به جلو و قرار گرفتن روی کاراکتر مورد نظر</p>
```
f<character> # Jump forward and land on <character>
```
<p dir="rtl">پرش به جلو و قرار گرفتن قبل کاراکتر مورد نظر</p>
```
t<character> # Jump forward and land right before <character>
```
<p dir="rtl"><strong>برای مثال:</strong></p>
<p dir="rtl">پرش به جلو و قرار گرفتن روی ></p>
```
f< # Jump forward and land on <
```
<p dir="rtl">پرش به جلو و قرار گرفتن قبل از ></p>
```
t< # Jump forward and land right before <
```
<p dir="rtl"><strong>جابه‌جا شدن با کلمه ها</strong></p>
```
w # رفتن به جلو به اندازه‌ی یک کلمه
b # رفتن به عقب به اندازه‌ی یک کلم
e # رفتن به آخر کلمه‌ی فعلی
```
<p dir="rtl"><strong>سایر کاراکتر ها برای جابه‌جایی</strong></p>
<p dir="rtl">رفتن به اول فایل</p>
```
gg # Go to the top of the file
```
<p dir="rtl">رفتن به آخر فایل</p>
```
G # Go to the bottom of the file
```
<p dir="rtl">رفتن به شماره‌ی خط مورد نظر (NUM شماره است)</p>
```
:NUM # Go to line number NUM (NUM is any number)
```
<p dir="rtl">رفتن به اول صفحه</p>
```
H # Move to the top of the screen
```
<p dir="rtl">رفتن به وسط صفحه</p>
```
M # Move to the middle of the screen
```
<p dir="rtl">رفتن به آخر صفحه</p>
```
L # Move to the bottom of the screen
```
<h3>
<p dir="rtl"><strong>
داک های help
</strong></p>
</h3>
<p dir="rtl">
Vim دارای یک help doc داخلی است که می‌توان با help: <topic> به آن دسترسی داشت. برای مثال help navigation: داک مربوط به مکان‌یابی در فضای کار را به شما نشان می‌دهد! <br /><br />
help: همچنین می‌تواند بدون option مورد استفاده قرار گیرد.
این یه صورت یک help پیش‌فرض بالا می‌آید که شروع vim را قابل دسترس تر می‌کند!
</p>
<h3>
<p dir="rtl"><strong>Modes:</strong></p>
</h3>
<div dir="rtl">
Vim بر پایه‌ی مفهومی‌ست به نام <strong>modes</strong>
<br /><br />
<ul>
<li>
Command Mode - ویم در این حالت بالا می‌آید،‌ برای مکان‌یابی و نوشتن دستورات استفاده می‌شود
</li>
<li>
Insert Mode - برای ایجاد تغییر در فایل شما استفاده می‌شود
</li>
<li>
Visual Mode - برای هایلایت کردن متن و انجام عملی روی آن ها استفاده می‌شود
</li>
<li>
Ex Mode - برای وارد کردن دستورات توسط ":" در قسمت پایین استفاده می‌شود
</li>
</ul>
<br />
</div>
<p dir="rtl">رفتن به حالت insert, پیش از جایگاه cursor</p>
```
i # Puts vim into insert mode, before the cursor position
```
<p dir="rtl">رفتن به حالت insert, پس از جایگاه cursor</p>
```
a # Puts vim into insert mode, after the cursor position
```
<p dir="rtl">رفتن به حالت visual</p>
```
v # Puts vim into visual mode
```
<p dir="rtl">رفتن به حالت ex</p>
```
: # Puts vim into ex mode
```
<p dir="rtl">خروج از همه‌ی حالت ها و رفتن به حالت command</p>
```
<esc> # 'Escapes' from whichever mode you're in, into Command mode
```
<p dir="rtl">کپی و پیست در متن</p>
```
y # کپی کردن متن انتخاب شده
yy # کپی کردن خط فعلی
d # حذف کردن متن انتخاب شده
dd # حذف کردن خط فعلی
p # پیست کردن متن کپی شده پس از جایگاه فعلی کِرسر
P # پیست کردن متن کپی شده پیش از جایگاه فعلی کِرسر
x # حذف کردن یک کاراکتر از جایگاه کِرسر
```
<h3>
<p dir="rtl"><strong>گرامر (Grammer) </strong></p>
</h3>
<div dir="rtl">
Vim را می توان به عنوان مجموعه ای از دستورات در قالب (Verb - Modifier - Noun) تصور کرد ، جایی که:
<br /><br />
<ul>
<li>
Verb - عمل شما
</li>
<li>
Modifier - چگونگی انجام عمل شما
</li>
<li>
Noun - شیئی که عمل شما بر اساس آن عمل می کند
</li>
</ul>
اندکی از مثال های مهم Verbs ,Modifiers, Nouns:
<br /><br />
</div>
<p dir="rtl"><strong>فعل ها (Verbs)</strong></p>
```
d # حذف
c # تغییر
y # کپی
v # انتخاب
```
<p dir="rtl"><strong>تغییردهنده ها (Modifiers)</strong></p>
```
i # داخل
a # اطراف
NUM # شماره (NUM هر شماره‌ای است)
f # جست و جو کردن چیزی و متوقف شدن روی آن
t # جست و جو کردن چیزی و متوقف شدن قبل از آن
/ # جست و جو کردن رشته‌ای پس از کِرسر
? # جست و جو کردن رشته‌ای پیش از کِرسر
```
<p dir="rtl"><strong>اسم ها (Nouns)</strong></p>
```
w # کلمه
s # جمله
p # پاراگراف
b # بلوک
```
<p dir="rtl"><strong>جمله ها و کامند های نمونه</strong></p>
```
d2w # حذف دو کلمه
cis # تغییر داخل جمله
yip # کپی داخل پاراگراف (از پاراگرافی که داخل آن هستید کپی کنید)
ct< # متن را از جایی که قرار دارید به براکت باز بعدی تغییر دهید
d$ # حذف تا پایان
```
<h3>
<p dir="rtl">بعضی از شورتکات ها و ترفند ها</p>
</h3>
```
<!--TODO: Add more!-->
> # ایجاد دندانه به اندازه یک بلوک
< # حذف دندانه به اندازه یک بلوک
:earlier 15m # برگرداندن همه چیز به ۱۵ دقیقه قبل
:later 15m # برعکس کامند قبلی
ddp # تغییر مکان خطوط متوالی(dd, then p)
. # تکرار دستور قبلی
:w !sudo tee % # ذخیره کردن فایل فعلی به عنوان روت
:set syntax=c # تنظیم سینتکس هایلایتینگ روی 'c'
:sort # مرتب کردن همه‌ی خطوط
:sort! # مرتب کردن همه‌ی خطوط به صورت برعکس
:sort u # مرتب کردن همه‌ی خطوط و پاک کردن تکراری ها
~ # تبدیل متن انتخاب شده به حروف (اگر بزرگ است، کوچک و اگر کوچک است، بزرگ)
u # تبدیل متن انتخاب شده به حروف کوچک
U # تبدیل متن انتخاب شده به حروف بزرگ
J # اتصال خط فعلی به خط بعدی
```
<h4>
<p dir="rtl">
فولد (Fold)
</p>
</h4>
```
zf # ایجاد فولد برای متن انتخاب شده
zo # باز کردن فولد فعلی
zc # بستن فولد فعلی
zR # باز کردن همه‌ی فولد ها
zM # بستن همه‌ی فولد ها
```
<h3>
<p dir="rtl">
ماکرو ها (Macros)
</p>
</h3>
<p dir="rtl">
ماکرو ها اساسا عمل های قابل ضبط هستند. زمانی که شما شروع می‌کنید به ضبط ماکرو، هر عمل و دستوری را که استفاده می‌کنید، تا زمانی که ضبط را متوقف کنید، ضبط می‌شود. با فراخوانی ماکرو، دقیقاً همان توالی اعمال و دستورات، دوباره روی متن انتخاب شده اعمال می‌شود.
</p>
```
qa # Start recording a macro named 'a'
q # Stop recording
@a # Play back the macro
```
<h3>
<p dir="rtl">
کانفیگ vimrc./~
<p>
</h3>
<p dir="rtl">
vimrc. فایلی‌ست که استفاده می‌شود برای کانفیگ vim هنگام بالا آمدن
<br />
این‌جا یک نمونه‌ فایل vimrc. آورده شده:
</p>
```
" Example ~/.vimrc
" 2015.10
" Required for vim to be iMproved
set nocompatible
" Determines filetype from name to allow intelligent auto-indenting, etc.
filetype indent plugin on
" Enable syntax highlighting
syntax on
" Better command-line completion
set wildmenu
" Use case insensitive search except when using capital letters
set ignorecase
set smartcase
" When opening a new line and no file-specific indenting is enabled,
" keep same indent as the line you're currently on
set autoindent
" Display line numbers on the left
set number
" Indentation options, change according to personal preference
" Number of visual spaces per TAB
set tabstop=4
" Number of spaces in TAB when editing
set softtabstop=4
" Number of spaces indented when reindent operations (>> and <<) are used
set shiftwidth=4
" Convert TABs to spaces
set expandtab
" Enable intelligent tabbing and spacing for indentation and alignment
set smarttab
```
<h3>
<p dir="rtl">رفرنس ها</p>
</h3>
[Vim | Home](http://www.vim.org/index.php)
`$ vimtutor`
[A vim Tutorial and Primer](https://danielmiessler.com/study/vim/)
[What are the dark corners of Vim your mom never told you about? (St
[Arch Linux Wiki](https://wiki.archlinux.org/index.php/Vim)

View File

@ -90,7 +90,7 @@ voi sisältää rivinvaihtoja.` // Sama merkkijonotyyppi.
// Ei-ASCII todellisarvo. Go-lähdekoodi on UTF-8.
g := 'Σ' // riimutyyppi, lempinimi int32:lle, sisältää unicode-koodipisteen.
f := 3.14195 //float64, IEEE-754 64-bittinen liukuluku.
f := 3.14159 //float64, IEEE-754 64-bittinen liukuluku.
c := 3 + 4i // complex128, sisäisesti ilmaistu kahdella float64:lla.
// var -syntaksi alkuarvoilla.
@ -418,21 +418,21 @@ func requestServer() {
## Lisää luettavaa
Go-tietämyksen alku ja juuri on sen [virallinen verkkosivu]()(http://golang.org/).
Go-tietämyksen alku ja juuri on sen [virallinen verkkosivu]()(https://go.dev/).
Siellä voit seurata oppitunteja, askarrella vuorovaikutteisesti sekä lukea paljon.
Kierroksen lisäksi [dokumentaatio](https://golang.org/doc/) pitää sisällään tietoa
Kierroksen lisäksi [dokumentaatio](https://go.dev/doc/) pitää sisällään tietoa
siistin Go-koodin kirjoittamisesta, pakettien ja komentojen käytöstä sekä julkaisuhistoriasta.
Kielen määritelmä itsessään on suuresti suositeltavissa. Se on helppolukuinen ja
yllättävän lyhyt (niissä määrin kuin kielimääritelmät nykypäivänä ovat.)
Voit askarrella parissa kanssa [Go playgroundissa](https://play.golang.org/p/tnWMjr16Mm).
Muuttele sitä ja aja se selaimestasi! Huomaa, että voit käyttää [https://play.golang.org](https://play.golang.org)
Voit askarrella parissa kanssa [Go playgroundissa](https://go.dev/play/p/tnWMjr16Mm).
Muuttele sitä ja aja se selaimestasi! Huomaa, että voit käyttää [https://go.dev/play/](https://go.dev/play/)
[REPL:na](https://en.wikipedia.org/wiki/Read-eval-print_loop) testataksesi ja koodataksesi selaimessasi, ilman Go:n asentamista.
Go:n opiskelijoiden lukulistalla on [oletuskirjaston lähdekoodi](http://golang.org/src/pkg/).
Go:n opiskelijoiden lukulistalla on [oletuskirjaston lähdekoodi](https://go.dev/src/).
Kattavasti dokumentoituna se antaa parhaan kuvan helppolukuisesta ja ymmärrettävästä Go-koodista,
-tyylistä ja -tavoista. Voit klikata funktion nimeä [doukumentaatiossa](http://golang.org/pkg/) ja
-tyylistä ja -tavoista. Voit klikata funktion nimeä [doukumentaatiossa](https://go.dev/pkg/) ja
lähdekoodi tulee esille!
Toinen loistava paikka oppia on [Go by example](https://gobyexample.com/).

View File

@ -3,6 +3,7 @@ category: tool
tool: fish
contributors:
- ["MySurmise", "https://github.com/MySurmise"]
- ["Geo Maciolek", "https://github.com/GeoffMaciolek"]
filename: learn.fish
---
@ -14,45 +15,64 @@ Examples of these features are autosuggestions, 24-bit colors, Man Page Completi
It was released in February 2005.
[Read more](https://fishshell.com/docs/current/language.html)
[Installation guide](https://github.com/fish-shell/fish-shell#getting-fish)
- [Read more](https://fishshell.com/docs/current/language.html)
- [Installation guide](https://github.com/fish-shell/fish-shell#getting-fish)
# Guide
## Guide
Be sure you have the newest fish shell. This was made with version 3.3.0. To test, type:
```
> fish -v
```
To start the fish shell, type:
```
> fish
```
to exit, type:
```
> exit
```
or press <kbd>Ctrl + D</kbd>
Now, right out of the gate, there's one annoying thing in fish. It's the welcome message. Who needs that, right? When your shell is started, just type:
```
> set -U fish_greeting ""
To set that to the wanted value,  .
```
If you want to execute a single command written in bash, without switching to that shell, you can type:
```
> bash -c 'echo "fish is better than bash"'
```
In fish, you can use single or double quotes.
The escape character is a `\`
You can change your configuration of fish either by editing the config file
```
> vim ~/.config/fish/config.fish
```
or by opening the aforementioned web settings:
>fish_config
```
> fish_config
```
Adding something to your fish PATH Variable is easy:
```
> fish_path_add ~/cowsay
```
Can you do that with bash, huh? No, you always have to look it up... It's just that easy!
@ -60,21 +80,28 @@ But there's more. Most fish-specific commands start, you guessed it, with 'fish'
Now you can navigate with <kbd>TAB</kbd>, <kbd>Shift + TAB</kbd> and your Arrow-Keys <kbd></kbd><kbd></kbd><kbd></kbd><kbd></kbd>.
To get help, contact your local psychiatrist or type `man`. That will bring up the manual for that command, for example:
```
> man set
```
If you finally tried fish, you can see something other in fish that's really cool. Everything has cool colors, if you type in something wrong, it is red, without even executing, if you put something in quotes, you see where it ends and why that quote doesn't work, because there's another qoutation mark in the quote at position 26.
fish has even more cool things, like wildcards.
For example, type
```
> ls *.fish
```
That will list all fish files in your current directory.
You can have multiple wildcards per command or even a recursive wildcard, `**`, which basically means it includes files and directories, that fit.
For example the following command would return (in your case):
> ls ~/images/**.jpg
```
> ls ~/images/**.jpg
~/images/nudes/pewdiepie.jpg
~/images/nudes/peppa.jpg
~/images/screenshots/2020-42-69.jpg
@ -83,72 +110,77 @@ For example the following command would return (in your case):
Of course, you can also pipe the output of a command to another command
```
>echo sick egg, nadia. no u do really goofy shit. | grep [udense]
```
write to a file:
```
>echo This\ is\ text > file.txt
```
(noticed the escape character?)
Add to a file:
```
>echo This\ is\ a\ line >> file.txt
>echo This\ is\ a\ second\ line >> file.txt
```
For Autocompletion, just always press <kbd>TAB</kbd>. You will be surprised how many things fish knows.
To use variables, just type `$VAR`, like in bash.
```
> echo "My home is $HOME"
> My home is /home/myuser
My home is /home/myuser
```
Here comes a difference between single and double quotes. If you use a variable in single quotes, it will not substitute it.
```
> echo 'My home is $HOME'
> My home is $HOME
My home is $HOME
```
More on variables later.
To execute two commands, separate them with `;`
```
> echo Lol; echo this is fun
```
The status code of the last command is stored in `$status`
You can use && for two commands that depend on each other.
```
> set var lol && echo $var
```
You can also use and,
which executes if the previous command was successful
or
which executes if the previous command was not successful
and not
You can also use `and` which executes if the previous command was successful,
`or` which executes if the previous command was not successful, and `not`
which inverts the exit status of a command.
For example:
> if not echo It's very late I should not waste my time with this
>> echo Nobody heard you
>end
```
> if not echo It's very late I should not waste my time with this
echo Nobody heard you
end
```
(You can of course do all of that in the shell)
---
Now let's start with the scripting part of fish.
Now let's start with the scripting part of fish.
As with every shell, you can not only execute commands in the shell, but also as files, saved as a `.fish` file.
(You can also execute `.sh` files with fish syntax, but I always use `.fish` for fish-syntax scripts to distinguish them from bash script files)
```bash
```fish
# This is a comment in fish.
#
# If you execute a file without specifying an interpreter,
@ -165,10 +197,9 @@ As with every shell, you can not only execute commands in the shell, but also as
# for use inside a program, you can use the syntax
set name = 'My Variable'
# use
# Use...
set -x name value
# to eXport
# to eXport, or
set -e name
# to Erase
@ -188,20 +219,21 @@ count $PATH
# So $PWD for example is a list of length 1.
# To make a list, just give the set command multiple arguments:
set list entry1 entry2 entry3
# that way you can also append something to an existing variable:
set PATH $PATH ~/cowsay/
# But, as previously mentioned, we also have a simpler way to do that specifically in fish.
# As with every Array/List, you can access it with
$listvar[2]
# there's also ranges with
$listvar[1..5]
$listvar[1..5]
# and you can use negative numbers like
$listvar[-1]
# e.g to access the last element.
# You can also do fancy cartesian products when you combine two list variables:
set a 1 2 3
set 1 a b c
@ -239,7 +271,7 @@ else
echo Got nothing
end
# A little weird is that you compare stuff with one = sign , of course because we don't need it to set variables, but still... and the keyword "test":
# A little weird is that you compare stuff with one = sign, of course because we don't need it to set variables, but still... and the keyword "test":
if test $var = "test"
echo yes
else
@ -304,10 +336,7 @@ end
# Cool!
# The bashrc equivalent is not fishrc, but the previously mentioned config.fish file in ~/.config/fish/
# To add a function to fish, though, you should create a simple .fish file in that directory. Don't just paste that function in the config.fish. That's ugly.
# If you have more, just add it, but those are the most important basics.
```

View File

@ -93,8 +93,8 @@ see square \ : square dup * ; ok
\ ------------------------------------ Loops -----------------------------------
\ `do` is also a compile-only word.
: myloop ( -- ) 5 0 do cr ." Hello!" loop ; \ ok
\ `?do` is also a compile-only word.
: myloop ( -- ) 5 0 ?do cr ." Hello!" loop ; \ ok
myloop
\ Hello!
\ Hello!
@ -102,16 +102,17 @@ myloop
\ Hello!
\ Hello! ok
\ `do` expects two numbers on the stack: the end number and the start number.
\ `?do` expects two numbers on the stack: the end number (exclusive) and the
\ start number (inclusive).
\ We can get the value of the index as we loop with `i`:
: one-to-12 ( -- ) 12 0 do i . loop ; \ ok
one-to-12 \ 0 1 2 3 4 5 6 7 8 9 10 11 12 ok
one-to-12 \ 0 1 2 3 4 5 6 7 8 9 10 11 ok
\ `?do` works similarly, except it will skip the loop if the end and start
\ numbers are equal.
: squares ( n -- ) 0 ?do i square . loop ; \ ok
10 squares \ 0 1 4 9 16 25 36 49 64 81 ok
\ `do` works similarly, except if start and end are exactly the same it will
\ loop forever (until arithmetic underflow).
: loop-forever 1 1 do i square . loop ; \ ok
loop-forever \ 1 4 9 16 25 36 49 64 81 100 ...
\ Change the "step" with `+loop`:
: threes ( n n -- ) ?do i . 3 +loop ; \ ok

View File

@ -11,9 +11,9 @@ Translation"). Despite its age, it is still used for high-performance computing
such as weather prediction. However, the language has changed considerably over
the years, although mostly maintaining backwards compatibility; well known
versions are FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008,
Fortran 2015, and Fortran 2018.
Fortran 2018 and Fortran 2023.
This overview will discuss the features of Fortran 95 since it is the most
This overview will discuss the features of Fortran 2008 since it is the most
widely implemented of the more recent specifications and the later versions are
largely similar (by comparison FORTRAN 77 is a very different language).
@ -21,158 +21,147 @@ largely similar (by comparison FORTRAN 77 is a very different language).
! This is a comment.
program example !declare a program called example.
program example ! declare a program called example.
! Code can only exist inside programs, functions, subroutines or modules.
! Using indentation is not required but it is recommended.
! Declaring Variables
! ===================
! All declarations must come before statements and expressions.
implicit none !prevents dynamic declaration of variables (recommended!)
implicit none ! prevents dynamic declaration of variables (recommended!)
! Implicit none must be redeclared in every function/program/module...
! IMPORTANT - Fortran is case insensitive.
real z
REAL Z2
real :: v,x ! WARNING: default initial values are compiler dependent!
real :: a = 3, b=2E12, c = 0.01
integer :: i, j, k=1, m
real, parameter :: PI = 3.1415926535897931 !declare a constant.
logical :: y = .TRUE. , n = .FALSE. !boolean type.
complex :: w = (0,1) !sqrt(-1)
character (len=3) :: month !string of 3 characters.
real :: v, x ! WARNING: default initial values are compiler dependent!
real :: a = 3, b = 2E12, c = 0.01
integer :: i, j, k = 1, m
real, parameter :: PI = 3.1415926535897931 ! declare a constant.
logical :: y = .TRUE., n = .FALSE. ! boolean type.
complex :: w = (0, 1) ! sqrt(-1)
character(len=3) :: month ! string of 3 characters.
real :: array(6) !declare an array of 6 reals.
real, dimension(4) :: arrayb !another way to declare an array.
integer :: arrayc(-10:10) !an array with a custom index.
real :: array2d(3,2) !multidimensional array.
real :: array(6) ! declare an array of 6 reals.
real, dimension(4) :: arrayb ! another way to declare an array.
integer :: arrayc(-10:10) ! an array with a custom index.
real :: array2d(3, 2) ! multidimensional array.
! The '::' separators are not always necessary but are recommended.
! many other variable attributes also exist:
real, pointer :: p !declare a pointer.
real, pointer :: p ! declare a pointer.
integer, parameter :: LP = selected_real_kind(20)
real (kind = LP) :: d !long precision variable.
real(kind=LP) :: d ! long precision variable.
! WARNING: initialising variables during declaration causes problems
! in functions since this automatically implies the 'save' attribute
! whereby values are saved between function calls. In general, separate
! declaration and initialisation code except for constants!
! Strings
! =======
character :: a_char = 'i'
character (len = 6) :: a_str = "qwerty"
character (len = 30) :: str_b
character (len = *), parameter :: a_long_str = "This is a long string."
character(len=6) :: a_str = "qwerty"
character(len=30) :: str_b
character(len=*), parameter :: a_long_str = "This is a long string."
!can have automatic counting of length using (len=*) but only for constants.
str_b = a_str // " keyboard" !concatenate strings using // operator.
str_b = a_str//" keyboard" ! concatenate strings using // operator.
! Assignment & Arithmetic
! =======================
Z = 1 !assign to variable z declared above (case insensitive).
Z = 1 ! assign to variable z declared above (case insensitive).
j = 10 + 2 - 3
a = 11.54 / (2.3 * 3.1)
b = 2**3 !exponentiation
a = 11.54/(2.3*3.1)
b = 2**3 ! exponentiation
! Control Flow Statements & Operators
! ===================================
! Single-line if statement
if (z == a) b = 4 !condition always need surrounding parentheses.
if (z == a) b = 4 ! condition always need surrounding parentheses.
if (z /= a) then !z not equal to a
! Other symbolic comparisons are < > <= >= == /=
b = 4
else if (z .GT. a) then !z greater than a
! Text equivalents to symbol operators are .LT. .GT. .LE. .GE. .EQ. .NE.
b = 6
else if (z < a) then !'then' must be on this line.
b = 5 !execution block must be on a new line.
if (z /= a) then ! z not equal to a
! Other symbolic comparisons are < > <= >= == /=
b = 4
else if (z .GT. a) then ! z greater than a
! Text equivalents to symbol operators are .LT. .GT. .LE. .GE. .EQ. .NE.
b = 6
else if (z < a) then ! 'then' must be on this line.
b = 5 ! execution block must be on a new line.
else
b = 10
end if !end statement needs the 'if' (or can use 'endif').
if (.NOT. (x < c .AND. v >= a .OR. z == z)) then !boolean operators.
inner: if (.TRUE.) then !can name if-construct.
b = 1
endif inner !then must name endif statement.
endif
b = 10
end if ! end statement needs the 'if' (or can use 'endif').
if (.NOT. (x < c .AND. v >= a .OR. z == z)) then ! boolean operators.
inner: if (.TRUE.) then ! can name if-construct.
b = 1
end if inner ! then must name endif statement.
end if
i = 20
select case (i)
case (0) !case i == 0
j=0
case (1:10) !cases i is 1 to 10 inclusive.
j=1
case (11:) !all cases where i>=11
j=2
case default
j=3
case (0, 1) ! cases i == 0 or i == 1
j = 0
case (2:10) ! cases i is 2 to 10 inclusive.
j = 1
case (11:) ! all cases where i>=11
j = 2
case default
j = 3
end select
month = 'jan'
! Condition can be integer, logical or character type.
! Select constructions can also be named.
monthly: select case (month)
case ("jan")
j = 0
case default
j = -1
monthly:select case(month)
case ("jan")
j = 0
case default
j = -1
end select monthly
do i=2,10,2 !loops from 2 to 10 (inclusive) in increments of 2.
innerloop: do j=1,3 !loops can be named too.
exit !quits the loop.
end do innerloop
cycle !jump to next loop iteration.
enddo
do i = 2, 10, 2 ! loops from 2 to 10 (inclusive) in increments of 2.
innerloop: do j = 1, 3 ! loops can be named too.
exit ! quits the loop.
end do innerloop
cycle ! jump to next loop iteration.
end do
! Goto statement exists but it is heavily discouraged though.
goto 10
stop 1 !stops code immediately (returning specified condition code).
10 j = 201 !this line is labeled as line 10
stop 1 ! stops code immediately (returning specified condition code).
10 j = 201 ! this line is labeled as line 10
! Arrays
! ======
array = (/1,2,3,4,5,6/)
array = [1,2,3,4,5,6] !using Fortran 2003 notation.
arrayb = [10.2,3e3,0.41,4e-5]
array2d = reshape([1.0,2.0,3.0,4.0,5.0,6.0], [3,2])
array = (/1, 2, 3, 4, 5, 6/)
array = [1, 2, 3, 4, 5, 6] ! using Fortran 2003 notation.
arrayb = [10.2, 3e3, 0.41, 4e-5]
array2d = reshape([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [3, 2])
! Fortran array indexing starts from 1.
! (by default but can be defined differently for specific arrays).
v = array(1) !take first element of array.
v = array2d(2,2)
v = array(1) ! take first element of array.
v = array2d(2, 2)
print *, array(3:5) !print all elements from 3rd to 5th (inclusive).
print *, array2d(1,:) !print first column of 2d array.
print *, array(3:5) ! print all elements from 3rd to 5th (inclusive).
print *, array2d(1, :) ! print first column of 2d array.
array = array*3 + 2 !can apply mathematical expressions to arrays.
array = array*array !array operations occur element-wise.
!array = array*array2d !these arrays would not be compatible.
array = array*3 + 2 ! can apply mathematical expressions to arrays.
array = array*array ! array operations occur element-wise.
! array = array*array2d ! these arrays would not be compatible.
! There are many built-in functions that operate on arrays.
c = dot_product(array,array) !this is the dot product.
c = dot_product(array, array) ! this is the dot product.
! Use matmul() for matrix maths.
c = sum(array)
c = maxval(array)
@ -188,74 +177,73 @@ program example !declare a program called example.
end do
! Conditionally execute element-wise assignments.
array = [1,2,3,4,5,6]
array = [1, 2, 3, 4, 5, 6]
where (array > 3)
array = array + 1
elsewhere (array == 2)
elsewhere(array == 2)
array = 1
elsewhere
array = 0
end where
! Implied-DO loops are a compact way to create arrays.
array = [ (i, i = 1,6) ] !creates an array of [1,2,3,4,5,6]
array = [ (i, i = 1,12,2) ] !creates an array of [1,3,5,7,9,11]
array = [ (i**2, i = 1,6) ] !creates an array of [1,4,9,16,25,36]
array = [ (4,5, i = 1,3) ] !creates an array of [4,5,4,5,4,5]
array = [(i, i=1, 6)] ! creates an array of [1,2,3,4,5,6]
array = [(i, i=1, 12, 2)] ! creates an array of [1,3,5,7,9,11]
array = [(i**2, i=1, 6)] ! creates an array of [1,4,9,16,25,36]
array = [(4, 5, i=1, 3)] ! creates an array of [4,5,4,5,4,5]
! Input/Output
! ============
print *, b !print the variable 'b' to the command line
print *, b ! print the variable 'b' to the command line
! We can format our printed output.
print "(I6)", 320 !prints ' 320'
print "(I6.4)", 3 !prints ' 0003'
print "(F6.3)", 4.32 !prints ' 4.320'
print "(I6)", 320 ! prints ' 320'
print "(I6.4)", 3 ! prints ' 0003'
print "(F6.3)", 4.32 ! prints ' 4.320'
! The letter indicates the expected type and the number afterwards gives
! the number of characters to use for printing the value.
! Letters can be I (integer), F (real), E (engineering format),
! L (logical), A (characters) ...
print "(I3)", 3200 !print '***' since the number doesn't fit.
print "(I3)", 3200 ! print '***' since the number doesn't fit.
! we can have multiple format specifications.
print "(I5,F6.2,E6.2)", 120, 43.41, 43.41
print "(3I5)", 10, 20, 30 !3 repeats of integers (field width = 5).
print "(2(I5,F6.2))", 120, 43.42, 340, 65.3 !repeated grouping of formats.
print "(3I5)", 10, 20, 30 ! 3 repeats of integers (field width = 5).
print "(2(I5,F6.2))", 120, 43.42, 340, 65.3 ! repeated grouping of formats.
! We can also read input from the terminal.
read *, v
read "(2F6.2)", v, x !read two numbers
! To read a file.
open(unit=11, file="records.txt", status="old")
! The file is referred to by a 'unit number', an integer that you pick in
! the range 9:99. Status can be one of {'old','replace','new'}.
read(unit=11, fmt="(3F10.2)") a, b, c
close(11)
read (*, *) v
read (*, "(2F6.2)") v, x ! read two numbers
! To write a file.
open(unit=12, file="records.txt", status="replace")
write(12, "(F10.2,F10.2,F10.2)") c, b, a
close(12)
open (unit=12, file="records.txt", status="replace")
! The file is referred to by a 'unit number', an integer that you pick in
! the range 9:99. Status can be one of {'old','replace','new'}.
write (12, "(F10.2,F10.2,F10.2)") c, b, a
close (12)
! To read a file.
open (newunit=m, file="records.txt", status="old")
! The file is referred to by a 'new unit number', an integer that the compiler
! picks for you.
read (unit=m, fmt="(3F10.2)") a, b, c
close (m)
! There are more features available than discussed here and alternative
! variants due to backwards compatibility with older Fortran versions.
! Built-in Functions
! ==================
! Fortran has around 200 functions/subroutines intrinsic to the language.
! Examples -
call cpu_time(v) !sets 'v' to a time in seconds.
k = ior(i,j) !bitwise OR of 2 integers.
v = log10(x) !log base 10.
i = floor(b) !returns the closest integer less than or equal to x.
v = aimag(w) !imaginary part of a complex number.
call cpu_time(v) ! sets 'v' to a time in seconds.
k = ior(i, j) ! bitwise OR of 2 integers.
v = log10(x) ! log base 10.
i = floor(b) ! returns the closest integer less than or equal to x.
v = aimag(w) ! imaginary part of a complex number.
! Functions & Subroutines
! =======================
@ -263,70 +251,69 @@ program example !declare a program called example.
! A subroutine runs some code on some input values and can cause
! side-effects or modify the input values.
call routine(a,c,v) !subroutine call.
call routine(a, c, v) ! subroutine call.
! A function takes a list of input parameters and returns a single value.
! However the input parameters may still be modified and side effects
! executed.
m = func(3,2,k) !function call.
m = func(3, 2, k) ! function call.
! Function calls can also be evoked within expressions.
Print *, func2(3,2,k)
print *, func2(3, 2, k)
! A pure function is a function that doesn't modify its input parameters
! or cause any side-effects.
m = func3(3,2,k)
m = func3(3, 2, k)
contains ! Zone for defining sub-programs internal to the program.
contains ! Zone for defining sub-programs internal to the program.
! Fortran has a couple of slightly different ways to define functions.
integer function func(a,b,c) !a function returning an integer value.
implicit none !best to use implicit none in function definitions too.
integer :: a,b,c !type of input parameters defined inside the function.
integer function func(a, b, c) ! a function returning an integer value.
! implicit none ! subvariable fields can no longer declare implicit none
integer, intent(in) :: a, b, c ! type of input parameters defined inside the function.
if (a >= 2) then
func = a + b + c !the return variable defaults to the function name.
return !can return the current value from the function at any time.
endif
func = a + b + c ! the return variable defaults to the function name.
return ! can return the current value from the function at any time.
end if
func = a + c
! Don't need a return statement at the end of a function.
end function func
function func2(a,b,c) result(f) !return variable declared to be 'f'.
implicit none
integer, intent(in) :: a,b !can declare and enforce that variables
!are not modified by the function.
function func2(a, b, c) result(f) ! return variable declared to be 'f'.
integer, intent(in) :: a, b ! can declare and enforce that variables
!are not modified by the function.
integer, intent(inout) :: c
integer :: f !function return type declared inside the function.
integer :: cnt = 0 !GOTCHA - initialisation implies variable is
!saved between function calls.
integer :: f ! function return type declared inside the function.
integer :: cnt = 0 ! GOTCHA - initialisation implies variable is
!saved between function calls.
f = a + b - c
c = 4 !altering the value of an input variable.
cnt = cnt + 1 !count number of function calls.
c = 4 ! altering the value of an input variable.
cnt = cnt + 1 ! count number of function calls.
end function func2
pure function func3(a,b,c) !a pure function can have no side-effects.
implicit none
integer, intent(in) :: a,b,c
pure function func3(a, b, c) ! a pure function can have no side-effects.
integer, intent(in) :: a, b, c
integer :: func3
func3 = a*b*c
end function func3
subroutine routine(d,e,f)
implicit none
subroutine routine(d, e, f)
real, intent(inout) :: f
real, intent(in) :: d,e
real, intent(in) :: d, e
f = 2*d + 3*e + f
end subroutine routine
end program example ! End of Program Definition -----------------------
end program example ! End of Program Definition -----------------------
! Functions and Subroutines declared externally to the program listing need
! to be declared to the program using an Interface declaration (even if they
@ -338,9 +325,10 @@ elemental real function func4(a) result(res)
! but can also be used on an array where it will be separately applied to all
! of the elements of an array and return a new array.
real, intent(in) :: a
res = a**2 + 1.0
end function func4
res = a**2 + 1.0
end function func4
! Modules
! =======
@ -349,22 +337,23 @@ end function func4
! subroutines together for reusability.
module fruit
real :: apple
real :: pear
real :: orange
end module fruit
end module fruit
module fruity
! Declarations must be in the order: modules, interfaces, variables.
! (can declare modules and interfaces in programs too).
use fruit, only: apple, pear ! use apple and pear from fruit module.
implicit none !comes after module imports.
implicit none ! comes after module imports.
private !make things private to the module (default is public).
private ! make things private to the module (default is public).
! Declare some variables/functions explicitly public.
public :: apple,mycar,create_mycar
public :: apple, mycar, create_mycar
! Declare some variables/functions private to the module (redundant here).
private :: func4
@ -389,13 +378,15 @@ module fruity
! ==================
! Can create custom structured data collections.
type car
character (len=100) :: model
real :: weight !(kg)
real :: dimensions(3) !i.e. length-width-height (metres).
character(len=100) :: model
real :: weight ! (kg)
real :: dimensions(3) ! i.e. length-width-height (metres).
character :: colour
contains
procedure :: info ! bind a procedure to a type.
end type car
type(car) :: mycar !declare a variable of your custom type.
type(car) :: mycar ! declare a variable of your custom type.
! See create_mycar() routine for usage.
! Note: There are no executable statements in modules.
@ -404,35 +395,48 @@ contains
subroutine create_mycar(mycar)
! Demonstrates usage of a derived data type.
implicit none
type(car),intent(out) :: mycar
type(car), intent(out) :: mycar
! Access type elements using '%' operator.
mycar%model = "Ford Prefect"
mycar%colour = 'r'
mycar%weight = 1400
mycar%dimensions(1) = 5.0 !default indexing starts from 1!
mycar%dimensions(1) = 5.0 ! default indexing starts from 1!
mycar%dimensions(2) = 3.0
mycar%dimensions(3) = 1.5
end subroutine
end subroutine create_mycar
real function real_abs(x)
real :: x
if (x<0) then
subroutine info(self)
class(car), intent(in) :: self
! 'class' keyword used to bind a procedure to a type here.
print *, "Model : ", self%model
print *, "Colour : ", self%colour
print *, "Weight : ", self%weight
print *, "Dimensions: ", self%dimensions
end subroutine info
real pure function real_abs(x)
real, intent(in) :: x
if (x < 0) then
real_abs = -x
else
real_abs = x
end if
end function real_abs
real function complex_abs(z)
complex :: z
real pure function complex_abs(z)
complex, intent(in) :: z
! long lines can be continued using the continuation character '&'
complex_abs = sqrt(real(z)**2 + &
aimag(z)**2)
end function complex_abs
complex_abs = sqrt(real(z)**2 + &
aimag(z)**2)
end function complex_abs
end module fruity

View File

@ -217,7 +217,7 @@ function string_functions( localvar, arr) {
# Les deux renvoient le nombre de correspondances remplacées
localvar = "fooooobar";
sub("fo+", "Meet me at the ", localvar); # localvar => "Meet me at the bar"
gsub("e", ".", localvar); # localvar => "m..t m. at th. bar"
gsub("e", ".", localvar); # localvar => "M..t m. at th. bar"
# Rechercher une chaîne de caractères qui correspond à une expression
# régulière index() fait la même chose, mais n'autorise pas les expressions

View File

@ -87,7 +87,7 @@ sauts de ligne.` // Chaîne de caractère.
g := 'Σ' // type rune, un alias pour le type int32, contenant un caractère
// unicode.
f := 3.14195 // float64, un nombre flottant IEEE-754 de 64-bit.
f := 3.14159 // float64, un nombre flottant IEEE-754 de 64-bit.
c := 3 + 4i // complex128, considéré comme deux float64 par le compilateur.
// Syntaxe "var" avec une valeur d'initialisation.
@ -422,18 +422,18 @@ func requestServer() {
## En savoir plus
La référence Go se trouve sur [le site officiel de Go](http://golang.org/).
La référence Go se trouve sur [le site officiel de Go](https://go.dev/).
Vous pourrez y suivre le tutoriel interactif et en apprendre beaucoup plus.
Une lecture de la documentation du langage est grandement conseillée. C'est
facile à lire et très court (comparé aux autres langages).
Vous pouvez exécuter et modifier le code sur [Go playground](https://play.golang.org/p/tnWMjr16Mm). Essayez de le modifier et de l'exécuter à partir de votre navigateur! Prennez en note que vous pouvez utiliser [https://play.golang.org](https://play.golang.org) comme un [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) pour tester et coder dans votre navigateur, sans même avoir à installer Go.
Vous pouvez exécuter et modifier le code sur [Go playground](https://go.dev/play/p/tnWMjr16Mm). Essayez de le modifier et de l'exécuter à partir de votre navigateur! Prennez en note que vous pouvez utiliser [https://go.dev/play/](https://go.dev/play/) comme un [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) pour tester et coder dans votre navigateur, sans même avoir à installer Go.
Sur la liste de lecteur des étudiants de Go se trouve le [code source de la
librairie standard](http://golang.org/src/pkg/). Bien documentée, elle démontre
librairie standard](https://go.dev/src/). Bien documentée, elle démontre
le meilleur de la clarté de Go, le style ainsi que ses expressions. Sinon, vous
pouvez cliquer sur le nom d'une fonction dans [la
documentation](http://golang.org/pkg/) et le code source apparaît!
documentation](https://go.dev/pkg/) et le code source apparaît!
Une autre excellente ressource pour apprendre est [Go par l'exemple](https://gobyexample.com/).

View File

@ -33,6 +33,21 @@ let myInt = 5
let myFloat = 3.14
let myString = "hello" // note that no types needed
// Mutable variables
let mutable a=3
a <- 4 // a is now 4.
// Somewhat mutable variables
// Reference cells are storage locations that enable you to create mutable values with reference semantics.
// See https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/reference-cells
let xRef = ref 10
printfn "%d" xRef.Value // 10
xRef.Value <- 11
printfn "%d" xRef.Value // 11
let a=[ref 0; ref 1] // somewhat mutable list
a[0].Value <- 2
// ------ Lists ------
let twoToFive = [2; 3; 4; 5] // Square brackets create a list with
// semicolon delimiters.

View File

@ -583,7 +583,8 @@ $ git rm /pather/to/the/file/HelloWorld.c
```
### blame
Examine specific parts of the code's history and find out who was the last author to modify that line
Examine specific parts of the code's history and find out who was the last author to modify that line.
```bash
# find the authors on the latest modified lines
$ git blame google_python_style.vim

View File

@ -46,7 +46,7 @@ package main
import (
"fmt" // A package in the Go standard library.
"io/ioutil" // Implements some I/O utility functions.
"math" // Math library with local alias m.
m "math" // Math library with local alias m.
"net/http" // Yes, a web server!
"os" // OS functions like working with the file system
"strconv" // String conversions.
@ -95,7 +95,7 @@ can include line breaks.` // Same string type.
// Non-ASCII literal. Go source is UTF-8.
g := 'Σ' // rune type, an alias for int32, holds a unicode code point.
f := 3.14195 // float64, an IEEE-754 64-bit floating point number.
f := 3.14159 // float64, an IEEE-754 64-bit floating point number.
c := 3 + 4i // complex128, represented internally with two float64's.
// var syntax with initializers.
@ -130,7 +130,7 @@ can include line breaks.` // Same string type.
// Because they are dynamic, slices can be appended to on-demand.
// To append elements to a slice, the built-in append() function is used.
// First argument is a slice to which we are appending. Commonly,
// the array variable is updated in place, as in example below.
// the slice variable is updated in place, as in example below.
s := []int{1, 2, 3} // Result is a slice of length 3.
s = append(s, 4, 5, 6) // Added 3 elements. Slice now has length of 6.
fmt.Println(s) // Updated slice is now [1 2 3 4 5 6]
@ -357,7 +357,7 @@ func learnInterfaces() {
// Functions can have variadic parameters.
func learnVariadicParams(myStrings ...interface{}) {
// Iterate each value of the variadic.
// The underbar here is ignoring the index argument of the array.
// The underscore here is ignoring the index argument of the array.
for _, param := range myStrings {
fmt.Println("param:", param)
}
@ -456,21 +456,21 @@ func requestServer() {
## Further Reading
The root of all things Go is the [official Go web site](http://golang.org/).
The root of all things Go is the [official Go web site](https://go.dev/).
There you can follow the tutorial, play interactively, and read lots.
Aside from a tour, [the docs](https://golang.org/doc/) contain information on
Aside from a tour, [the docs](https://go.dev/doc/) contain information on
how to write clean and effective Go code, package and command docs, and release history.
The [Go language specification](https://golang.org/ref/spec) itself is highly recommended. It's easy to read
The [Go language specification](https://go.dev/ref/spec) itself is highly recommended. It's easy to read
and amazingly short (as language definitions go these days.)
You can play around with the code on [Go playground](https://play.golang.org/p/tnWMjr16Mm). Try to change it and run it from your browser! Note that you can use [https://play.golang.org](https://play.golang.org) as a [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) to test things and code in your browser, without even installing Go.
You can play around with the code on [Go playground](https://go.dev/play/p/tnWMjr16Mm). Try to change it and run it from your browser! Note that you can use [https://go.dev/play/](https://go.dev/play/) as a [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) to test things and code in your browser, without even installing Go.
On the reading list for students of Go is the [source code to the standard
library](http://golang.org/src/pkg/). Comprehensively documented, it
library](https://go.dev/src/). Comprehensively documented, it
demonstrates the best of readable and understandable Go, Go style, and Go
idioms. Or you can click on a function name in [the
documentation](http://golang.org/pkg/) and the source code comes up!
documentation](https://go.dev/pkg/) and the source code comes up!
Another great resource to learn Go is [Go by example](https://gobyexample.com/).

View File

@ -3,6 +3,7 @@ language: Haskell
filename: learnhaskell.hs
contributors:
- ["Adit Bhargava", "http://adit.io"]
- ["Stanislav Modrak", "https://stanislav.gq"]
---
Haskell was designed as a practical, purely functional programming
@ -602,6 +603,6 @@ qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
There are two popular ways to install Haskell: The traditional [Cabal-based installation](http://www.haskell.org/platform/), and the newer [Stack-based process](https://www.stackage.org/install).
You can find a much gentler introduction from the excellent
[Learn you a Haskell](http://learnyouahaskell.com/),
[Learn you a Haskell](http://learnyouahaskell.com/) (or [up-to-date community version](https://learnyouahaskell.github.io/)),
[Happy Learn Haskell Tutorial](http://www.happylearnhaskelltutorial.com/) or
[Real World Haskell](http://book.realworldhaskell.org/).

574
hocon.html.markdown Normal file
View File

@ -0,0 +1,574 @@
---
language: hocon
filename: learnhocon.conf
contributors:
- [TehBrian, 'https://tehbrian.xyz']
---
Human-Optimized Configuration Object Notation, or HOCON, is a configuration and
data serialization format designed to be easily editable by humans.
It's a superset of JSON, meaning that any valid JSON is valid HOCON, but it
differs in being much less pedantic and opinionated. With its flexible yet
easily determinable syntax, resulting configuration files are often much less
noisy than some other formats.
Additionally, its support for comments makes it much better suited for
user-facing configurations than JSON.
```hocon
// Comments can either look like this,
# or they can look like this.
// Anything after // or # is a comment.
##################
### THE BASICS ###
##################
# Everything in HOCON is either a key, a value, or a separator.
# : and = are separators. They separate the key from the value.
key: value
another_key = another_value
# You can use either separator with or without whitespace on either side.
colon1:value
colon2: value
colon3 : value
equals1=value
equals2= value
equals3 = value
# As you'll see, HOCON is very nonrestrictive regarding its syntax style.
# HOCON also isn't opinionated on how keys look.
THIS_IS_A_VALID_KEY: value
this-is-also-a-valid-key: value
keys can have spaces too: value
or even numbers like 12345: value
"you can even quote keys if you'd like!": value
# A key, followed by any separator, and then finally a value, is called a field.
this_entire_line_is: a field
###################
### VALUE TYPES ###
###################
# The types that a value can be are string, number, object, array, boolean, and
# null. Every value type except for array and object are called simple values.
## SIMPLE VALUES ##
quoted_string: "I like quoting my strings."
unquoted_string: I don't like quoting my strings.
# Special characters that cannot be used in unquoted strings are:
# $ " { } [ ] : = , + # ` ^ ? ! @ * &
# Unquoted strings do not support any kind of escaping. If using one of those
# special characters is desired, use a quoted string.
multi-line_string: """
This entire thing is a string!
One giant, multi-line string.
You can put 'single' and "double" quotes without it being invalid.
"""
number: 123
negative: -123
fraction: 3.1415926536
scientific_notation: 1.2e6 // same as 1.2 * (10^6)
boolean: true # or false
empty: null
## ARRAYS ##
# Arrays hold lists of values.
# Values in arrays can be separated with commas..
array: [ 1, 2, 3, 4, 5 ]
fibonacci: [1,1,2,3,5,8,13]
multiples_of_5: [5, 10, 15, 20,] # Notice the trailing comma. That's okay here.
# or newlines..
friends: [
"Brian"
"Sophie"
"Maya"
"Sabina"
]
# or both!
ingredients: [
"Egg",
"Sugar",
"Oil",
"Flour", # Notice the trailing comma. That's okay here too.
]
# Once again, HOCON has a very loose syntax. Use whichever style you prefer.
no newline before or after bracket: ["This"
"is"
"an"
"array!"]
# Just like any other value, arrays can hold other arrays.
array in array: [ [1, 2, 3], ["a", "b", "c"] ]
array in array in array: [ [ [1, 2], [8, 9] ], [ ["a", "b" ], ["y", "z"] ] ]
## OBJECTS ##
# Objects hold fields.
# Just like arrays, fields in objects can be separated with commas..
object: { key: value, another_key: another_value }
server_connection: {ip: "127.0.0.1", port: 80}
first: {letter: a, number: 1,} # Notice the trailing comma.
# or newlines..
power_grid: {
max_capacity: 15000
current_power: 1200
}
# or both!
food_colors: {
carrot: orange,
pear: green,
apple: red,
plum: purple,
banana: yellow, # Trailing commas are okay here too!
}
# Arrays can hold objects just like any other value type.
coworkers: [
{
name: Jeff
age: 27
},
{
name: Henry
age: 35
},
{
name: Timmy
age: 12
}
]
# The field separator may be omitted if the key is followed by {
no_separator {
key: value
speed_of_light: very fast
ten: 10
# Objects can go inside other objects just like any other value.
another_object {
twenty: 20
speed_of_sound: also pretty fast
}
}
# In fact, the entirety of any HOCON document is an actually just an object.
# That object is called the root object. The only difference between it and any
# other object is that the curly brackets at the top and bottom of the document
# may be omitted.
# This means that HOCON documents can be formatted in the same way that
# regular objects can be formatted, including separating fields with commas
# rather than with newlines.
# Additionally, while the entirety of a HOCON document can be and is usually an
# object, it can also be an array. If it is an array, the opening and closing
# brackets at the top and bottom of the document must be explicitly written.
######################
### DUPLICATE KEYS ###
######################
is_happy: false
# If there is a duplicate key, the new value overrides the previous value.
is_happy: true
online_users: [Jacob, Mike]
# Same with arrays.
online_users: [Jacob, Mike, Henry]
# For objects, it's a bit different.
my_car: {
color: blue
speed: 9001
passengers: null
engine: {
running: true
temperature: 137
}
}
# If there is a duplicate key and both values are objects,
# then the objects are merged.
my_car: {
// These fields are added to the old, previous object.
nickname: "My Favorite Car"
type: 2-door sedan
// Since the value of this duplicate key is NOT an object,
// it simply overrides the previous value.
speed: 60
// Same with arrays. They override, not merge.
passengers: ["Nate", "Ty"]
// This object is recursively merged with the other object.
engine: {
// These two fields are added to the previous object.
type: gas
oil_level: 10
// This field overrides the previous value.
temperature: 179
}
}
# Object merging is done two at a time. That is to say, the first two objects
# merge into one, then that object merges with the next object, and so on.
# Because of this, if you set a field with an object value to a non-object value
# and then back to an object value, the new object will completely override any
# previous value.
// Null, a non-object value, completely overrides the object value.
my_car: null
// Then, this object completely overrides null.
my_car: {
nickname: "My New Car"
type: 4-door minivan
color: gray
speed: 90
passengers: ["Ayden", "Liz"]
}
###########################
### VALUE CONCATENATION ###
###########################
## SIMPLE VALUE CONCATENATION ##
# Simple values (all value types except objects and arrays) separated by
# whitespace are concatenated into a single string. The whitespace between
# values is preserved.
number_concatenation: 1 2 3 12.5 -3 2e5 // same as: "1 2 3 12.5 -3 2e5"
boolean_concat: true false true // "true false true"
null_concat: null null null // "null null null"
mixed_concat: 1 true null // "1 true null"
# String value concatenation can appear anywhere that a quoted string can.
number_concat_in_array: [1 2, 3 4, 5 6] // same as: ["1 2", "3 4", "5 6"]
# In fact, unquoted strings are actually just string value concatenations.
unquoted_string_concat: his name is jeff // same as: "his name is jeff"
# Going further, even keys that are unquoted strings are actually just string
# value concatenations.
this is a key: value // the KEY is the same as: "this is a key"
# The following field is identical to the field above.
"this is a key": value
# Quoted strings can also be concatenated. This will be useful later,
# when we cover substitutions.
quoted_string_concat: "her"" name" "is ""jenna" // same as: "her name is jenna"
# Notice that the whitespace (or lack thereof) between values is preserved.
## ARRAY CONCATENATION ##
# Arrays separated by whitespace are merged into a single array.
array_concat: [1, 2, 3] [4, 5, 6] // same as: [1, 2, 3, 4, 5, 6]
# Arrays cannot be concatenated with a non-array value.
//array_concat: true [false] results in an error
//array_concat: 1 [2] results in an error
## OBJECT CONCATENATION ##
# Objects separated by whitespace are merged into a single object.
# The merge functionality is identical to that of duplicate key object merging.
lamp: {on: true} {color: tan} // same as: {on: true, color: tan}
# Similarly to arrays, objects cannot be concatenated with a non-object value.
//object_concat: true {on: false} results in an error
//object_concat: 1 {number: 2} results in an error
########################
### PATH EXPRESSIONS ###
########################
# Path expressions are used to write out a path through the object graph.
# Think of it as navigating through objects to a specific field.
# Each object to traverse through is called an element, and each element is
# separated with a period.
country: {
city: {
neighborhood: {
house: {
name: "My House"
address: 123 Example Dr.
}
}
}
}
# For example, the path to the address of the house could be written as:
# country.city.neighborhood.house.address
# Country, city, neighborhood, house, and address are all elements.
# Path expressions are used in two places: substitutions (which will be
# covered in a moment), and as keys.
# That's right: keys themselves can also be path expressions.
foo: {
bar: {
baz: {
number: 12
}
}
}
# Rather than tediously specifying each object, a path expression can be used.
# The following field represents the same object found above.
foo.bar.baz.number: 12
# Fields and objects specified with path expressions are merged in the same way
# that any object is usually merged.
foo.bar.baz.bool: true
// the object foo's value is: foo { bar { baz { number: 12, bool: true } } }
#####################
### SUBSTITUTIONS ###
#####################
# Substitutions refer to a specific value from some path expression.
# They're only allowed in values, not keys or nested inside other substitutions.
me: {
favorite_animal: parrots
favorite_food: cookies
}
# The syntax for a substitution is either ${path_expression} or
# ${?path_expression}. The latter syntax will be discussed in a moment.
my_fav_animal: ${me.favorite_animal}
my_fav_food: ${me.favorite_food}
# Substitutions are not parsed inside quoted strings. To get around this,
# either use an unquoted string or value concatenation.
animal_announcement: My favorite animal is ${my_fav_animal}
// the value is: My favorite animal is parrots
food_announcement: "My favorite food is "${my_fav_food}"!"
// the value is: "My favorite food is cookies!"
# Substitutions are parsed last in the document. Because of this, you can
# reference a key that hasn't been defined yet.
color_announcement: "My favorite color is" ${my_fav_color}"!"
// the value is: "My favorite color is blue!"
my_fav_color: blue
# Another effect of substitutions being parsed last is that substitutions will
# always use the latest, as in last, value assigned in the entire document,
# which includes merged objects.
color: green
their_favorite_color: ${color} // the value is: orange
color: orange
random_object: {
number: 12
}
the_number: ${random_object.number} // the value is: 15
random_object: {
number: 15
}
###############################
### UNDEFINED SUBSTITUTIONS ###
###############################
# A substitution using the ${path_expression} syntax with an undefined path
# expression, meaning a path expression that does not point to a defined value,
# is invalid and will therefore generate an error.
//${does.not.exist} will throw an error
# However, an undefined substitution using the ${?path_expression} syntax
# has different behavior depending on what it is the value of.
request: {
# If it is the value of a field, then the field will not be created.
response: ${?does.not.exist} // this field won't be created and does not exist
type: HTTP
}
request: {
# Additionally, if it would have overridden a previous value, then the
# previous value remains unchanged.
type: ${?does.not.exist} // request.type is still HTTP
}
# If it is a value in an array, then it is simply not added.
values: [ 172, "Brian", ${?does.not.exist}, null, true, ]
// the value is: [ 172, "Brian", null, true ]
# If it is part of simple value concatenation, it acts as an empty string.
final_string: "String One"${?does.not.exist}"String Two"
// the value is: "String OneString Two"
# If it is part of array concatenation, it acts as an empty array.
final_array: [ 1, 2, 3 ] ${?does.not.exist} [ 7, 8, 9 ]
// the value is: [ 1, 2, 3, 7, 8, 9 ]
# If it is part of object concatenation, it acts as an empty object.
final_array: { a: 1 } ${?does.not.exist} { c: 3 }
// the value is: { a: 1, c: 3 }
######################################
### SELF-REFERENTIAL SUBSTITUTIONS ###
######################################
# Substitutions normally "look forward" and use the final value defined in the
# document. However, in cases when this would create a cycle, the substitution
# looks only backwards.
# A field which contains a substitution that points to itself or points to
# other fields that eventually point back to itself is called a
# self-referential field.
letters: "a b c" // the value is: "a b c"
letters: ${letters}" d" // "a b c d"
letters: ${letters}" e" // "a b c d e"
PATH: [/bin] // the value is: [/bin]
PATH: ${PATH} [/usr/bin] // [/bin, /usr/bin]
PATH: ${PATH} [/usr/local/bin] // [/bin, /usr/bin, /usr/local/bin]
x: "x" // the value is: "x"
y: ${x}"y" // "xy"
x: ${y}"z" // "xyz"
##########################
### += FIELD SEPARATOR ###
##########################
# In addition to : and =, there actually exists another separator: +=
# A field separated with += acts as a self-referential array concatenation.
# In short, it appends an element to a previously defined array.
a: [1]
b: [1]
# This field:
a += 2 // the value is: [1, 2]
# functions the same as:
b: ${?b} [2] // the value is: [1, 2]
USERS: [/usr/luke] // the value is: [/usr/luke]
USERS += /usr/devon // [/usr/luke, /usr/devon]
USERS += /usr/michael // [/usr/luke, /usr/devon, /usr/michael]
# Since += only appends elements to a previously existing array, if the previous
# value was not an array, an error will be generated.
OTHER_USERS: /usr/luke
//OTHER_USERS += /usr/devon results in an error
# Notice that the underlying substitution syntax used is ${?path}, not ${path}.
# Recall that, using the ${?} syntax, an undefined substitution in array
# concatenation acts as an empty array. Because of this, it is perfectly
# acceptable if the field that is being set is initially undefined.
//z: [] not necessary
z += 3 // the value is: [3]
z += 4 // the value is: [3, 4]
NEW_USERS += /usr/sandra // the value is: [/usr/sandra]
NEW_USERS += /usr/kennedy // [/usr/sandra, /usr/kennedy]
NEW_USERS += /usr/robin // [/usr/sandra, /usr/kennedy, /usr/robin]
################
### INCLUDES ###
################
# Includes allow you to "import" one HOCON document into another.
# An include statement consists of the unquoted string "include" followed by
# whitespace and then a resource name, which is one of the following:
# - a single quoted string which is heuristically interpreted as a URL,
# filename, or a Java classpath resource.
# - url(), file(), or classpath(), with the parentheses surrounding a quoted
# string which is either a URL, filename, or classpath resource respectively.
# - required(), with the parentheses surrounding one of the above.
include "https://example.com/config.conf"
include "/foo/bar/config.conf"
include "config.conf"
include url("https://example.com/config.conf")
include file("/foo/bar/config.conf")
include classpath("config.conf")
# If the included file does not exist, it will be silently ignored and act as if
# it were an empty object. However, if it is wrapped around required(), then
# parsing will explicitly error if the file cannot be resolved.
//include required("doesnt_exist.conf") will error
//include required(url("https://example.com/doesnt_exist.conf")) will error
//include required(file("doesnt_exist.conf")) will error
//include required(classpath("doesnt_exist.conf")) will error
# The file specified by the include statement is called the included file, and
# the file which contains the include statement is called the including file.
# Including a file functions as if you directly replaced the include statement,
# wherever it may be, with the contents of the included file's root object.
# An included file must have an object as its root value and not an array.
# If the included file has an array as its root value, then it is invalid and
# an error will be generated.
# Pretend that the following is in a file called user_config.conf:
username: RandomUser1337
auto_login: true
color_theme: dark
screensaver: {
image: usr/images/screensaver.jpg
turn_on_after: 1m
}
# And then we include that file.
include file("user_config.conf")
# We can now reference values from that file!
path_to_user_screensaver: ${screensaver.image} //
greeting: "Welcome, "${username}"!" // the value is: "Welcome, RandomUser1337!"
# Duplicate keys override as they normally do.
status: "Auto Login: "${auto_login} // the value is: "Auto Login: true"
auto_login: false
status: "Auto Login: "${auto_login} // the value is: "Auto Login: false"
# Object merging is also the same as usual.
screensaver: {
// This gets added to the screensaver object.
enable_during_day: false
// This overrides the previous value.
turn_on_after: 30s
}
# Include statements can appear in place of a field. Anywhere that a field
# could appear, an include statement could appear as well.
# Pretend that the following is in a file called server_settings.conf:
max_connections: 10
url: example.com
port: 80
admin_page: {
username: admin
password: pass12345
}
# And then we include that file nested inside another object.
websites: {
my_epic_website: {
include file("server_settings.conf")
}
}
# Now, we can reference the contents of server_settings.conf as if they
# had been written directly into the object my_epic_website.
server_port: ${websites.my_epic_website.port}
the_password: "The password is: "${websites.my_epic_website.admin_page.password}
// the value is: The password is: pass12345
max_conn: "Max Connections: "${websites.my_epic_website.max_connections}
// the value is: Max Connections: 10
```
### More Resources
+ [Official HOCON Specification](https://github.com/lightbend/config/blob/master/HOCON.md)
+ [HOCON Playground](https://hocon-playground.herokuapp.com)

120
httpie.html.markdown Normal file
View File

@ -0,0 +1,120 @@
---
category: tool
tool: httpie
contributors:
- ["Adaías Magdiel", "https://github.com/AdaiasMagdiel"]
filename: learn-httpie.sh
---
HTTPie is a powerful command-line HTTP client designed for easy interaction
with HTTP servers. It provides a simple and intuitive interface, making it an
excellent tool for developers, testers, and system administrators.
## Basic Usage
HTTPie follows a simple syntax: http [flags] [METHOD] URL [items].
```bash
http GET https://api.example.com/posts
```
You can print the request without sending it by using the `--offline` flag.
```bash
http --offline https://api.example.com/posts
```
### URL shortcuts for `localhost`
HTTPie supports a curl-like shorthand for localhost. For instance, ":3000"
expands to "http://localhost:3000". If the port is omitted, it assumes port 80.
```bash
http :/users # http://localhost/users
http :5000/rss # http://localhost:5000/rss
```
### Optional GET and POST
If you don't specify the METHOD, the HTTPie will use:
- GET for requests without body
- POST for requests with body
```bash
http https://api.example.com/tags # GET tags
http https://api.example.com/tags title="Tutorial" slug="tutorial" # POST a new tag
```
## Querystring Parameters
If you're manually adding query string parameters in the terminal, try the
`param==value` syntax. It avoids shell escaping for & separators and
automatically URL-escapes special characters in parameter names and values.
This differs from parameters in the full URL, which HTTPie doesn't modify.
```bash
http https://api.example.com/search q==httpie per_page==20
```
## Sending Data
You can send data in various formats such as JSON, form data, or files.
### JSON Data
```bash
http POST https://api.example.com/posts title="Hello" body="World"
```
### Form Data
```bash
http -f POST https://api.example.com/submit name=John email=john@example.com
```
### Files
```bash
http --form POST https://api.example.com/upload file@/path/to/file.txt
```
## Headers and Authentication
HTTPie allows you to set headers and handle authentication easily.
### Headers
```bash
http GET https://api.example.com/posts Authorization:"Bearer Token" User-Agent:"HTTPie"
```
### Basic Authentication
```bash
http -a username:password GET https://api.example.com/protected
```
### Bearer Authentication
```bash
https -A bearer -a token https://api.example.com/admin
```
## Response Handling
HTTPie provides various options for handling responses.
```bash
http GET https://api.example.com/data Accept:application/json # Pretty Print JSON
http GET https://api.example.com/image --output image.png # Save Response to File
http --follow GET https://example.com # Follow Redirects
```
## Further Reading
- [Official Documentation](https://httpie.io/docs/cli).
- [Github](https://github.com/httpie).

View File

@ -89,7 +89,7 @@ func learnTypes() {
g := 'Σ' // rúna(rune) típus, megegyezik az uint32-vel, egy UTF-8 karaktert
// tárol
f := 3.14195 // float64, az IEEE-754 szabványnak megfelelő 64-bites
f := 3.14159 // float64, az IEEE-754 szabványnak megfelelő 64-bites
// lebegőpontos szám
c := 3 + 4i // complex128, belsőleg két float64-gyel tárolva
@ -325,7 +325,7 @@ func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
## További olvasmányok
Minden Go-val kapcsolatos megtaláható a [hivatalos Go weboldalon](http://golang.org/).
Minden Go-val kapcsolatos megtaláható a [hivatalos Go weboldalon](https://go.dev/).
Ott követhetsz egy tutorialt, játszhatsz a nyelvvel az interneten, és sok érdekességet olvashatsz.
A nyelv specifikációját kifejezetten érdemes olvasni, viszonylag rövid és sokat tanul belőle az ember.

View File

@ -174,10 +174,10 @@ True ; => True
; create lexical bindings with `let', all variables defined thusly
; have local scope
(let [[nemesis {"superman" "lex luther"
(let [nemesis {"superman" "lex luther"
"sherlock" "moriarty"
"seinfeld" "newman"}]]
(for [(, h v) (.items nemesis)]
"seinfeld" "newman"}]
(for [[h v] (.items nemesis)]
(print (.format "{0}'s nemesis was {1}" h v))))
;; classes

View File

@ -4,7 +4,7 @@ contributors:
- ["Ryan Mavilia", "http://unoriginality.rocks/"]
translators:
- ["Rizky Luthfianto", "http://github.com/rilut"]
filename: asciidoc-id.md
filename: asciidoc-id.adoc
lang: id-id
---

View File

@ -6,7 +6,7 @@ contributors:
translators:
- ["Ale46", "https://github.com/ale46"]
lang: it-it
filename: asciidoc-it.md
filename: asciidoc-it.adoc
---
AsciiDoc è un linguaggio di markup simile a Markdown e può essere usato per qualsiasi cosa, dai libri ai blog. Creato nel 2002 da Stuart Rackman, questo linguaggio è semplice ma permette un buon numero di personalizzazioni.

View File

@ -91,7 +91,7 @@ può includere andata a capo.` // Sempre di tipo stringa.
// Stringa letterale non ASCII. I sorgenti Go sono in UTF-8.
g := 'Σ' // Il tipo runa, alias per int32, è costituito da un code point unicode.
f := 3.14195 // float64, un numero in virgola mobile a 64-bit (IEEE-754)
f := 3.14159 // float64, un numero in virgola mobile a 64-bit (IEEE-754)
c := 3 + 4i // complex128, rappresentato internamente con due float64.
@ -422,9 +422,9 @@ func richiediServer() {
## Letture consigliate
La risorsa più importante per imparare il Go è il [sito ufficiale di Go](http://golang.org/).
La risorsa più importante per imparare il Go è il [sito ufficiale di Go](https://go.dev/).
Qui puoi seguire i tutorial, scrivere codice in modo interattivo, e leggere tutti i dettagli.
Oltre al tour, [la documentazione](https://golang.org/doc/) contiene informazioni su
Oltre al tour, [la documentazione](https://go.dev/doc/) contiene informazioni su
come scrivere ottimo codice in Go, documentazione sui package e sui comandi, e
la cronologia delle release.
@ -432,17 +432,17 @@ Anche il documento che definisce il linguaggio è un'ottima lettura. E' semplice
da leggere e incredibilmente corto (rispetto ad altri documenti riguardanti
la creazione di linguaggi).
Puoi giocare con il codice visto finora nel [Go playground](https://play.golang.org/p/Am120Xe7qf).
Puoi giocare con il codice visto finora nel [Go playground](https://go.dev/play/p/Am120Xe7qf).
Prova a cambiarlo e ad eseguirlo dal browser!
Osserva che puoi usare [https://play.golang.org](https://play.golang.org) come
Osserva che puoi usare [https://go.dev/play/](https://go.dev/play/) come
una [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) per scrivere
codice all'interno del browser, senza neanche installare Go!
Una lettura importante per capire Go in modo più profondo è il [codice
sorgente della libreria standard](http://golang.org/src/pkg/). Infatti è
sorgente della libreria standard](https://go.dev/src/). Infatti è
molto ben documentato e costituisce quanto più chiaro e conciso ci sia riguardo
gli idiomi e le buone pratiche del Go. Inoltre, clickando sul nome di una
funzione [nella documentazione](http://golang.org/pkg/) compare il relativo
funzione [nella documentazione](https://go.dev/pkg/) compare il relativo
codice sorgente!
Un'altra ottima risorsa per imparare è [Go by example](https://gobyexample.com/).

View File

@ -253,7 +253,7 @@ Ma non è comunemente usato.
Le immagini sono inserite come i link ma con un punto esclamativo inserito prima delle parentesi quadre!
```md
![Qeusto è il testo alternativo per l'immagine](http://imgur.com/myimage.jpg "Il titolo opzionale")
![Questo è il testo alternativo per l'immagine](http://imgur.com/myimage.jpg "Il titolo opzionale")
```
E la modalità a riferimento funziona esattamente come ci si aspetta
@ -307,4 +307,4 @@ Col 1 | Col2 | Col3
```
---
Per altre informazioni, leggete il post ufficiale di John Gruber sulla sintassi [qui](http://daringfireball.net/projects/markdown/syntax) e il magnifico cheatsheet di Adam Pritchard [qui](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).
Per altre informazioni, leggete il post ufficiale di John Gruber sulla sintassi [qui](https://daringfireball.net/projects/markdown/syntax) e il magnifico cheatsheet di Adam Pritchard [qui](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).

View File

@ -0,0 +1,193 @@
---
category: tool
tool: composer
contributors:
- ["Brett Taylor", "https://github.com/glutnix"]
translator:
- ["Agostino Fiscale", "https://github.com/agostinofiscale"]
lang: it-it
filename: LearnComposer-it.sh
---
[Composer](https://getcomposer.org/) è uno strumento che ti aiuta a gestire le
dipendenze in PHP. Ti permette di dichiarare le librerie utilizzate dal tuo
progetto e di installarle/aggiornarle per te.
# Installazione
```sh
# Se installi l'eseguibile in una cartella...
curl -sS https://getcomposer.org/installer | php
# ...dovrai utilizzare questo approccio, invocando Composer in questo modo:
php composer.phar about
# Se installi l'eseguibile nella directory ~/bin/composer
# Nota: assicurati che ~/bin si trovi nella variabile di ambiente PATH
curl -sS https://getcomposer.org/installer | php -- --install-dir=~/bin --filename=composer
```
Gli utenti Windows possono seguire le istruzioni per [installarlo su Windows](https://getcomposer.org/doc/00-intro.md#installation-windows).
## Assicuriamoci che il tutto abbia funzionato correttamente
```sh
# Controlla la versione e la lista delle opzioni disponibili
composer
# Ottieni ulteriori informazioni riguardanti le opzioni
composer help require
# Controlla se Composer ha tutto il necessario per funzionare come si deve
# e se è aggiornato correttamente all'ultima versione disponibile.
composer diagnose
composer diag # alias
# Aggiorna Composer all'ultima versione disponibile
composer self-update
composer self # alias
```
# Cominciamo ad usare Composer
Composer memorizza le dipendenze necessarie nel file `composer.json`.
Puoi editare questo file manualmente, ma è meglio che lasci che Composer se ne
occupi per te.
```sh
# Crea un nuovo progetto nella cartella attuale
composer init
# ti verranno chieste delle domande interrative riguardanti il tuo progetto.
# Puoi evitare di rispondere almeno che tu non stia sviluppando altri progetti
# che che possano dipendere da questo.
# Se il file composer.json esiste già, scarichera' le dipendenze necessarie
composer install
# Scarica le dipendenze necessarie per l'ambiente di produzione
composer install --no-dev
# Aggiunge una dipendenza per l'ambiente di produzione
composer require guzzlehttp/guzzle
# automaticamente selezionera' l'ultima versione, la scarichera' e la aggiungera'
# come dipendenza nell'apposito campo del file composer.json.
composer require guzzlehttp/guzzle:6.0.*
# scarichera' l'ultima versione disponibile corrispondente al pattern (es. 6.0.2)
# e lo aggiungera' come dipendenza nell'apposito campo del file composer.json.
composer require --dev phpunit/phpunit:~4.5.0
# aggiungera' la dipendenza nell'ambiente di sviluppo utilizzando l'ultima versione
# disponibile nel range >=4.5.0 e < 4.6.0.
composer require-dev phpunit/phpunit:^4.5.0
# aggiungera' la dipendenza nell'ambiente di sviluppo utilizzando l'ultima versione
# disponibile nel range >=4.5.0 and < 5.0.
# Per ulteriori dettagli riguardo le versioni, vedi [la documentazione di Composer sulle versioni](https://getcomposer.org/doc/articles/versions.md) per ulteriori dettagli
# Per vedere quali pacchetti sono installabili e quali sono gia' stati installati
composer show
# Per vedere solo quali pacchetti sono gia' stati installati
composer show --installed
# Per trovare una dipendenza con 'mailgun' nel suo nome o nella descrizione.
composer search mailgun
```
[Packagist.org](https://packagist.org/) è il repository principale per i pacchetti
di Composer. Cerca qui pacchetti di terze-parti utili per il tuo progetto.
## `composer.json` vs `composer.lock`
Il file `composer.json` memorizza la versione che si preferisce per ogni dipendenza,
insieme ad altre informazioni.
Il file `composer.lock` memorizza quale versione è stata scaricata per ogni
dipendenza. Non editare mai questo file.
Se includi il file `composer.lock` nella tua repository git, ogni sviluppatore
andra' a installare la versione attualmente utilizzata dal tuo progetto per
ogni dipendenza. Anche quando una nuova versione è stata rilasciata, Composer
andra' a installare la versione registrata nel file lock.
```sh
# Se vuoi aggiornare tutte le dipendenze all'ultima versione che corrisponde al pattern descritto
composer update
# Se vuoi scaricare l'ultima versione di una particolare dipendenza:
composer update phpunit/phpunit
# Se vuoi cambiare la versione di una una dipendenza, potresti dover rimuovere
# quello attualmente selezionato, per poi richiedere quello corretto successivamente,
# attraverso i seguenti comandi:
composer remove --dev phpunit/phpunit
composer require --dev phpunit/phpunit:^5.0
```
## Autoloader
Composer crea una classe autoloader che puoi richiamare nella tua applicazione.
Puoi creare instanze delle classi tramite il loro namespace.
```php
require __DIR__ . '/vendor/autoload.php';
$mailgun = new Mailgun\Mailgun("key");
```
### PSR-4 Autoloader
Puoi aggiungere i tuoi namespace all'autoloader.
Nel file `composer.json`, aggiungi il campo "autoload":
```json
{
"autoload": {
"psr-4": {"Acme\\": "src/"}
}
}
```
Questo dira' all'autoloader di controllare ogni risorsa che corrisponde al
namespace `\Acme\` all'interno della cartella `src`.
In alternativa puoi usare [PSR-0, una Classmap o una lista di file da includere](https://getcomposer.org/doc/04-schema.md#autoload).
Inoltre e' possibile anche utilizzare `autoload-dev` dedicato all'ambiente di sviluppo.
Quando aggiungi o modifichi una chiave, dovrai ricompilare l'autoload attraverso:
```sh
composer dump-autoload
composer dump # alias
# Ottimizza i pacchetti PSR0 e PSR4 per essere caricati anche con le classmap.
# Sara' lento, ma migliorera' le performance in produzione.
composer dump-autoload --optimize --no-dev
```
# La cache di Composer
```sh
# Composer utilizzera i pacchetti scaricati anche per i progetti futuri. Per evitare che accada:
composer clear-cache
```
# Problemi?
```sh
composer diagnose
composer self-update
composer clear-cache
```
## Argomenti che non sono stati (ancora) discussi in questo tutorial
* Creare e distribuire pacchetti personali su Packagist.org o altrove
* Pre- e post- script hooks: eseguire operazioni quando vengono eseguiti degli eventi
### References
* [Composer - Dependency Manager for PHP](https://getcomposer.org/)
* [Packagist.org](https://packagist.org/)

View File

@ -5,7 +5,7 @@ contributors:
- ["Abel Salgado Romero", "https://twitter.com/abelsromero"]
translators:
- ["Ryota Kayanuma", "https://github.com/PicoSushi"]
filename: asciidoc-ja.md
filename: asciidoc-ja.adoc
lang: ja-jp
---

193
ja-jp/yaml-jp.html.markdown Normal file
View File

@ -0,0 +1,193 @@
---
language: yaml
filename: learnyaml-jp.yaml
contributors:
- [Leigh Brenecki, 'https://leigh.net.au']
- [Suhas SG, 'https://github.com/jargnar']
translators:
- [haru, 'https://haru52.com/']
lang: ja-jp
---
YAMLはデータのシリアライズ用言語で、
人間が直接読み書きしやすいようにデザインされています。
YAMLはJSONの厳格なスーパーセットで、
改行とインデントが構文的に意味を持つというPythonに似た仕様を追加しています。
しかしPythonとは異なりYAMLではインデントにタブ文字を使うことはできません。
```yaml
--- # ドキュメント開始
# YAMLのコメントはこんな感じです。
##############
# スカラー型 #
##############
# (ドキュメント全体を含む)ルートオブジェクトはマップになります。
# これは他言語における辞書型、ハッシュ、オブジェクトなどと等価です。
キー: 値
別のキー: 別の値。
数値: 100
指数表記: 1e+12
# 1 はbooleanでなく数値として解釈されます。
# もしbooleanとして解釈してほしい場合はtrueを使います
boolean: true
null値: null
スペースを 含む キー: 値
# 文字列をクォートで囲う必要がないことに注意してください。
# しかし囲うこともできます。
しかし: 'クォートで囲まれた文字列。'
'キーもクォートで囲えます。': "keyの中で ':' を使いたいときに有用です。"
シングルクォート: 'には ''1つの'' エスケープパターンがあります'
ダブルクォート: "には多くのエスケープパターンがあります:\", \0, \t, \u263A,
\x0d\x0a == \r\n, など、他にもあります。"
# UTF-8/16/32文字はエンコードされている必要があります
上付き2: \u00B2
# 複数行の文字列は(| を使う)「リテラルブロック」、
# または、('>' を使う)「折り畳みブロック」として書くことができます
リテラルブロック: |
この文章のブロック全体が「リテラルブロック」キーの値になり、
改行は保持されます。
リテラルはインデントを解除するまで続き、先頭行のインデント文字数分を
各行のテキストの先頭から取り除きます。
「よりインデントの深い」行はその分のインデントを保持します -
この2行はスペース4個分インデントされます。
折り畳みスタイル: >
この文章のブロック全体が「折り畳みスタイル」の値になります。
しかしこちらの場合、全ての改行がスペース1個に置き換わります。
直前のような空行は改行文字に変換されます。
「よりインデントの深い」行も改行を保持します -
このテキストは2行にわたって表示されます。
##################
# コレクション型 #
##################
# 入れ子を表現するにはインデントを使います。
# スペース2個のインデントが好まれますが必須ではありません
入れ子のマップ:
キー: 値
別のキー: 別の値
別の入れ子のマップ:
こんにちは: こんにちは
# マップのキーは文字列である必要はありません。
0.25: 小数のキー
# 複数行オブジェクトのような複雑なキーも使用可能です。
# ? の後にスペースを入れることで複雑なキーの開始を宣言できます。
? |
これはキーです
複数行あります
: そしてこれがその値です
# YAMLではシーケンスを複雑なキー構文で使うこともできます
# しかし、言語パーサーによってはエラーになるかもしれません
# 例
? - マンチェスター・ユナイテッド
- レアル・マドリード
: [2001-01-01, 2002-02-02]
# シーケンス(リストや配列と等価)はこんな感じです
# '-' はインデントとしてカウントしてください):
シーケンス:
- アイテム1
- アイテム2
- 0.5 # シーケンスには異なる型の値を混在させられます
- アイテム4
- キー: 値
別のキー: 別の値
-
- これはシーケンスです
- 別のシーケンス内部
- - - 入れ子のシーケンス表記は
- 折り畳めます
# YAMLはJSONのスーパーセットなので、
# JSON形式のマップとシーケンスを書くこともできます
jsonマップ: {"キー": "値"}
jsonシーケンス: [3, 2, 1, "発進"]
クォートは任意: {キー: [3, 2, 1, 発進]}
######################
# その他のYAMLの機能 #
######################
# YAMLには「アンカー」と呼ばれる便利な機能もあります。これによりコンテンツを
# ドキュメント内で簡単に複製できます。これらのキーはどちらも同じ値を持ちます:
アンカーされたコンテンツ: &anchor_name この文字列は2つのキーの値になります。
他のアンカー: *anchor_name
# アンカーは複製/継承プロパティとして使えます
ベース: &base
名前: みんな同じ名前を持ちます
# 記号 << はマージキー言語非依存型Merge Key Language-Independent Type
# と呼ばれます。これは指定された1つ以上のマップの全てのキーを現在のマップに
# 挿入することを示すために使われます。
foo:
<<: *base
年齢: 10
bar:
<<: *base
年齢: 20
# fooとbarも「名前 みんな同じ名前を持ちます」を持ちます
# YAMLにはタグもあり、明示的に型を宣言できます。
明示的な文字列: !!str 0.5
# 言語特有のタグを実装したパーサーもあり、例えばPythonの複素数型が使えます。
pythonの複素数型: !!python/complex 1+2j
# YAMLの複雑なキーでは言語特有のタグも使えます
? !!python/tuple [5, 7]
: 五十七
# Python上で {(5, 7): '五十七'} として扱われます
####################
# その他のYAMLの型 #
####################
# 文字列と数値がYAMLの理解できる唯一のスカラーではありません。
# ISO形式の日付や日時リテラルもパースされます。
日時: 2001-12-15T02:59:43.1Z
スペースを含む日時: 2001-12-14 21:59:43.10 -5
日付: 2002-12-14
# !!binaryタグは文字列の実体がバイナリblobのbase64エンコード表現であることを
# 示します。
gifファイル: !!binary |
R0lGODlhDAAMAIQAAP//9/X17unp5WZmZgAAAOfn515eXvPz7Y6OjuDg4J+fn5
OTk6enp56enmlpaWNjY6Ojo4SEhP/++f/++f/++f/++f/++f/++f/++f/++f/+
+f/++f/++f/++f/++f/++SH+Dk1hZGUgd2l0aCBHSU1QACwAAAAADAAMAAAFLC
AgjoEwnuNAFOhpEMTRiggcz4BNJHrv/zCFcLiwMWYNG84BwwEeECcgggoBADs=
# YAMLにはセット型もあり、それはこんな感じです
セット:
? アイテム1
? アイテム2
? アイテム3
または: {アイテム1, アイテム2, アイテム3}
# セットは値がnullのただのマップで、直前のセットは以下と等価です
セット2:
アイテム1: null
アイテム2: null
アイテム3: null
... # ドキュメント終了
```
### 補足資料
+ [YAML公式ウェブサイト](https://yaml.org/)
+ [オンラインYAMLバリデーター](http://www.yamllint.com/)

View File

@ -29,9 +29,9 @@ nil
# Typical style for symbols (identifiers-for / names-of things).
do-stuff
pants-on-fire!
foo->bar # Evidently for converting foos to bars.
foo->bar # Evidently for converting foos to bars.
fully-charged?
_ # Usually used as a dummy variable.
_ # Usually used as a dummy variable.
# Keywords are like symbols that start with a colon, are treated like
# constants, and are typically used as map keys or pieces of syntax in
@ -58,10 +58,11 @@ math/e # => 2.71828
"hello"
"hey\tthere" # contains a tab
# For multi-line strings, use one or more backticks. No escapes allowed.
# For multi-line strings, use one or more backticks. Backslash-escapes not
# recognized in these (bytes will be parsed literally).
``a long
multi-line
string`` # => "a long\nmulti-line\nstring"
string`` # => "a long\nmulti-line\nstring"
# Strings and data structures in Janet come in two varieties: mutable and
# immutable. The literal for the mutable variety is written with a `@` in
@ -72,7 +73,7 @@ string`` # => "a long\nmulti-line\nstring"
@`a multi-line
one here`
(string "con" "cat" "enate") # => "concatenate"
(string "con" "cat" "enate") # => "concatenate"
# To get a substring:
(string/slice "abcdefgh" 2 5) # => "cde"
@ -81,7 +82,8 @@ one here`
# See the string library for more (splitting, replacement, etc.)
# Arrays and Tuples ###########################################################
# Data Structures #############################################################
# Arrays and Tuples
# Arrays are mutable, tuples are immutable.
# Arrays (mutable)
@ -91,18 +93,19 @@ one here`
# Tuples (immutable)
# Note that an open paren usually indicates a function call, so if you want a
# literal tuple with parens, you need to "quote" it (with a starting single
# quote mark).
# quote mark)...
'(4 5 6)
[4 5 6] # ... or just use square brackets.
# Tables and Structs (AKA: "maps", "hashmaps", "dictionaries")
# Tables and Structs (associative data structures)
@{:a 1 :b 2 :c 3} # table (mutable)
{:a 1 :b 2 :c 3} # struct (immutable)
# To "pretty-print" these out, use `pp` instead of `print`.
# More about how to work with arrays/tuples and tables/structs below.
# Bindings ####################################################################
# ... or "Name Some Things!" (that is, bind a value to a symbol)
# Bind a value to a symbol.
(def x 4.7) # Define a constant, `x`.
x # => 4.7
(quote x) # => x (the symbol x)
@ -113,7 +116,7 @@ x # => 4.7
(set x 5.6) # Error, `x` is a constant.
(var y 10)
(set y 12) # Works, since `y` was made var.
(set y 12) # Works, since `y` was defined using `var`.
# Note that bindings are local to the scope they're called in. `let`
# creates a local scope and makes some bindings all in one shot:
@ -151,29 +154,29 @@ insect-friend # => bee
(% 5 3) # => 2 (remainder)
(- 5) # => -5 (or you can just write `-5`)
(++ i) # increments
(++ i) # increments (modifies `i`)
(-- i) # decrements
(+= i 3) # add 3 to `i`
(*= i 3) # triple `i`
# ... and so on for the other operations on numbers.
# If you don't want to mutate `i`, use `(inc i)` and `(dec i)`.
# Comparison
# = < > not= <= >=
(< 2 7 12) # => true
# Functions ###################################################################
# Call them:
(- 5 3) # => 2 (Yes, operators and functions work the same.)
(- 5 3) # => 2 (Operators and functions work the same way.)
(math/sin (/ math/pi 2)) # => 1
(range 5) # => @[0 1 2 3 4]
(range 5) # => @[0 1 2 3 4]
# Create them:
(defn mult-by-2
``First line of docstring.
Some more of the docstring.
Possibly more!``
Some more of the docstring.``
[x]
(print "Hi.")
(print "Will compute using: " x)
@ -206,7 +209,7 @@ n # => 3
# You might say that function bodies provide an "implicit do".
# Operations on data structures ###############################################
# (Making all these mutable so we can ... mutate them.)
# (Making all of these mutable so we can ... mutate them.)
(def s @"Hello, World!")
(def a @[:a :b :c :d :e])
(def t @{:a 1 :b 2})
@ -216,9 +219,9 @@ n # => 3
(length t) # => 2
# Getting values:
(s 7) # => 87 (which is the code point for "W")
(a 1) # => :b
(t :a) # => 1
(s 7) # => 87 (which is the code point for "W")
(a 1) # => :b
(t :a) # => 1
(keys t) # => @[:a :b]
(values t) # => @[1 2]
@ -227,14 +230,14 @@ n # => 3
(put a 2 :x) # @[:a :b :x :d :e]
(put t :b 42) # @{:a 1 :b 42}
# Adding & removing values (again, for mutable data structures):
# Adding and removing values (again, for mutable data structures):
(buffer/push-string s "??") # @"HeWlo, World!??"
(array/push a :f) # @[:a :b :x :d :e :f]
(array/pop a) # => :f, and it's also removed from `a`.
(put t :x 88) # @{:a 1 :b 42 :x 88}
# See the manual for a wide variety of functions for working with
# buffers/strings, arrays/tuples, and tables/struct.
# buffers/strings, arrays/tuples, and tables/structs.
# Flow control ################################################################
(if some-condition
@ -282,7 +285,7 @@ n # => 3
{:yar v} (print "matches key :yar! " v)
{:moo v} (print "matches key :moo! " v)
{:c v} (print "matches key :c! " v)
_ (print "no match")) # => prints "matches key :c! 3"
_ (print "no match")) # => prints "matches key :c! 3"
# Iterating ###################################################################
# Iterate over an integer range:
@ -312,7 +315,7 @@ n # => 3
(* x x))
(range 10))) # => @[0 4 16 36 64]
(reduce + 0 (range 5)) # => 10
(reduce + 0 (range 5)) # => 10
# ...and lots more (see the API docs).

View File

@ -91,6 +91,9 @@ public class LearnJava {
int numInt = scanner.nextInt();
// read long input
long numLong = scanner.nextLong();
// read float input
float numFloat = scanner.nextFloat();
// read double input
@ -123,6 +126,9 @@ public class LearnJava {
// <name1> = <name2> = <name3> = <val>
int barInt1, barInt2, barInt3;
barInt1 = barInt2 = barInt3 = 1;
// Shorthand for multiple declarations
int barInt4 = 1, barInt5 = 2;
/*
* Variable types
@ -182,7 +188,7 @@ public class LearnJava {
//
// BigInteger is a data type that allows programmers to manipulate
// integers longer than 64-bits. Integers are stored as an array of
// of bytes and are manipulated using functions built into BigInteger
// bytes and are manipulated using functions built into BigInteger
//
// BigInteger can be initialized using an array of bytes or a string.
BigInteger fooBigInteger = new BigInteger(fooByteArray);
@ -304,8 +310,8 @@ public class LearnJava {
///////////////////////////////////////
System.out.println("\n->Operators");
int i1 = 1, i2 = 2; // Shorthand for multiple declarations
int i1 = 1, i2 = 2;
// Arithmetic is straightforward
System.out.println("1+2 = " + (i1 + i2)); // => 3
System.out.println("2-1 = " + (i2 - i1)); // => 1
@ -314,7 +320,7 @@ public class LearnJava {
System.out.println("1/2.0 = " + (i1 / (double)i2)); // => 0.5
// Modulo
System.out.println("11%3 = "+(11 % 3)); // => 2
System.out.println("11%3 = " + (11 % 3)); // => 2
// Comparison operators
System.out.println("3 == 2? " + (3 == 2)); // => false
@ -368,7 +374,7 @@ public class LearnJava {
// While loop
int fooWhile = 0;
while(fooWhile < 100) {
while (fooWhile < 100) {
System.out.println(fooWhile);
// Increment the counter
// Iterated 100 times, fooWhile 0,1,2...99
@ -383,7 +389,7 @@ public class LearnJava {
// Increment the counter
// Iterated 100 times, fooDoWhile 0->99
fooDoWhile++;
} while(fooDoWhile < 100);
} while (fooDoWhile < 100);
System.out.println("fooDoWhile Value: " + fooDoWhile);
// For Loop

View File

@ -105,6 +105,10 @@ false;
"1, 2, " + 3; // = "1, 2, 3"
"Hello " + ["world", "!"]; // = "Hello world,!"
// ...which can result in some weird behaviour...
13 + !0; // 14
"13" + !0; // '13true'
// and are compared with < and >
"a" < "b"; // = true
@ -116,10 +120,6 @@ null == undefined; // = true
"5" === 5; // = false
null === undefined; // = false
// ...which can result in some weird behaviour...
13 + !0; // 14
"13" + !0; // '13true'
// You can access characters in a string with `charAt`
"This is a string".charAt(0); // = 'T'
@ -405,7 +405,7 @@ myObj = {
};
myObj.myFunc(); // = "Hello world!"
// What this is set to has to do with how the function is called, not where
// What `this` is set to has to do with how the function is called, not where
// it's defined. So, our function doesn't work if it isn't called in the
// context of the object.
var myFunc = myObj.myFunc;
@ -655,7 +655,7 @@ attached terminal
[Javascript: The Right Way][10] is a guide intended to introduce new developers
to JavaScript and help experienced developers learn more about its best practices.
[Javascript:Info][11] is a modern javascript tutorial covering the basics (core language and working with a browser)
[javascript.info][11] is a modern javascript tutorial covering the basics (core language and working with a browser)
as well as advanced topics with concise explanations.
@ -671,6 +671,7 @@ Mozilla Developer Network.
[5]: http://bonsaiden.github.io/JavaScript-Garden/
[6]: http://www.amazon.com/gp/product/0596805527/
[7]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
[8]: https://www.javascripttutorial.net/
[8]: http://eloquentjavascript.net/
[10]: http://jstherightway.org/
[11]: https://javascript.info/

270
jinja.html.markdown Normal file
View File

@ -0,0 +1,270 @@
---
language: Jinja
contributors:
- ["Adaías Magdiel", "https://github.com/AdaiasMagdiel"]
filename: learn-jinja.j2
---
## Getting Started with Jinja
Jinja is a fast, expressive, and extensible templating engine for Python
applications.
Jinja includes a lot of functionalities, such as:
- Template inheritance and inclusion;
- Defining and importing macros within templates;
- Security mechanisms to prevent XSS attacks;
- A sandboxed environment that can safely render untrusted templates;
- Extensible filters, tests, functions, and even syntax.
A Jinja template is simply a text file. Jinja doesn't require a specific
extension, but it's common to use `.j2` or `.jinja` to make it easier for
some IDEs.
There are a few kinds of delimiters. The default Jinja delimiters are configured
as follows:
- `{% ... %}` for Statements
- `{{ ... }}` for Expressions to print to the template output
- `{# ... #}` for Comments not included in the template output
```jinja
{# This is an example of a comment. #}
{#
You can use this syntax
to write multiline comments
as well.
#}
```
## VARIABLES
```jinja
{# You have the option to access variables from the context passed to the template #}
{{ foo }}
{#
Additionally, you can use a dot (.) to access attributes of a variable or
use Python syntax, using []
#}
{{ foo.bar }}
{{ foo['bar'] }}
{# Within the template, you can define variables as well #}
{% set name = "Magdiel" %}
{{ name }}
```
## Loops
```html
<h1>Members</h1>
<ul>
{% for user in users %}
<li>{{ user.username }}</li>
{% endfor %}
</ul>
<div>
{% for key, value in my_dict.items() %}
<p>{{ key }}</p> - <p>{{ value }}</p>
{% endfor %}
</div>
<div>
{% for idx, url in enumerate(urls) %}
<a href="{{ url }}">Go to url {{ idx + 1 }}</a>
{% endfor %}
</div>
```
## Conditionals
The if statement in Jinja is similar to the if statement in Python. It is
commonly used to check if a variable is defined, not empty, and not false in
its most basic form.
```html
{% if users %}
<ul>
{% for user in users %}
<li>{{ user.username }}</li>
{% endfor %}
</ul>
{% endif %}
{# For multiple branches, elif and else can be used like in Python. #}
{% if message.status == "error" %}
<p class="text-red-400">{{ message.content }}</p>
{% elif message.status == "success" %}
<p class="text-green-400">{{ message.content }}</p>
{% else %}
<p class="text-blue-400">{{ message.content }}</p>
{% endif %}
```
## Template Inheritance
One of the most powerful features of Jinja is template inheritance. You can
create a base layout with predefined blocks that you can extend in another file
and override with your own content.
```html
{# file: base.html.j2 #}
<!DOCTYPE html>
<html lang="en">
<head>
{% block head %}
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{% block title %}{% endblock title %} - Learning Jinja</title>
{% endblock head %}
</head>
<body>
<main>
{% block content %}{% endblock %}
{# the endblock tag doesn't need the name of the block #}
</main>
</body>
</html>
{# file: child.html.j2 #}
{% extends "base.html.j2" %}
{% block head %}
{{ super() }}
<script>
console.log("There's a console.log here")
</script>
{% endblock %}
{% block title %}Home{% endblock %}
{% block content %}
<h1>Index</h1>
<p>Welcome to my home homepage.</p>
{% endblock %}
{# RESULT #}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Home - Learning Jinja</title>
<script>
console.log("There's a console.log here")
</script>
</head>
<body>
<main>
<h1>Index</h1>
<p>Welcome to my home homepage.</p>
</main>
</body>
</html>
```
### Including Content
You can include content from another template on your current template using
the `{% include "template/path" %}` tag.
```html
{# file: footer.html.j2 #}
<footer>
<p>&copy; 2024 - John Doe</p>
</footer>
{# file: index.html.j2 #}
...
<body>
<main>
<h1>Hi! I'm John Doe!</h1>
</main>
{% include "footer.html.j2" %}
</body>
...
{# RESULT #}
...
<body>
<main>
<h1>Hi! I'm John Doe!</h1>
</main>
<footer>
<p>&copy; 2024 - John Doe</p>
</footer>
</body>
...
```
Variables passed to the main template can also be used in the include, as the
included template has access to the context of the main template.
```html
{# file: greetings.html.j2 #}
<p>I'm the {{ name }} and i like to {{ hobby }}.</p>
{# file: index.html.j2 #}
{% set name = "Captain Nemo" %}
{% set hobby = "navigate through the depths of the ocean" %}
<div>
{% include "greetings.html.j2" %}
</div>
{# RESULT #}
<div>
<p>I'm the Captain Nemo and i like to navigate through the depths of the ocean.</p>
</div>
```
## Macros
Macros are basically like functions in another languages. You can define macros with or without arguments and reuse them in various parts of your template.
```html
{% macro input(value="", type="text", placeholder="") -%}
<input type="{{ type }}" value="{{ value }}" placeholder="{{ placeholder }}">
{%- endmacro %}
<p>{{ input(placeholder="Your username") }}</p>
<p>{{ input(type="password") }}</p>
```
## Official Documentation
To learn more, access the [official documentation](https://jinja.palletsprojects.com/en/).

910
jq.html.markdown Normal file
View File

@ -0,0 +1,910 @@
---
category: tool
tool: jq
contributors:
- ["Jack Kuan", "https://github.com/kjkuan"]
filename: learnjq.sh
---
`jq` is a tool for transforming JSON inputs and generating JSON outputs. As a
programming language, jq supports boolean and arithmetic expressions, object
and array indexing; it has conditionals, functions, and even exception
handling... etc. Knowing jq enables you to easily write small programs that
can perform complex queries on JSON documents to find answers, make reports, or
to produce another JSON document for further processing by other programs.
> **NOTE**: This guide demonstrates the use of jq from the command line,
> specifically, under an environment running the Bash shell.
```bash
# When running jq from the command line, jq program code can be specified as the
# first argument after any options to `jq`. We often quote such jq program with
# single quotes (`'`) to prevent any special interpretation from the command line
# shell.
#
jq -n '# Comments start with # until the end of line.
# The -n option sets the input to the value, `null`, and prevents `jq`
# from reading inputs from external sources.
'
# Output:
# null
# By default jq reads from *STDIN* a stream of JSON inputs (values). It
# processes each input with the jq program (filters) specified at the command
# line, and prints the outputs of processing each input with the program to
# *STDOUT*.
#
echo '
"hello" 123 [
"one",
"two",
"three"
]
{ "name": "jq" }
' |
jq '. # <-- the jq program here is the single dot (.), called the identity
# operator, which stands for the current input.
'
# Output:
# "hello"
# 123
# [
# "one",
# "two",
# "three"
# ]
# {
# "name": "jq"
# }
# Notice that jq pretty-prints the outputs by default, therefore, piping
# to `jq` is a simple way to format a response from some REST API endpoint
# that returns JSON. E.g., `curl -s https://freegeoip.app/json/ | jq`
# Instead of processing each JSON input with a jq program, you can also
# ask jq to slurp them up as an array.
#
echo '1 "two" 3' | jq -s .
# Output:
# [
# 1,
# "two",
# 3
# ]
# Or, treat each line as a string.
#
(echo line 1; echo line 2) | jq -R .
# Output:
# "line 1"
# "line 2"
# Or, combine -s and -R to slurp the input lines into a single string.
#
(echo line 1; echo line 2) | jq -sR .
# Output:
# "line 1\nline2\n"
# Inputs can also come from a JSON file specified at the command line:
#
echo '"hello"' > hello.json
jq . hello.json
# Output:
# "hello"
# Passing a value into a jq program can be done with the `--arg` option.
# Below, `val` is the variable name to bind the value, `123`, to.
# The variable is then referenced as `$val`.
#
jq -n --arg val 123 '$val' # $val is the string "123" here
# Output:
# "123"
# If you need to pass a JSON value, use `--argjson`
#
jq -n --argjson val 123 '$val' # $val is a number
# Output:
# 123
# Using `--arg` or `--argjson` is an useful way of building JSON output from
# existing input.
#
jq --arg text "$(date; echo "Have a nice day!")" -n '{ "today": $text }'
# Output:
# {
# "today": "Sun Apr 10 09:53:07 PM EDT 2022\nHave a nice day!"
# }
# Instead of outputting values as JSON, you can use the `-r` option to print
# string values unquoted / unescaped. Non-string values are still printed as
# JSON.
#
echo '"hello" 2 [1, "two", null] {}' | jq -r .
# Output:
# hello
# 2
# [
# 1,
# "two",
# null
# ]
# {}
# Inside a string in jq, `\(expr)` can be used to substitute the output of
# `expr` into the surrounding string context.
#
jq -rn '"1 + 2 = \(1+2)"'
# Output:
# 1 + 2 = 3
# The `-r` option is most useful for generating text outputs to be processed
# down in a shell pipeline, especially when combined with an intepolated
# string that is prefixed the `@sh` prefix operator.
#
# The `@sh` operator escapes the outputs of `\(...)` inside a string with
# single quotes so that each resulting string of `\(...)` can be evaluated
# by the shell as a single word / token / argument without special
# interpretations.
#
env_vars=$(
echo '{"var1": "value one", "var2": "value\ntwo"}' \
|
jq -r '
"export " + @sh "var1=\(.var1) var2=\(.var2)"
# ^^^^^^^^ ^^^^^^^^
# "'value one'" "'value\ntwo'"
#
# NOTE: The + (plus) operator here concatenates strings.
'
)
echo "$env_vars"
eval "$env_vars"
declare -p var1 var2
# Output:
# export var1='value one' var2='value
# two'
# declare -- var1="value one"
# declare -- var2="value
# two"
# There are other string `@prefix` operators (e.g., @base64, @uri, @csv, ...)
# that might be useful to you. See `man jq` for details.
# The comma (`,`) operator in jq evaluates each operand and generates multiple
# outputs:
#
jq -n '"one", 2, ["three"], {"four": 4}'
# Output:
# "one"
# 2
# [
# "three"
# ]
# {
# "four": 4
# }
# Any JSON value is a valid jq expression that evaluates to the JSON value
# itself.
#
jq -n '1, "one", [1, 2], {"one": 1}, null, true, false'
# Output:
# 1
# "one"
# [
# 1,
# 2
# ]
# {
# "one": 1
# }
# null
# true
# false
# Any jq expression can be used where a JSON value is expected, even as object
# keys. (though parenthesis might be required for object keys or values)
#
jq -n '[2*3, 8-1, 16/2], {("tw" + "o"): (1 + 1)}'
# Output:
# [
# 6,
# 7,
# 8
# ]
# {
# "two": 2
# }
# As a shortcut, if a JSON object key looks like a valid identifier (matching
# the regex `^[a-zA-Z_][a-zA-Z_0-9]*$`), quotes can be omitted.
#
jq -n '{ key_1: "value1" }'
# If a JSON object's key's value is ommited, it is looked up in the current
# input using the key: (see next example for the meaning of `... | ...`)
#
jq -n '{c: 3} | {a: 1, "b", c}'
# Output:
# {
# "a": 1,
# "b": null,
# "c": 3
# }
# jq programs are more commonly written as a series of expressions (filters)
# connected by the pipe (`|`) operator, which makes the output of its left
# filter the input to its right filter.
#
jq -n '1 | . + 2 | . + 3' # first dot is 1; second dot is 3
# Output:
# 6
# If an expression evaluates to multiple outputs, then jq will iterate through
# them and propagate each output down the pipeline, and generate multiple
# outputs in the end.
#
jq -n '1, 2, 3 | ., 4 | .'
# Output:
# 1
# 4
# 2
# 4
# 3
# 4
# The flows of the data in the last example can be visualized like this:
# (number prefixed with `*` indicates the current output)
#
# *1, 2, 3 | *1, 4 | *1
# 1, 2, 3 | 1, *4 | *4
# 1, *2, 3 | *2, 4 | *2
# 1, 2, 3 | 2, *4 | *4
# 1, 2, *3 | *3, 4 | *3
# 1, 2, 3 | 3, *4 | *4
#
#
# To put it another way, the evaluation of the above example is very similar
# to the following pieces of code in other programming languages:
#
# In Python:
#
# for first_dot in 1, 2, 3:
# for second_dot in first_dot, 4:
# print(second_dot)
#
# In Ruby:
#
# [1, 2, 3].each do |dot|
# [dot, 4].each { |dot| puts dot }
# end
#
# In Javascript:
#
# [1, 2, 3].forEach(dot => {
# [dot, 4].forEach(dot => console.log(dot))
# })
#
# Below are some examples of array index and object attribute lookups using
# the `[expr]` operator after an expression. If `expr` is a number then it's
# an array index lookup; otherwise, it should be a string, in which case it's
# an object attribute lookup:
# Array index lookup
#
jq -n '[2, {"four": 4}, 6][1 - 1]' # => 2
jq -n '[2, {"four": 4}, 6][0]' # => 2
jq -n '[2, {"four": 4}, 6] | .[0]' # => 2
# You can chain the lookups since they are just expressions.
#
jq -n '[2, {"four": 4}, 6][1]["fo" + "ur"]' # => 4
# For object attributes, you can also use the `.key` shortcut.
#
jq -n '[2, {"four": 4}, 6][1].four' # => 4
# Use `."key"` if the key is not a valid identifier.
#
jq -n '[2, {"f o u r": 4}, 6][1]."f o u r"' # => 4
# Array index lookup returns null if the index is not found.
#
jq -n '[2, {"four": 4}, 6][99]' # => null
# Object attribute lookup returns null if the key is not found.
#
jq -n '[2, {"four": 4}, 6][1].whatever' # => null
# The alternative operator `//` can be used to provide a default
# value when the result of the left operand is either `null` or `false`.
#
jq -n '.unknown_key // 7' # => 7
# If the thing before the lookup operator (`[expr]`) is neither an array
# or an object, then you will get an error:
#
jq -n '123 | .[0]' # => jq: error (at <unknown>): Cannot index number with number
jq -n '"abc" | .name' # => jq: error (at <unknown>): Cannot index string with string "name"
jq -n '{"a": 97} | .[0]' # => jq: error (at <unknown>): Cannot index object with number
jq -n '[89, 64] | .["key"]' # => jq: error (at <unknown>): Cannot index array with string "key"
# You can, however, append a `?` to a lookup to make jq return `empty`
# instead when such error happens.
#
jq -n '123 | .[0]?' # no output since it's empty.
jq -n '"abc" | .name?' # no output since it's empty.
# The alternative operator (`//`) also works with `empty`:
#
jq -n '123 | .[0]? // 99' # => 99
jq -n '"abc" | .name? // "unknown"' # => "unknown"
# NOTE: `empty` is actually a built-in function in jq.
# With the nested loop explanation we illustrated earlier before,
# `empty` is like the `continue` or the `next` keyword that skips
# the current iteration of the loop in some programming languages.
# Strings and arrays can be sliced with the same syntax (`[i:j]`, but no
# steppings) and semantic as found in the Python programming language:
#
# 0 1 2 3 4 5 ... infinite
# array = ["a", "b", "c", "d"]
# -infinite ... -4 -3 -2 -1
#
jq -n '["Peter", "Jerry"][1]' # => "Jerry"
jq -n '["Peter", "Jerry"][-1]' # => "Jerry"
jq -n '["Peter", "Jerry", "Tom"][1:]' # => ["Jerry", "Tom"]
jq -n '["Peter", "Jerry", "Tom"][:1+1]' # => ["Peter", "Jerry"]
jq -n '["Peter", "Jerry", "Tom"][1:99]' # => ["Jerry", "Tom"]
# If the lookup index or key is ommited then jq iterates through
# the collection, generating one output value from each iteration.
#
# These examples produce the same outputs.
#
echo 1 2 3 | jq .
jq -n '1, 2, 3'
jq -n '[1, 2, 3][]'
jq -n '{a: 1, b: 2, c: 3}[]'
# Output:
# 1
# 2
# 3
# You can build an array out of multiple outputs.
#
jq -n '{values: [{a: 1, b: 2, c: 3}[] | . * 2]}'
# Output:
# {
# "values": [
# 2,
# 4,
# 6
# ]
# }
# If multiple outputs are not contained, then we'd get multiple outputs
# in the end.
#
jq -n '{values: ({a: 1, b: 2, c: 3}[] | . * 2)}'
# Output:
# {
# "values": 2
# }
# {
# "values": 4
# }
# {
# "values": 6
# }
# Conditional `if ... then ... else ... end` in jq is an expression, so
# both the `then` part and the `else` part are required. In jq, only
# two values, `null` and `false`, are false; all other values are true.
#
jq -n 'if 1 > 2 | not and 1 <= 2 then "Makes sense" else "WAT?!" end'
# Output
# "Makes sense"
# Notice that `not` is a built-in function that takes zero arguments,
# that's why it's used as a filter to negate its input value.
# We'll talk about functions soon.
# Another example using a conditional:
#
jq -n '1, 2, 3, 4, 5 | if . % 2 != 0 then . else empty end'
# Output
# 1
# 3
# 5
# The `empty` above is a built-in function that takes 0 arguments and
# generates no outputs. Let's see more examples of built-in functions.
# The above conditional example can be written using the `select/1` built-in
# function (`/1` indicates the number of arguments expected by the function).
#
jq -n '1, 2, 3, 4, 5 | select(. % 2 != 0)' # NOTE: % gives the remainder.
# Output
# 1
# 3
# 5
# Function arguments in jq are passed with call-by-name semantic, which
# means, an argument is not evaulated at call site, but instead, is
# treated as a lambda expression with the calling context of the call
# site as its scope for variable and function references used in the
# expression.
#
# In the above example, the expression `. % 2 != 0` is what's passed to
# `select/1` as the argument, not `true` or `false`, which is what would
# have been the case had the (boolean) expression was evaluated before it's
# passed to the function.
# The `range/1`, `range/2`, and `range/3` built-in functions generate
# integers within a given range.
#
jq -n '[range(3)]' # => [0, 1, 2]
jq -n '[range(0; 4)]' # => [0, 1, 2, 3]
jq -n '[range(2; 10; 2)]' # => [2, 4, 6, 8]
# Notice that `;` (semicolon) is used to separate function arguments.
# The `map/1` function applies a given expression to each element of
# the current input (array) and outputs a new array.
#
jq -n '[range(1; 6) | select(. % 2 != 0)] | map(. * 2)'
# Output:
# [
# 2,
# 6,
# 10
# ]
# Without using `select/1` and `map/1`, we could have also written the
# above example like this:
#
jq -n '[range(1; 6) | if . % 2 != 0 then . else empty end | . * 2]'
# `keys/0` returns an array of keys of the current input. For an object,
# these are the object's attribute names; for an array, these are the
# array indices.
#
jq -n '[range(2; 10; 2)] | keys' # => [0, 1, 2, 3]
jq -n '{a: 1, b: 2, c: 3} | keys' # => ["a", "b", "c"]
# `values/0` returns an array of values of the current input. For an object,
# these are the object's attribute values; for an array, these are the
# elements of the array.
#
jq -n '[range(2; 10; 2)] | values' # => [2, 4, 6, 8]
jq -n '{a: 1, b: 2, c: 3} | values' # => [1, 2, 3]
# `to_entries/0` returns an array of key-value objects of the current input
# object.
#
jq -n '{a: 1, b: 2, c: 3} | to_entries'
# Output:
# [
# {
# "key": "a",
# "value": 1
# },
# {
# "key": "b",
# "value": 2
# },
# {
# "key": "c",
# "value": 3
# }
# ]
# Here's how you can turn an object's attribute into environment variables
# using what we have learned so far.
#
env_vars=$(
jq -rn '{var1: "1 2 3 4", var2: "line1\nline2\n"}
| to_entries[]
| "export " + @sh "\(.key)=\(.value)"
'
)
eval "$env_vars"
declare -p var1 var2
# Output:
# declare -x var1="1 2 3 4"
# declare -x var2="line1
# line2
# "
# `from_entries/0` is the opposite of `to_entries/0` in that it takes an
# an array of key-value objects and turn that into an object with keys
# and values from the `key` and `value` attributes of the objects.
#
# It's useful together with `to_entries/0` when you need to iterate and
# do something to each attribute of an object.
#
jq -n '{a: 1, b: 2, c: 3} | to_entries | map(.value *= 2) | from_entries'
# Output:
# {
# "a": 2,
# "b": 4,
# "c": 6
# }
# The example above can be further shortened with the `with_entries/1` built-in:
#
jq -n '{a: 1, b: 2, c: 3} | with_entries(.value *= 2)'
# The `group_by/1` generates an array of groups (arrays) from the current
# input (array). The classification is done by applying the expression argument
# to each member of the input array.
#
# Let's look at a contrived example (Note that `tostring`, `tonumber`,
# `length` and `max` are all built-in jq functions. Feel free to look
# them up in the jq manual):
#
# Generate some random numbers.
numbers=$(echo $RANDOM{,,,,,,,,,,,,,,,,,,,,})
#
# Feed the numbers to jq, classifying them into groups and calculating their
# averages, and finally generate a report.
#
echo $numbers | jq -rs ' # Slurp the numbers into an array.
[
[ map(tostring) # Turn it into an array of strings.
| group_by(.[0:1]) # Group the numbers by their first digits.
| .[] # Iterate through the array of arrays (groups).
| map(tonumber) # Turn each group back to an array of numbers.
] # Finally, contain all groups in an array.
| sort_by([length, max]) # Sort the groups by their sizes.
# If two groups have the same size then the one with the largest
# number wins (is bigger).
| to_entries[] # Enumerate the array, generating key-value objects.
| # For each object, generate two lines:
"Group \(.key): \(.value | sort | join(" "))" + "\n" +
"Average: \( .value | (add / length) )"
] # Contain the group+average lines in an array.
# Join the array elements by separator lines (dashes) to produce the report.
| join("\n" + "-"*78 + "\n")
'
# Output:
#
# Group 0: 3267
# Average: 3267
# ------------------------------------------------------------------------------
# Group 1: 7854
# Average: 7854
# ------------------------------------------------------------------------------
# Group 2: 4415 4447
# Average: 4431
# ------------------------------------------------------------------------------
# Group 3: 681 6426
# Average: 3553.5
# ------------------------------------------------------------------------------
# Group 4: 21263 21361 21801 21832 22947 23523 29174
# Average: 23128.714285714286
# ------------------------------------------------------------------------------
# Group 5: 10373 12698 13132 13924 17444 17963 18934 18979
# Average: 15430.875
# The `add/1` built-in "reduces" an array of values to a single value.
# You can think of it as sticking the `+` operator in between each value of
# the collection. Here are some examples:
#
jq -n '[1, 2, 3, 4, 5] | add' # => 15
jq -n '["a", "b", "c"] | add' # => "abc"
# `+` concatenates arrays
jq -n '[["a"], ["b"], ["c"]] | add'
# Output:
# [
# "a",
# "b",
# "c"
# ]
# `+` merges objects non-recursively.
jq -n '[{a: 1, b: {c: 3}}, {b: 2, c: 4}] | add'
# Output:
# {
# "a": 1,
# "b": 2,
# "c": 4
# }
# jq provides a special syntax for writing an expression that reduces
# the outputs generated by a given expresion to a single value.
# It has this form:
#
# reduce outputs_expr as $var (initial_value; reduction_expr)
#
# Examples:
#
jq -n 'reduce range(1; 6) as $i (0; . + $i)' # => 15
jq -n 'reduce (1, 2, 3, 4, 5) as $i (0; . + $i)' # => 15
jq -n '[1, 2, 3, 4, 5] | reduce .[] as $i (0; . + $i)' # => 15
jq -n '["a", "b", "c"] | reduce .[] as $i (""; . + $i)' # => "abc"
# Notice the `.` in the `reduction_expr` is the `initial_value` at first,
# and then it becomes the result of applying the `reduction_expr` as
# we iterate through the values of `outputs_expr`. The expression:
#
# reduce (1, 2, 3, 4, 5) as $i (0; . + $i)
#
# can be thought of as doing:
#
# 0 + 1 | . + 2 | . + 3 | . + 4 | . + 5
#
# The `*` operator when used on two objects, merges both recursively.
# Therefore, to merge JSON objects recursively, you can use `reduce`
# with the `*` operator. For example:
#
echo '
{"a": 1, "b": {"c": 3}}
{ "b": {"d": 4}}
{"a": 99, "e": 5 }
' | jq -s 'reduce .[] as $m ({}; . * $m)'
# Output:
# {
# "a": 99,
# "b": {
# "c": 3,
# "d": 4
# },
# "e": 5
# }
# jq has variable assignment in the form of `expr as $var`, which binds
# the value of `expr` to `$var`, and `$var` is immutable. Further more,
# `... as ...` doesn't change the input of the next filter; its introduction
# in a filter pipeline is only for establishing the binding of a value to a
# variable, and its scope extends to the filters following its definition.
# (i.e., to look up a variable's definition, scan to the left of the filter
# chain from the expression using it until you find the definition)
#
jq -rn '[1, 2, 3, 4, 5]
| (.[0] + .[-1]) as $sum # Always put ( ) around the binding `expr` to avoid surprises.
| ($sum * length / 2) as $result # The current input at this step is still the initial array.
| "The result is: \($result)" # Same.
'
# Output:
# The result is: 15
# With the `expr as $var` form, if multiple values are generated by `expr`
# then jq will iterate through them and bind each value to `$var` in turn
# for the rest of the pipeline.
#
jq -rn 'range(2; 4) as $i
| range(1; 6) as $j
| "\($i) * \($j) = \($i * $j)"
'
# Output:
# 2 * 1 = 2
# 2 * 2 = 4
# 2 * 3 = 6
# 2 * 4 = 8
# 2 * 5 = 10
# 3 * 1 = 3
# 3 * 2 = 6
# 3 * 3 = 9
# 3 * 4 = 12
# 3 * 5 = 15
# It's sometimes useful to bind the initial input to a variable at the
# start of a program, so that you can refer to it later down the pipeline.
#
jq -rn "$(cat <<'EOF'
{lookup: {a: 1, b: 2, c: 3},
bonuses: {a: 5, b: 2, c: 9}
}
| . as $doc
| .bonuses
| to_entries[]
| "\(.key)'s total is \($doc.lookup[.key] + .value)"
EOF
)"
# Output:
# a's total is 6
# b's total is 4
# c's total is 12
# jq supports destructing during varible binding. This lets you extract values
# from an array or an object and bind them to variables.
#
jq -n '[range(5)] | . as [$first, $second] | $second'
# Output:
# 1
jq -n '{ name: "Tom", numbers: [1, 2, 3], age: 32}
| . as {
name: $who, # bind .name to $who
$name, # shorthand for `name: $name`
numbers: [$first, $second],
}
| $name, $second, $first, $who
'
# Output:
# "Tom"
# 2
# 1
# "Tom"
# In jq, values can be assigned to an array index or object key via the
# assignment operator, `=`. The same current input is given to both sides
# of the assignment operator, and the assignment itself evaluates to the
# current input. In other words, the assignment expression is evaluated
# for its side effect, and doesn't generate a new output.
#
jq -n '.a = 1 | .b = .a + 1' # => {"a": 1, "b": 2}
# Note that input is `null` due to `jq -n`, so `.` is `null` in the first
# filter, and assiging to a key under `null` turns it into an object with
# the key. The same input (now an object) then gets piped to the next filter,
# which then sets the `b` key to the value of the `a` key plus `1`, which is `2`.
#
# Another example:
#
jq -n '.a=1, .a.b=2' # => {"a": 1} {"a": {"b": 2}}
# In the above example, two objects are generated because both assignments
# received `null` as their inputs, and each operand of the comma operator
# is evaluated independently. Notice also how you can easily generate
# nested objects.
# In addition to the assignment operator, jq also has operators like:
# `+=`, `-=`, `*=`, and '/=', ... etc. Basically, `a op= b` is a shorthand
# for `a = a op b`, and they are handy for updating an object attribute or
# an item in an array based on its current value. Examples:
#
jq -n '.a.b.c = 3 | .a.b.c = .a.b.c + 1' # => {"a": {"b": {"c": 4}}}
jq -n '.a.b.c = 3 | .a.b.c += 1' # => {"a": {"b": {"c": 4}}}
# To delete a value, use `del/1`, which takes a path expression that specifies
# the locations of the things to be deleted. Example:
#
jq -n '{a: 1, b: {c: 2}, d: [3, 4, 5]} | del(.b.c, .d[1]) | .b.x = 6'
# Output:
# {
# "a": 1,
# "b": {
# "x": 6
# },
# "d": [
# 3,
# 5
# ]
# }
# Other than using jq's built-in functions, you can define your own.
# In fact, many built-in functions are defined using jq (see the link
# to jq's built-in functions at the end of the doc).
#
jq -n '
def my_select(expr): if expr then . else empty end;
def my_map(expr): [.[] | expr];
def sum: reduce .[] as $x (0; . + $x);
def my_range($from; $to):
if $from >= $to then
empty
else
$from, my_range($from + 1; $to)
end
;
[my_range(1; 6)] | my_map(my_select(. % 2 != 0)) | sum
'
# Output:
# 9
# Some notes about function definitons:
#
# - Functions are usually defined at the beginning, so that they are available
# to the rest of the jq program.
#
# - Each function definion should end with a `;` (semicolon).
#
# - It's also possible to define a function within another, though it's not shown here.
#
# - Function parameters are separated by `;` (semicolor). This is consistent with
# passing multiple arguments when calling a function.
#
# - A function can call itself; in fact, jq has TCO (Tail Call Optimization).
#
# - `def f($a; $b): ...;` is a shorthand for: `def f(a; b): a as $a | b as $b | ...`
```
## Further Reading
- https://stedolan.github.io/jq/manual/
- https://github.com/stedolan/jq/wiki/jq-Language-Description
- https://github.com/stedolan/jq/wiki/Cookbook
- https://github.com/stedolan/jq/blob/master/src/builtin.jq

View File

@ -12,8 +12,8 @@ jQuery is a JavaScript library that helps you "do more, write less". It makes ma
Because jQuery is a JavaScript library you should [learn JavaScript first](https://learnxinyminutes.com/docs/javascript/)
**NOTE**: jQuery has fallen out of the limelight in recent years, since you can achieve the same thing with the vanilla DOM (Document Object Model) API. So the only thing it is used for is a couple of handy features, such as the [jQuery date picker](https://api.jqueryui.com/datepicker) (which actually has a standard, unlike the `<input type="date">` HTML element), and the obvious decrease in the code length.
```js
```js
///////////////////////////////////
// 1. Selectors

View File

@ -11,7 +11,7 @@ contributors:
JSON is an extremely simple data-interchange format. As [json.org](https://json.org) says, it is easy for humans to read and write and for machines to parse and generate.
A piece of JSON must represent either:
A piece of JSON can be any value of the types listed later, but in practice almost always represents either:
* A collection of name/value pairs (`{ }`). In various languages, this is realized as an object, record, struct, dictionary, hash table, keyed list, or associative array.
* An ordered list of values (`[ ]`). In various languages, this is realized as an array, vector, list, or sequence.

View File

@ -81,7 +81,7 @@ func learnTypes() {
// non-ASCII 리터럴. Go 소스는 UTF-8로 작성해야 한다.
g := 'Σ' // 유니코드 코드 포인트를 담고 있고, int32 타입의 가칭(alias)인 rune 타입
f := 3.14195 // float64, an IEEE-754 64-bit 부동소수 타입
f := 3.14159 // float64, an IEEE-754 64-bit 부동소수 타입
c := 3 + 4i // complex128, 내부적으로는 두 개의 float64 타입으로 표현됨
// 초기값과 함께 사용하는 var 키워드.
@ -332,15 +332,15 @@ func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
## 읽어볼 것들
Go에 대한 모든 것들은 [Go 공식 사이트](http://golang.org/)를 참고하자.
Go에 대한 모든 것들은 [Go 공식 사이트](https://go.dev/)를 참고하자.
여기에는 따라해볼 튜토리얼, 기반의 인터랙티브 실행환경과 많은 읽을거리들이 있다.
Go 언어 자체에 대한 스펙도 읽어보기를 적극 추천한다. 읽기 쉽게 되어있고
그리 길지는 않다.
Go 소스코드에 대해 좀더 알아보고 싶다면 [Go 표준 라이브러리](http://golang.org/src/pkg/)를
Go 소스코드에 대해 좀더 알아보고 싶다면 [Go 표준 라이브러리](https://go.dev/src/)를
분석해보기 바란다. 이해하기 쉽게 문서화되어 있고, Go 스타일 그리고 Go에서의
관례 배우기에 가장 좋은 방법일 것이다. 또는 [문서](http://golang.org/pkg/) 안에서
관례 배우기에 가장 좋은 방법일 것이다. 또는 [문서](https://go.dev/pkg/) 안에서
함수 이름 하나를 클릭해보면 소스코드를 브라우저에서 살펴볼 수도 있다.
Go를 배울수 있는 또하나의 좋은 방법은 [Go by example](https://gobyexample.com/).

View File

@ -26,7 +26,7 @@ any parameters.
*/
fun main(args: Array<String>) {
/*
Declaring values is done using either "var" or "val".
Declaring variables is done using either "var" or "val".
"val" declarations cannot be reassigned, whereas "vars" can.
*/
val fooVal = 10 // we cannot later reassign fooVal to something else
@ -297,7 +297,7 @@ fun helloWorld(val name : String) {
else -> println("none of the above")
}
// "when" can be used as a function that returns a value.
// "when" can be used as an expression that returns a value.
var result = when (i) {
0, 21 -> "0 or 21"
in 1..20 -> "in the range 1 to 20"

View File

@ -17,10 +17,7 @@ filename: learnlua.lua
-- 1. Variables and flow control.
----------------------------------------------------
num = 42 -- All numbers are doubles.
-- Don't freak out, 64-bit doubles have 52 bits for
-- storing exact int values; machine precision is
-- not a problem for ints that need < 52 bits.
num = 42 -- Numbers can be integer or floating point.
s = 'walternate' -- Immutable strings like Python.
t = "double-quotes are also fine"
@ -402,7 +399,7 @@ If you need support join the official Lua [mailing list](https://www.lua.org/lua
I was excited to learn Lua so I could make games
with the <a href="http://love2d.org/">Love 2D game engine</a>. That's the why.
I started with <a href="https://ebens.me/post/lua-for-programmers-part-1/">BlackBulletIV's Lua for programmers</a>.
I started with <a href="https://ebens.me/posts/lua-for-programmers-part-1/">BlackBulletIV's Lua for programmers</a>.
Next I read the official <a href="http://www.lua.org/pil/contents.html">Programming in Lua</a> book.
That's the how.

View File

@ -17,8 +17,8 @@ more fits on one screen without scrolling.
The M database is a hierarchical key-value store designed for high-throughput
transaction processing. The database is organized into tree structures called
"globals", which are sparse data structures with parallels to modern formats
like JSON.
"globals", (for global variables) which are sparse data structures with parallels
to modern formats like JSON.
Originally designed in 1966 for the healthcare applications, M continues to be
used widely by healthcare systems and financial institutions for high-throughput
@ -26,7 +26,7 @@ real-time applications.
### Example
Here's an example M program to calculate the Fibonacci series:
Here's an example M program using expanded syntax to calculate the Fibonacci series:
```
fib ; compute the first few Fibonacci terms
@ -39,28 +39,38 @@ fib ; compute the first few Fibonacci terms
```
### Comments
Comments in M need at least one space before the comment marker of semicolon.
Comments that start with at least two semicolons (;;) are guaranteed to be accessible
within a running program.
```
; Comments start with a semicolon (;)
; Comments start with a semicolon (;)
```
### Data Types
M has two data types:
M has one data type (String) and three interpretations of that string.:
```
; Numbers - no commas, leading and trailing 0 removed.
; Scientific notation with 'E'.
; Floats with IEEE 754 double-precision values (15 digits of precision)
; Examples: 20, 1e3 (stored as 1000), 0500.20 (stored as 500.2)
; Strings - Characters enclosed in double quotes.
; "" is the null string. Use "" within a string for "
; Examples: "hello", "Scrooge said, ""Bah, Humbug!"""
;
; Numbers - no commas, leading and trailing 0 removed.
; Scientific notation with 'E'. (not 'e')
; Numbers with at least with IEEE 754 double-precision values (guaranteed 15 digits of precision)
; Examples: 20 (stored as 20) , 1e3 (stored as 1000), 0500.20 (stored as 500.2),
; the US National Debt AT sometime on 12-OCT-2020 retrieved from http://www.usdebt.org is 27041423576201.15)
; (required to be stored as at least 27041422576201.10 but most implementations store as 27041432576201.15)
;
; Truthvalues - String interpreted as 0 is used for false and any string interpreted as non-zero (such as 1) for true.
```
### Commands
Commands are case insensitive, and have a shortened abbreviation, often the first letter. Commands have zero or more arguments,depending on the command. M is whitespace-aware. Spaces are treated as a delimiter between commands and arguments. Each command is separated from its arguments by 1 space. Commands with zero arguments are followed by 2 spaces.
Commands are case insensitive, and have full form, and a shortened abbreviation, often the first letter. Commands have zero or more arguments,depending on the command. This page includes programs written in this terse syntax. M is whitespace-aware. Spaces are treated as a delimiter between commands and arguments. Each command is separated from its arguments by 1 space. Commands with zero arguments are followed by 2 spaces. (technically these are called argumentless commands)
#### W(rite)
#### Common Commands from all National and International Standards of M
#### Write (abbreviated as W)
Print data to the current device.
@ -68,13 +78,19 @@ Print data to the current device.
WRITE !,"hello world"
```
! is syntax for a new line. Multiple statements can be provided as additional arguments:
Output Formatting characters:
The ! character is syntax for a new line.
The # character is syntax for a new page.
The sequence of the ? character and then a numeric expression is syntax for output of spaces until the number'th colum is printed.
Multiple statements can be provided as additional arguments before the space separators to the next command:
```
w !,"foo bar"," ","baz"
```
#### R(ead)
#### Read (abbreviated as R)
Retrieve input from the user
@ -82,13 +98,13 @@ Retrieve input from the user
READ var
r !,"Wherefore art thou Romeo? ",why
```
Multiple arguments can be passed to a read command. Constants are outputted. Variables are retrieved from the user. The terminal waits for the user to enter the first variable before displaying the second prompt.
As with all M commands, multiple arguments can be passed to a read command. Constants like quoted strings, numbers, and formatting characters are output directly. Values for both global variables and local variables are retrieved from the user. The terminal waits for the user to enter the first variable before displaying the second prompt.
```
r !,"Better one, or two? ",lorem," Better two, or three? ",ipsum
```
#### S(et)
#### Set (abbreviated as S)
Assign a value to a variable
@ -100,19 +116,21 @@ w !,centi,!,micro
;.01
;.00001
```
#### K(ill)
#### Kill (abbreviated as K)
Remove a variable from memory or remove a database entry from disk.
A database node (global variable) is killed depending on the variable name being prefixed by the caret character (^).
If it is not, then the local variable is removed from memory.
If KILLed, automatic garbage collection occurs.
```
KILL centi
k micro
```
### Globals and Arrays
In addition to local variables, M has persistent variables stored to disk called _globals_. Global names must start with a __caret__ (__^__). Globals are the built-in database of M.
In addition to local variables, M has persistent, shared variables that are the built-in database of M. They are stored to disk and called _globals_. Global names must start with a __caret__ (__^__).
Any variable can be an array with the assignment of a _subscript_. Arrays are sparse and do not have a predefined size. Arrays should be visualized like trees, where subscripts are branches and assigned values are leaves. Not all nodes in an array need to have a value.
Any variable (local or global) can be an array with the assignment of a _subscript_. Arrays are sparse and do not have a predefined size. Only if data is stored will a value use memory. Arrays should be visualized like trees, where subscripts are branches and assigned values are leaves. Not all nodes in an array need to have a value.
```
s ^cars=20
@ -128,7 +146,7 @@ w !,^cars("Tesla",1,"Name")
; Model 3
```
Arrays are automatically sorted in order. Take advantage of the built-in sorting by setting your value of interest as the last child subscript of an array rather than its value.
The index values of Arrays are automatically sorted in order. There is a catchphrase of "MUMPS means never having to say you are sorting". Take advantage of the built-in sorting by setting your value of interest as the last child subscript of an array rather than its value, and then storing an empty string for that node.
```
; A log of temperatures by date and time
@ -171,13 +189,14 @@ s ^TEMPS("11/12","1700",43)=""
#### Order of operations
Operations in M are _strictly_ evaluated left to right. No operator has precedence over any other.
You should use parentheses to group expressions.
For example, there is NO order of operations where multiply is evaluated before addition.
To change this order, just use parentheses to group expressions to be evaluated first.
```
w 5+3*20
;160
;You probably wanted 65
w 5+(3*20)
write 5+(3*20)
```
### Flow Control, Blocks, & Code Structure
@ -193,7 +212,7 @@ w !,$$tag^routine(a,b)
M has an execution stack. When all levels of the stack have returned, the program ends. Levels are added to the stack with _do_ commands and removed with _quit_ commands.
#### D(o)
#### Do (abbreviated as D)
With an argument: execute a block of code & add a level to the stack.
@ -216,12 +235,14 @@ if a=1 do
w "hello"
```
#### Q(uit)
#### Quit (abbreviated as Q)
Stop executing this block and return to the previous stack level.
Quit can return a value.
Quit can return a value, following the comamnd with a single space.
Quit can stop a loop. remember to follow with two spaces.
Quit outside a loop will return from the current subroutine followed by two spaces or a linefeed
#### N(ew)
Clear a given variable's value _for just this stack level_. Useful for preventing side effects.
#### New (abbreviated as N)
Hide with a cleared value a given variable's value _for just this stack level_. Useful for preventing side effects.
Putting all this together, we can create a full example of an M routine:
@ -233,20 +254,22 @@ main
n length,width ; New length and width so any previous value doesn't persist
w !,"Welcome to RECTANGLE. Enter the dimensions of your rectangle."
r !,"Length? ",length,!,"Width? ",width
d area(length,width) ;Do a tag
s per=$$perimeter(length,width) ;Get the value of a function
d area(length,width) ;Do/Call subroutine using a tag
s per=$$perimeter(length,width) ;Get the value of a function
w !,"Perimeter: ",per
q
quit
area(length,width) ; This is a tag that accepts parameters.
; It's not a function since it quits with no value.
w !, "Area: ",length*width
q ; Quit: return to the previous level of the stack.
q ; Quit: return to the previous level of the stack.
perimeter(length,width)
q 2*(length+width) ; Quits with a value; thus a function
q 2*(length+width) ; Returns a value using Quit ; this is a function
```
### Conditionals, Looping and $Order()
F(or) loops can follow a few different patterns:
@ -255,13 +278,15 @@ F(or) loops can follow a few different patterns:
;Finite loop with counter
;f var=start:increment:stop
f i=0:5:25 w i," " ;0 5 10 15 20 25
f i=0:5:25 w i," "
;0 5 10 15 20 25
; Infinite loop with counter
; The counter will keep incrementing forever. Use a conditional with Quit to get out of the loop.
;f var=start:increment
f j=1:1 w j," " i j>1E3 q ; Print 1-1000 separated by a space
f j=1:1 w j," " i j>1E3 q
; Print 1-1000 separated by a space
;Argumentless for - infinite loop. Use a conditional with Quit.
; Also read as "forever" - f or for followed by two spaces.
@ -355,7 +380,11 @@ f s date=$ORDER(^TEMPS(date)) q:date="" d
## Further Reading
There's lots more to learn about M. A great short tutorial comes from the University of Northern Iowa and Professor Kevin O'Kane's [Introduction to the MUMPS Language][1] presentation.
There's lots more to learn about M. A great short tutorial comes from the University of Northern Iowa and Professor Kevin O'Kane's [Introduction to the MUMPS Language][1] presentation. More about M using VistA is at
Intersystems has some products which are a super-set of the M programming language.
* [Iris Description Page][5]
* [Cache Description Page][6]
To install an M interpreter / database on your computer, try a [YottaDB Docker image][2].
@ -368,3 +397,5 @@ YottaDB and its precursor, GT.M, have thorough documentation on all the language
[2]: https://yottadb.com/product/get-started/
[3]: https://docs.yottadb.com/ProgrammersGuide/langfeat.html
[4]: http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/index.html
[5]: https://www.intersystems.com/products/intersystems-iris/
[6]: https://en.wikipedia.org/wiki/InterSystems_Caché

View File

@ -228,7 +228,7 @@ db.engineers.update({ name: 'Foo Baz' },
)
/////////////////////// Delete /////////////////////////
// Queries are in the form of db.collectionName.find(<filter>)
// Queries are in the form of db.collectionName.delete(<filter>)
// Delete first document matching query, always returns deletedCount
db.engineers.deleteOne({ name: 'Foo Baz' })
@ -252,20 +252,21 @@ db.engineers.deleteMany({ gender: 'Male' })
//////////////// Comparison Operators ///////////////////
// Find all greater than or greater than equal to some condition
db.engineers.find({ $gt: { age: 25 }})
db.engineers.find({ $gte: { age: 25 }})
db.engineers.find({ age: { $gt: 25 }})
db.engineers.find({ age: { $gte: 25 }})
// Find all less than or less than equal to some condition
db.engineers.find({ $lt: { age: 25 }})
db.engineers.find({ $lte: { age: 25 }})
db.engineers.find({ age: { $lt: 25 }})
db.engineers.find({ age: { $lte: 25 }})
// Find all equal or not equal to
// Note: the $eq operator is added implicitly in most queries
db.engineers.find({ $eq: { age: 25 }})
db.engineers.find({ $ne: { age: 25 }})
db.engineers.find({ age: { $eq: 25 }})
db.engineers.find({ age: { $ne: 25 }})
// Find all that match any element in the array
db.engineers.find({ age: ${ in: [ 20, 23, 24, 25 ]}})
// Find all that match any element in the array, or not in the array
db.engineers.find({ age: { $in: [ 20, 23, 24, 25 ]}})
db.engineers.find({ age: { $nin: [ 20, 23, 24, 25 ]}})
//////////////// Logical Operators ///////////////////

View File

@ -3,7 +3,7 @@ language: Nim
filename: learnNim.nim
contributors:
- ["Jason J. Ayala P.", "http://JasonAyala.com"]
- ["Dennis Felsing", "http://felsin9.de/nnis/"]
- ["Dennis Felsing", "https://dennis.felsing.org"]
---
Nim (formerly Nimrod) is a statically typed, imperative programming language

View File

@ -305,6 +305,9 @@ with builtins; [
({x, y, ...}: x + "-" + y) { x = "a"; y = "b"; z = "c"; }
#=> "a-b"
# The entire set can be bound to a variable using `@`
(args@{x, y}: args.x + "-" + args.y) { x = "a"; y = "b"; }
#=> "a-b"
# Errors
#=========================================
@ -355,7 +358,7 @@ with builtins; [
# its contents. You can read files from anywhere. In this example,
# we write a file into the store, and then read it back out.
(let filename = toFile "foo.txt" "hello!"; in
[filename (builtins.readFile filename)])
[filename (readFile filename)])
#=> [ "/nix/store/ayh05aay2anx135prqp0cy34h891247x-foo.txt" "hello!" ]
# We can also download files into the Nix store.

View File

@ -387,7 +387,7 @@ if ([myClass respondsToSelector:selectorVar]) { // Checks if class contains meth
// Implement the methods in an implementation (MyClass.m) file:
@implementation MyClass {
long distance; // Private access instance variable
NSNumber height;
NSNumber *height;
}
// To access a public variable from the interface file, use '_' followed by variable name:

View File

@ -3,26 +3,31 @@ language: OCaml
filename: learnocaml.ml
contributors:
- ["Daniil Baturin", "http://baturin.org/"]
- ["Stanislav Modrak", "https://stanislav.gq/"]
- ["Luke Tong", "https://lukert.me/"]
---
OCaml is a strictly evaluated functional language with some imperative
features.
Along with StandardML and its dialects it belongs to ML language family.
Along with Standard ML and its dialects it belongs to ML language family.
F# is also heavily influenced by OCaml.
Just like StandardML, OCaml features both an interpreter, that can be
Just like Standard ML, OCaml features both an interpreter, that can be
used interactively, and a compiler.
The interpreter binary is normally called "ocaml" and the compiler is "ocamlopt".
There is also a bytecode compiler, "ocamlc", but there are few reasons to use it.
The interpreter binary is normally called `ocaml` and the compiler is `ocamlopt`.
There is also a bytecode compiler, `ocamlc`, but there are few reasons to use it.
It also includes a package manager, `opam`, and a build system, `dune`.
It is strongly and statically typed, but instead of using manually written
type annotations, it infers types of expressions using Hindley-Milner algorithm.
type annotations, it infers types of expressions using the
[Hindley-Milner](https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system)
algorithm.
It makes type annotations unnecessary in most cases, but can be a major
source of confusion for beginners.
When you are in the top level loop, OCaml will print the inferred type
after you enter an expression.
after you enter an expression
```
# let inc x = x + 1 ;;
@ -31,8 +36,8 @@ val inc : int -> int = <fun>
val a : int = 99
```
For a source file you can use "ocamlc -i /path/to/file.ml" command
to print all names and type signatures.
For a source file you can use the `ocamlc -i /path/to/file.ml` command
to print all names and type signatures
```
$ cat sigtest.ml
@ -48,12 +53,12 @@ val a : int
```
Note that type signatures of functions of multiple arguments are
written in curried form. A function that takes multiple arguments can be
written in [curried](https://en.wikipedia.org/wiki/Currying) form.
A function that takes multiple arguments can be
represented as a composition of functions that take only one argument.
The "f(x,y) = x + y" function from the example above applied to
arguments 2 and 3 is equivalent to the "f0(y) = 2 + y" function applied to 3.
Hence the "int -> int -> int" signature.
The `f(x,y) = x + y` function from the example above applied to
arguments 2 and 3 is equivalent to the `f0(y) = 2 + y` function applied to 3.
Hence the `int -> int -> int` signature.
```ocaml
(*** Comments ***)
@ -65,13 +70,14 @@ Hence the "int -> int -> int" signature.
(*** Variables and functions ***)
(* Expressions can be separated by a double semicolon symbol, ";;".
(* Expressions can be separated by a double semicolon ";;".
In many cases it's redundant, but in this tutorial we use it after
every expression for easy pasting into the interpreter shell.
Unnecessary use of expression separators in source code files
is often considered to be a bad style. *)
(* Variable and function declarations use "let" keyword. *)
(* Variable and function declarations use the "let" keyword. *)
(* Variables are immutable by default in OCaml *)
let x = 10 ;;
(* OCaml allows single quote characters in identifiers.
@ -109,42 +115,42 @@ let sqr2 = sqr (-2) ;;
"unit" type for it that has the only one value written as "()" *)
let print_hello () = print_endline "hello world" ;;
(* Note that you must specify "()" as argument when calling it. *)
(* Note that you must specify "()" as the argument when calling it. *)
print_hello () ;;
(* Calling a function with insufficient number of arguments
(* Calling a function with an insufficient number of arguments
does not cause an error, it produces a new function. *)
let make_inc x y = x + y ;; (* make_inc is int -> int -> int *)
let inc_2 = make_inc 2 ;; (* inc_2 is int -> int *)
inc_2 3 ;; (* Evaluates to 5 *)
(* You can use multiple expressions in function body.
(* You can use multiple expressions in the function body.
The last expression becomes the return value. All other
expressions must be of the "unit" type.
This is useful when writing in imperative style, the simplest
form of it is inserting a debug print. *)
form of which is inserting a debug print. *)
let print_and_return x =
print_endline (string_of_int x);
x
;;
(* Since OCaml is a functional language, it lacks "procedures".
Every function must return something. So functions that
do not really return anything and are called solely for their
side effects, like print_endline, return value of "unit" type. *)
Every function must return something. So functions that do not
really return anything and are called solely for their side
effects, like print_endline, return a value of "unit" type. *)
(* Definitions can be chained with "let ... in" construct.
This is roughly the same to assigning values to multiple
(* Definitions can be chained with the "let ... in" construct.
This is roughly the same as assigning values to multiple
variables before using them in expressions in imperative
languages. *)
let x = 10 in
let y = 20 in
x + y ;;
(* Alternatively you can use "let ... and ... in" construct.
(* Alternatively you can use the "let ... and ... in" construct.
This is especially useful for mutually recursive functions,
with ordinary "let .. in" the compiler will complain about
with ordinary "let ... in" the compiler will complain about
unbound values. *)
let rec
is_even = function
@ -186,9 +192,9 @@ let my_lambda = fun x -> x * x ;;
~-. 3.4 (* Float only *)
(* You can define your own operators or redefine existing ones.
Unlike SML or Haskell, only selected symbols can be used
for operator names and first symbol defines associativity
and precedence rules. *)
Unlike Standard ML or Haskell, only certain symbols can be
used for operator names and the operator's first symbol determines
its associativity and precedence rules. *)
let (+) a b = a - b ;; (* Surprise maintenance programmers. *)
(* More useful: a reciprocal operator for floats.
@ -223,6 +229,10 @@ List.filter (fun x -> x mod 2 = 0) [1; 2; 3; 4] ;;
often referred to as "cons". *)
1 :: [2; 3] ;; (* Gives [1; 2; 3] *)
(* Remember that the cons :: constructor can only cons a single item to the front
of a list. To combine two lists use the append @ operator *)
[1; 2] @ [3; 4] ;; (* Gives [1; 2; 3; 4] *)
(* Arrays are enclosed in [| |] *)
let my_array = [| 1; 2; 3 |] ;;
@ -258,7 +268,7 @@ let ocaml = (String.make 1 'O') ^ "Caml" ;;
(* There is a printf function. *)
Printf.printf "%d %s" 99 "bottles of beer" ;;
(* Unformatted read and write functions are there too. *)
(* There's also unformatted read and write functions. *)
print_string "hello world\n" ;;
print_endline "hello world" ;;
let line = read_line () ;;
@ -291,15 +301,59 @@ let my_point = Point (2.0, 3.0) ;;
type 'a list_of_lists = 'a list list ;;
type int_list_list = int list_of_lists ;;
(* These features allow for useful optional types *)
type 'a option = Some of 'a | None ;;
let x = Some x ;;
let y = None ;;
(* Types can also be recursive. Like in this type analogous to
built-in list of integers. *)
a built-in list of integers. *)
type my_int_list = EmptyList | IntList of int * my_int_list ;;
let l = IntList (1, EmptyList) ;;
(* or Trees *)
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
let example_tree: int tree =
Node (
Node (Empty, 7, Empty),
5,
Node (Empty, 9, Empty)
)
(*
5
/ \
7 9
*)
(*** Records ***)
(* A collection of values with named fields *)
type animal =
{
name: string;
color: string;
legs: int;
}
;;
let cow =
{ name: "cow";
color: "black and white";
legs: 4;
}
;;
val cow : animal
cow.name ;;
- : string = "cow"
(*** Pattern matching ***)
(* Pattern matching is somewhat similar to switch statement in imperative
(* Pattern matching is somewhat similar to the switch statement in imperative
languages, but offers a lot more expressive power.
Even though it may look complicated, it really boils down to matching
@ -311,7 +365,7 @@ let l = IntList (1, EmptyList) ;;
let is_zero x =
match x with
| 0 -> true
| _ -> false (* The "_" pattern means "anything else". *)
| _ -> false (* The "_" means "anything else". *)
;;
(* Alternatively, you can use the "function" keyword. *)
@ -342,6 +396,19 @@ let say x =
say (Cat "Fluffy") ;; (* "Fluffy says meow". *)
(* However, pattern matching must be exhaustive *)
type color = Red | Blue | Green ;;
let what_color x =
match x with
| Red -> "color is red"
| Blue -> "color is blue"
(* Won't compile! You have to add a _ case or a Green case
to ensure all possibilities are accounted for *)
;;
(* Also, the match statement checks each case in order.
So, if a _ case appears first, none of the
following cases will be reached! *)
(** Traversing data structures with pattern matching **)
(* Recursive types can be traversed with pattern matching easily.
@ -369,9 +436,75 @@ let rec sum_int_list l =
let t = Cons (1, Cons (2, Cons (3, Nil))) ;;
sum_int_list t ;;
(* Heres a function to tell if a list is sorted *)
let rec is_sorted l =
match l with
| x :: y :: tail -> x <= y && is_sorted (y :: tail)
| _ -> true
;;
is_sorted [1; 2; 3] ;; (* True *)
(* OCaml's powerful type inference guesses that l is of type int list
since the <= operator is used on elements of l *)
(* And another to reverse a list *)
let rec rev (l: 'a list) : 'a list =
match l with
| [] -> []
| x::tl -> (rev tl) @ [x]
;;
rev [1; 2; 3] ;; (* Gives [3; 2; 1] *)
(* This function works on lists of any element type *)
(*** Higher Order Functions ***)
(* Functions are first class in OCaml *)
let rec transform (f: 'a -> 'b) (l: 'a list) : 'b list =
match l with
| [] -> []
| head :: tail -> (f head) :: transform f tail
;;
transform (fun x -> x + 1) [1; 2; 3] ;; (* Gives [2; 3; 4] *)
(** Lets combine everything we learned! **)
let rec filter (pred: 'a -> bool) (l: 'a list) : 'a list =
begin match l with
| [] -> []
| x :: xs ->
let rest = filter pred xs in
if pred x then x :: rest else rest
end
;;
filter (fun x -> x < 4) [3; 1; 4; 1; 5] ;; (* Gives [3; 1; 1]) *)
(*** Mutability ***)
(* Records and variables are immutable: you cannot change where a variable points to *)
(* However, you can create mutable polymorphic fields *)
type counter = { mutable num : int } ;;
let c = { num: 0 } ;;
c.num ;; (* Gives 0 *)
c.num <- 1 ;; (* <- operator can set mutable record fields *)
c.num ;; (* Gives 1 *)
(* OCaml's standard library provides a ref type to make single field mutability easier *)
type 'a ref = { mutable contents : 'a } ;;
let counter = ref 0 ;;
!counter ;; (* ! operator returns x.contents *)
counter := !counter + 1 ;; (* := can be used to set contents *)
```
## Further reading
* Visit the official website to get the compiler and read the docs: <http://ocaml.org/>
* Try interactive tutorials and a web-based interpreter by OCaml Pro: <http://try.ocamlpro.com/>
* Visit the official website to get the compiler and read the docs: [http://ocaml.org/](http://ocaml.org/)
* Quick tutorial on OCaml: [https://ocaml.org/docs/up-and-running](https://ocaml.org/docs/up-and-running)
* Complete online OCaml v5 playground: [https://ocaml.org/play](https://ocaml.org/play)
* An up-to-date (2022) book (with free online version) "Real World OCaml": [https://www.cambridge.org/core/books/real-world-ocaml-functional-programming-for-the-masses/052E4BCCB09D56A0FE875DD81B1ED571](https://www.cambridge.org/core/books/real-world-ocaml-functional-programming-for-the-masses/052E4BCCB09D56A0FE875DD81B1ED571)
* Online interactive textbook "OCaml Programming: Correct + Efficient + Beautiful" from Cornell University: [https://cs3110.github.io/textbook/cover.html](https://cs3110.github.io/textbook/cover.html)
* Try interactive tutorials and a web-based interpreter by OCaml Pro: [http://try.ocamlpro.com/](http://try.ocamlpro.com/)

View File

@ -114,13 +114,15 @@ eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
img = cv2.imread('human.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
aces = face_cascade.detectMultiScale(gray, 1.3, 5)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
# Draw a rectangle around detected face
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
# Draw a rectangle around detected eyes
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv2.imshow('img',img)

751
osl.html.markdown Normal file
View File

@ -0,0 +1,751 @@
---
language: osl
filename: learnosl.osl
contributors:
- ["Preetham Pemmasani", "https://github.com/Preetham-ai"]
---
OSL (Open Shading Language) is a programming language designed by Sony for Arnold Renderer used for creating shaders.
[Read more here.](https://raw.githubusercontent.com/imageworks/OpenShadingLanguage/master/src/doc/osl-languagespec.pdf)
```c
// Single-line comments start with //
/* Multi line comments are preserved. */
// Statements can be terminated by ;
divide(1,2);
///////////////
// 1. Basics //
///////////////
// Declating variables
color Blue; // Initializing a variable
int _num = 3;
float Num = 3.00;
float c[3] = {0.1, 0.2, 3.14}; // Array
// Math works as you would expect
3 + 1; // 4
74 - 3; // 71
20 * 2; // 40
75/3; // 25.0
// And modulo division only works with integers
10 % 2; // 0
31 % 4; // 1
// Bitwise operations only works with integers
- 0 // 1 (Unary Negation)
~ 00100011 // 11011100 (bitwise Compliment)
1 << 2; // 4 (shift Left)
12 >> 1; // 3 (shift Right)
1 & 0; // 0 (bitwise AND)
1 | 0; // 1 (bitwise OR)
1 ^ 1; // 0 (bitwise XOR)
// We also have booleans
true;
false;
// Booleans can't be compared to integers
true == 1 // Error
false == 0 // Error
// Negation uses the ! symbol
!0; // 1
!1; // 0
!2; // 0
//... and so on
// Relation Operators are defined like:
0 == 0 // true (equal to)
0 != 1 // true (not equal to)
5 < 3 // false (less then)
3 <= 3 // true (less than or equal to)
69 > 69 // false (greater than)
99 >= 52 // true (greater than or equal)
// Functions are same as C and C++
float sum(float a, float b){
return a+b;
}
int subtract(int a, int b){
return a-b;
}
sum(2,3); // 5
////////////////
// 2. Shaders //
////////////////
// Shaders explain the custom behavior of materials and light
// Shader's syntax is similar to the main function in C
// The inputs and the outputs should be initialized to default types
shader multiply(float a = 0.0,
float b = 0.0,
output float c = 0.0){
c = a*b;
}
// Double brackets[[ ]] is used to classify metadata of a shader
surface plastic
[[ string help = "Realistic wood shader" ]]
(
color Plastic = color (0.7, 0.5, 0.3) [[ string help = "Base color" ]],
float Reflectivity = 0.5 [[ float min = 0, float max = 1 ]],
){...}
///////////////////////////////////////
// Metadata Types
///////////////////////////////////////
[[ string label = "IOR" ]] // Display-name in UI of the parameter
[[ string help = "Change Refractive Index" ]] // Info about the parameter
[[ string help = "widget" // Gives widgets to input the parameter
string widget = "number" ]] // input float or int
string widget = "string" ]] // String input
string widget = "boolean" ]] // yes/no (or) 1/0
string widget = "popup", options = "smooth|rough" ]] // Drop-down list
// enum Drop-down list can also be made
string widget = "mapper", options = "smooth:0|rough:1" ]]
string widget = "filename" ]] // Input files externally
string widget = "null" ]] // null input
[[ float min = 0.0 ]] // Minimum value of parameter
[[ float max = 0.5 ]] // Maximum value of parameter
[[ int slider = 3.0 // Adds a slider as an input
int slidermin = -1]] // minimum value of the slider
int slidermax = 3]] // maximum value of the slider
int slidercenter = 2]] // origin value of the slider
[[ float sensitivity = 0.5 ]] // step size for incrementing the parameter
[[ string URL = www.example.com/ ]] // URL of shader's documentation
// There are different types of shaders
/* Surface shaders determine the basic material properties of a surface and
how it reacts to light */
// Light shaders are a type of SURFACE shaders used for emissive objects.
// Displacement shaders alter the geometry using position and normals.
// Volume shaders adds a medium like air/smoke/dust into the scene.
volume multiply(float a = 0.0, float b = 0.0, output float c = 0.0){
c = 2*a+b;
}
////////////////////////////////////////
// 3. Data Types and Global Variables //
////////////////////////////////////////
// Data Types
// 1. The void type indicates a function that doesn't return any value
// 2. int (Integer)
int x = -12; // Minimum size of 32-bits
int new2 = 0x01cf; // Hexadecimal can also be specified
///////////////////////////////////////
// Order of Evaluation
///////////////////////////////////////
// From top to bottom, top has higher precedence
//--------------------------//
// Operators //
//--------------------------//
// int++, int-- //
// ++ int --int - ~ ! //
// * / % //
// + - //
// << >> //
// < <= > >= //
// == != //
// & //
// ^ //
// | //
// && //
// || //
// ?: //
// = += -= *= /= //
//--------------------------//
// 3. float (Floating-point number)
float A = 2.3; // minimum IEEE 32-bit float
float Z = -4.1e2; // Z = -4.1 * 10^2
// Order of evaluation is similar to int.
// Operations like ( ~ ! % << >> ^ | & && || ) aren't available in float
// 4. string
// The syntax is similar to C
string new = "Hello World";
// some Special characters:
/*
'\"'; // double quote
'\n'; // newline character
'\t'; // tab character (left justifies text)
'\v'; // vertical tab
'\\'; // back slash
'\r'; // carriage return
'\b'; // backspace character
*/
// Strings are concatenated with whitespace
"Hello " "world!"; // "Hello world!"
// concat function can also be used
string concat ("Hello ","World!"); // "Hello world!"
// printf function is same as C
int i = 18;
printf("I am %d years old",i); // I am 18 years old
// String functions can alse be used
int strlen (string s); // gives the length of the string
int len = strlen("Hello, World!"); // len = 13
// startswith returns 1 if string starts with prefix, else returns 0
int starts = startswith("The quick brown fox", "The"); // starts = 1
// endswith returns 1 if string starts with suffix, else returns 0
int ends = endswith("The quick brown fox", "fox"); // ends will be 1
// 5. color (Red, Green, Blue)
color p = color(0,1,2); // black
color q = color(1); // white ( same as color(1,1,1) )
color r = color("rgb", 0.23, 0.1, 0.8); // explicitly specify in RGB
color s = color("hsv", 0.23, 0.1, 0.8); // specify in HSV
// HSV stands for (Hue, Saturation, Luminance)
// HSL stands for (Hue, Saturation, Lightness)
// YIQ, XYZ and xyY formats can also be used
// We can also access the indivudual values of (R,G,B)
float Red = p[0]; // 0 (access the red component)
float Green = p[1]; // 1 (access the green component)
float Blue = p[2]; // 2 (access the blue component)
// They can also be accessed like this
float Red = p.r; // 0 (access the red component)
float Green = p.g; // 1 (access the green component)
float Blue = p.b; // 2 (access the blue component)
// Math operators work like this with decreasing precedence
color C = (3,2,3) * (1,0,0); // (3, 0, 0)
color D = (1,1,1) * 255; // (255, 255, 255)
color E = (25,5,125) / 5; // (5, 1, 25)
color F = (30,40,50) / (3,4,5); // (10, 10, 10)
color A = (1,2,3) + (1,0,0); // (2, 2, 3)
color B = (1,2,3) - (1,0,0); // (0, 2, 3)
// Operators like ( - == != ) are also used
// Color Functions
color blackbody (1500) // Gives color based on temperature (in Kelvin)
float luminance (0.5, 0.3, 0.8) // 0.37 gives luminance cd/m^2
// Luminance is calculated by 0.2126R+0.7152G+0.0722B
color wavelength color (700) // (1, 0, 0) Gives color based on wavelength
color transformc ("hsl", "rgb") // converts one system to another
// 6. point (x,y,z) is position of a point in the 3D space
// 7. vector (x,y,z) has length and direction but no position
// 8. normal (x,y,z) is a special vector perpendicular to a surface
// These Operators are the same as color and have the same precedence
L = point(0.5, 0.6, 0.7);
M = vector(30, 100, 70);
N = normal(0, 0, 1);
// These 3 types can be assigned to a coordinate system
L = point("object", 0.5, 0.6, 0.7); // relative to local space
M = vector("common", 30, 100, 70); // relative to world space
// There's also ("shader", "world", "camera", "screen", "raster", "NDC")
float x = L[0]; // 0.5 (access the x-component)
float y = L[1]; // 0.6 (access the y-component)
float z = L[2]; // 0.7 (access the z-component)
// They can also be accessed like this
float x = M.x; // 30 (access the x-component)
float y = M.y; // 100 (access the y-component)
float z = M.z; // 70 (access the z-component)
float a = dot ((1,2,3), (1,2,3)); // 14 (Dot Product)
vector b = cross ((1,2,3), (1,2,3)); // (0,0,0) (Cross Product)
float l = length(L); // 1.085 (length of vector)
vector normalize (vector L); // (0.460, 0.552, 0.644) Normalizes the vector
point p0 = point(1, 2, 3);
point p1 = point(4, 5, 6);
point Q = point(0, 0, 0);
// Finding distance between two points
float len = distance(point(1, 2, 3), point(4, 5, 6)); // 5.196
// Perpendicular distance from Q to line joining P0 and P1
float distance (point P0, point P1, point Q); // 2.45
// 9. matrix
// Used for transforming vectors between different coordinate systems.
// They are usually 4x4 (or) 16 floats
matrix zero = 0; // makes a 4x4 zero matrix
/* 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0 */
matrix ident = 1; // makes a 4x4 identity matrix
/* 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 */
matrix m = 7; // Maked a 4x4 scalar matrix with scaling factor of 7
/* 7.0, 0.0, 0.0, 0.0,
0.0, 7.0, 0.0, 0.0,
0.0, 0.0, 7.0, 0.0,
0.0, 0.0, 0.0, 7.0 */
float x = m[1][1]; // 7
// matrices can be constructed using floats in row-major order
// matrices are usually 4x4 with 16 elements
matrix myMatrix = matrix(1.0, 0.0, 0.0, 0.0, // Row 1
0.0, 2.0, 0.0, 0.0, // Row 2
0.0, 0.0, 3.0, 0.0, // Row 3
0.0, 0.0, 0.0, 4.0); // Row 4
// matrix transformations are easy to implement
matrix a = matrix ("shader", 1); // converted shader to common
matrix m = matrix ("object", "world"); // converted object to world
// Operations that can be used with decreasing precedence are:
// ( - * / == !=)
float determinant (matrix M) // 24 (returns the determinant of the matrix)
float transpose (matrix M) // returns the transpose of the matrix
/* 1.0, 0.0, 0.0, 0.0,
0.0, 2.0, 0.0, 0.0,
0.0, 0.0, 3.0, 0.0,
0.0, 0.0, 0.0, 4.0 */
// 10. array
// Arrays in OSL are similar to C
float a[5]; // initialize array a with size 5
int b[3] = {90,80,70}; // declare array with size 3
int len = arraylength(b); // 3
int f = b[1]; // 80
float anotherarray[3] = b; // arrays can be copied if same type
// 11. struct (Structures)
// Structures in OSL are similar to C and C++.
struct RGBA { // Defining a structure
color rgb;
float alpha;
};
RGBA col; // Declaring a structure
RGBA b = { color(0.1, 0.2, 0.3), 1 }; // Can also be declared like this
r.rgb = color (1, 0, 0); // Assign to one field
color c = r.rgb; // Read from a structure field
// 12. closure
// Closure is used to store data that aren't considered when it executes.
// It cannot be manipulated or read.
// A null closure can always be assigned.
// OSL currently only supports color as their closure.
// A few examples of closures are:
// Diffuse BSDF closures:
closure color oren_nayar_diffuse_bsdf(normal N, color alb, float roughness)
closure color burley_diffuse_bsdf(normal N, color alb, float roughness);
// Dielectric BSDF closure:
closure color dielectric_bsdf(normal N, vector U, color reflection_tint,
color transmission_tint, float roughness_x, float roughness_y,
float ior, string distribution);
// Conductor BSDF closure:
closure color conductor_bsdf(normal N, vector U, float roughness_x,
float roughness_y, color ior, color extinction, string distribution);
// Generalized Schlick BSDF closure:
closure color generalized_schlick_bsdf(normal N, vector U,
color reflection_tint, color transmission_tint,
float roughness_x, float roughness_y, color f0, color f90,
float exponent, string distribution);
// Translucent BSDF closure:
closure color translucent_bsdf(normal N, color albedo);
// Transparent BSDF closure:
closure color transparent_bsdf();
// Subsurface BSSRDF closure:
closure color subsurface_bssrdf();
// Sheen BSDF closure:
closure color sheen_bsdf(normal N, color albedo, float roughness);
// Anisotropic VDF closure: (Volumetric)
closure color anisotropic_vdf(color albedo, color extinction,
float anisotropy);
// Medium VDF closure: (Volumetric)
closure color medium_vdf(color albedo, float transmission_depth,
color transmission_color, float anisotropy, float ior, int priority);
closure color uniform edf(color emittance); // Emission closure
closure color holdout(); // Holdout Hides objects beneath it
// BSDFs can be layered using this closure
closure color layer (closure color top, closure color base);
// Global Variables
// Contains info that the renderer knows
// These variables need not be declared
point P // Position of the point you are shading
vector I // Incident ray direction from viewing position to shading position
normal N // Normal of the surface at P
normal Ng // Normal of the surface at P irrespective of bump mapping
float u // UV 2D x - parametric coordinate of geometry
float v // UV 2D y - parametric coordinate of geometry
vector dPdu // change of P with respect to u tangent to the surface
vector dPdv // change of P with respect to v tangent to the surface
float time // Current time
float dtime // Time covered
vector dPdtime // change of P with respect to time
/////////////////////
// 4. Control flow //
/////////////////////
// Conditionals in OSL are just like in C or C++.
// If/Else
if (5>2){
int x = s;
int l = x;
}
else{
int x = s + l;
}
// 'while' loop
int i = 0;
while (i < 5) {
i += 1;
printf("Current value of i: %d\n", i);
}
// 'do-while' loop is where test happens after the body of the loop
int i = 0;
do {
printf("Current value of i: %d\n", i);
i += 1;
} while (i < 5);
// 'for' loop
for (int i = 0; i < 5; i += 1) {
printf("Current value of i: %d\n", i);
}
/////////////////////
// 5. Functions //
/////////////////////
// Math Constants
M_PI // π
M_PI_35 // π/35
m_E // e
M_LN2 // ln 2
M_SQRT2 // √2
M_SQRT1_2 // √(1/2)
// Geometry Functions
vector N = vector(0.1, 1, 0.2); // Normal vector
vector I = vector(-0.5, 0.2, 0.8); // Incident vector
// Faceforward tells the direction of vector
vector facing_dir = faceforward(N, I); // facing_dir = (-0.5, 0.2, 0.8)
// faceforward with three arguments
vector ref = vector(0.3, -0.7, 0.6); // Reference normal
facing_dir = faceforward(N, I, ref); // facing_dir = (0.5, -0.2, -0.8)
// reflect gives the reflected vector along normal
vector refl = reflect(I, N); // refl = (-0.7, -0.4, 1.4)\
// refract gives the refracted vector along normal
float ior = 1.5; // Index of refraction
vector refr = refract(I, N, ior); // refr = (-0.25861, 0.32814, 0.96143)
/* Fresnel computes the Reflection (R) and Transmission (T) vectors, along
with the scaling factors for reflected (Kr) and transmitted (Kt) light. */
float Kr, Kt;
vector R, T;
fresnel(I, N, ior, Kr, Kt, R, T);
/* Kr = 0.03958, Kt = 0.96042
R = (-0.19278, -0.07711, 0.33854)
T = (-0.25861, 0.32814, 0.96143) */
// Rotating a point along a given axis
point Q = point(1, 0, 0);
float angle = radians(90); // 90 degrees
vector axis = vector(0, 0, 1);
point rotated_point = rotate(Q, angle, axis);
// rotated_point = point(0, 1, 0)
// Rotating a point along a line made by 2 points
point P0 = point(0, 0, 0);
point P1 = point(1, 1, 0);
angle = radians(45); // 45 degrees
Q = point(1, 0, 0);
rotated_point = rotate(Q, angle, P0, P1);
// rotated_point = point(0.707107, 0.707107, 0)
// Calculating normal of surface at point p
point p1 = point(1, 0, 0); // Point on the sphere of radius 1
vector normal1 = calculatenormal(p1);
// normal1 = vector(1, 0, 0)
// Transforming units is easy
float transformu ("cm", float x) // converts to cm
float transformu ("cm", "m", float y) // converts cm to m
// Displacement Functions
void displace (float 5); // Displace by 5 amp units
void bump (float 10); // Bump by 10 amp units
// Noise Generation
type noise (type noise (string noisetype, float u, float v, ...)); // noise
type noise (string noisetype, point p,...); // point instead of coordinates
/* some noises are ("perlin", "snoise", "uperlin", "noise", "cell", "hash"
"simplex", "usimplex", "gabor", etc) */
// Noise Names
// 1. Perlin Noise (perlin, snoise):
// Creates smooth, swirling noise often used for textures.
// Range: [-1, 1] (signed)
color cloud_texture = noise("perlin", P);
// 2. Simplex Noise (simplex, usimplex):
// Similar to Perlin noise but faster.
// Range: [-1, 1] (signed) for simplex, [0, 1] (unsigned) for usimplex
float bump_amount = 0.2 * noise("simplex", P * 5.0);
// 3. UPerlin Noise (uperlin, noise):
// Similar to peril
// Range: [0, 1] (unsigned)
color new_texture = noise("uperlin", P);
// 4. Cell Noise (cell):
// Creates a blocky, cellular and constant values within each unit block
// Range: [0, 1] (unsigned)
color new_texture = noise("cell", P);
// 5. Hash Noise (hash):
// Generates random, uncorrelated values at each point.
// Range: [0, 1] (unsigned)
color new_texture = noise("hash", P);
// Gabor Noise (gabor)
// Gabor Noise is advanced version of Perin noies and gives more control
// Range: [-1, 1] (signed)
// Gabor Noise Parameters
// Anisotropic (default: 0)
// Controls anisotropy:
// 0: Isotropic (equal frequency in all directions)
// 1: Anisotropic with user-defined direction vector (defaults to (1,0,0))
/* 2: Hybrid mode,anisotropic along direction vector but radially isotropic
perpendicularly. */
// Direction (default: (1,0,0))
// Specifies the direction of anisotropy (used only if anisotropic is 1).
// bandwidth (default: 1.0)
// Controls the frequency range of the noise.
// impulses (default: 16)
// Controls the number of impulses used per cell, affecting detail level.
// do_filter (default: 1)
// Enables/disables antialiasing (filtering).
result = noise(
"gabor",
P,
"anisotropic", anisotropic,
"direction", direction,
"bandwidth", bandwidth,
"impulses", impulses,
"do_filter", do_filter
);
// Specific noises can also be used instead of passing them as types
// pnoise is periodic noise
float n1 = pnoise("perlin", 0.5, 1.0);
// 2D periodic noise with Gabor type
float n2 = pnoise("gabor", 0.2, 0.3, 2.0, 3.0);
// 2D non-periodic simplex noise
float n3 = snoise(0.1, 0.7);
// 2D periodic simplex noise
type psnoise (float u, float v, float uperiod, float vperiod);
float n4 = psnoise(0.4, 0.6, 0.5, 0.25);
// 2D cellular noise
float n5 = cellnoise(0.2, 0.8);
// 2D hash noise
int n6 = hash(0.7, 0.3);
// Step Function
// Step Functions are used to compare input and threshold
// The type may be of float, color, point, vector, or normal.
type step (type edge, type x); // Returns 1 if x ≥ edge, else 0
color checker = step(0.5, P); // P is a point on the surface
/* Pixels with P values below 0.5 will be black, those above or equal will
be white */
float visibility = step(10, distance(P, light_position));
// Light is fully visible within 10 units, completely invisible beyond
type linearstep (type edge0, type edge1, type x); /* Linearstep Returns 0
if x ≤ edge0, and 1 if x ≥ edge1, with linear interpolation */
color gradient = linearstep(0, 1, P);
// P is a point on the surface between 0 and 1
// Color will graduate smoothly from black to white as P moves from 0 to 1
float fade = linearstep(0.85, 1, N.z); // N.z is the z-component
// Object edges with normals close to vertical (N.z near 1) will fade out
type smoothstep (type edge0, type edge1, type x); /* smoothstep Returns 0
if x ≤ edge0, and 1 if x ≥ edge1, with Hermite interpolation */
float soft_mask = smoothstep(0.2, 0.8, noise(P)); /* noise(P) is a noisy
value between 0 and 1. soft_mask will vary smoothly between 0 and 1 based
on noise(P), with a smoother curve than linearstep */
// Splines
// Splines are smooth curves based on a set of control points
/* The type of interpolation ranges from "catmull-rom", "bezier",
"bspline", "hermite", "linear", or "constant" */
// Spline with knot vector
float[] knots = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1};
point[] controls = {point(0),point(1, 2, 1),point(2, 1, 2),point(3, 3, 1)};
spline curve1 = spline("bezier", 0.5, len(knots), controls);
// curve1 is a Bezier spline evaluated at u = 0.5
// Spline with control points
spline curve2 = spline("catmull-rom", 0.25, point(0, 0, 0), point(1, 2, 1),
point(2, 1, 2), point(3, 3, 1));
// curve2 is a Catmull-Rom spline evaluated at u = 0.25
// Constant spline with a single float value
float value = 10;
u = 0.1;
spline curve5 = spline("constant", u, value);
// curve5 is a constant spline with value 10 evaluated at u = 0.1
// Hermite spline with point and vector controls
point q0 = point(0, 0, 0), q1 = point(3, 3, 3);
vector t0 = vector(1, 0, 0), t1 = vector(-1, 1, 1);
u = 0.75;
spline curve3 = spline("hermite", u, q0, t0, q1, t1);
// curve3 is a Hermite spline evaluated at u = 0.75
// Linear spline with float controls
float f0 = 0, f1 = 1, f2 = 2, f3 = 3;
u = 0.4;
spline curve4 = spline("linear", u, f0, f1, f2, f3);
// curve4 is a linear spline evaluated at u = 0.4
// InverseSplines also exist
// Inverse spline with control values
float y0 = 0, y1 = 1, y2 = 2, y3 = 3;
float v = 1.5;
float u1 = splineinverse("linear", v, y0, y1, y2, y3);
// u1 = 0.5 (linear interpolation between y1 and y2)
// Inverse spline with knot vector
float[] knots = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1};
float[] values = {0, 1, 4, 9};
v = 6;
float u2 = splineinverse("bezier", v, len(knots), values);
// u2 = 0.75 (Bezier spline inverse evaluated at v = 6)
// Inverse spline with constant value
v = 10;
float u3 = splineinverse("constant", v, 10);
// u3 = 0 (since the constant spline always returns 10)
// Inverse spline with periodic values
float y4 = 0, y5 = 1, y6 = 0;
v = 0.5;
float u4 = splineinverse("periodic", v, y4, y5, y6);
// u4 = 0.75 (periodic spline inverse evaluated at v = 0.5)
// Calculus Operators
// Partial derivative of f with respect to x, y and z using Dx, Dy, Dz
float a = 3.14;
float dx = Dx(a); // partial derivative of a with respect to x
point p = point(1.0, 2.0, 3.0);
vector dp_dx = Dx(p); // partial derivative of p with respect to x
vector dv_dy = Dy(N); // partial derivative of normal with respect to y
color c = color(0.5, 0.2, 0.8);
color dc_dz = Dz(c); // partial derivative of c with respect to z
float area (point p) // gives the surface area at the position p
float filterwidth (float x) // gives the changes of x in adjacent samples
// Texture Functions
// lookup for a texture at coordinates (x,y)
color col1 = texture("texture.png", 0.5, 0.2);
// Lookup color at (0.5, 0.2) in texture.png
// 3D lookup for a texture at coordinates (x,y)
color col3 = texture3d("texture3d.vdb", point(0.25, 0.5, 0.75));
// parameters are ("blur","width","wrap","fill","alpha","interp", ...)
color col2 = texture("texture.png",1.0,0.75,"blur",0.1,"wrap", "periodic");
// Lookup color at (1.0, 0.75) with blur 0.1 and periodic wrap mode
// Light Functions
float surfacearea (); // Returns the surface area of area light covers
int backfacing (); // Outputs 1 if the normals are backfaced, else 0
int raytype (string name); // returns 1 if the ray is a particular raytype
// Tracing a ray from a position in a direction
point pos = point(0, 0, 0); // Starting position of the ray
vector dir = vector(0, 0, 1); // Direction of the ray
int hit = trace(pos, dir); // returns 1 if it hits, else 0
```
### Further reading
* [Blender Docs for OSL](https://docs.blender.org/manual/en/latest/render/shader_nodes/osl.html)
* [C4D Docs for OSL](https://docs.otoy.com/cinema4d//OpenShadingLanguageOSL.html)
* Open Shading Language on [Github](https://github.com/AcademySoftwareFoundation/OpenShadingLanguage)
* [Official OSL Documentation](https://open-shading-language.readthedocs.io/en/main/)

View File

@ -10,40 +10,142 @@ filename: p5.js
p5.js is a JavaScript library that starts with the original goal of [Processing](https://processing.org), to make coding accessible for artists, designers, educators, and beginners, and reinterprets this for today's web.
Since p5 is a JavaScript library, you should learn [Javascript](https://learnxinyminutes.com/docs/javascript/) first.
To run p5.js code, you can go to [the online editor](https://editor.p5js.org/).
```js
///////////////////////////////////
// p5.js has two important functions to work with.
function setup() {
// the setup function gets executed just once when the window is loaded
// the setup function gets executed just once when the window is loaded
}
function draw() {
// the draw function gets called every single frame. This means that for a frameRate(30) it would get called 30 times per second.
// the draw function gets called every single frame
// if the framerate is set to 30, it would get called 30 times every second
}
// the following code explains all features
function setup() {
createCanvas(640, 480); // creates a new canvas element with 640px as width as 480px as height
background(128); // changes the background color of the canvas, can accept rgb values like background(100,200,20) else grayscale values like background(0) = black or background(255) = white
createCanvas(640, 480); // creates a new canvas element with 640px as width as 480px as height
background(128); // sets the background color to rgb(128, 128, 128)
// background('#aaf') // you can use hex codes and color names too
}
function draw() {
ellipse(10, 10, 50, 50); // creates a ellipse at the 10px from the left and 10px from the top with width and height as 50 each, so its basically a circle.
//remember in p5.js the origin is at the top-left corner of the canvas
background('#f2f2fc'); // usually, you call `background` in draw to clear the screen
// creates an ellipse at 10px from the top and 10px from the left, with width and height 37
ellipse(10, 10, 37, 37);
// remember in p5.js the origin is at the top-left corner of the canvas
if (mouseIsPressed) {
// mouseIsPressed is a boolean variable that changes to true if the mouse button is pressed down at that instant
if (mouseIsPressed) {
// mouseIsPressed is a boolean variable that is true when the mouse is down, and false otherwise
fill(0); // fill refers to the innner color or filling color of whatever shape you are going to draw next
} else {
fill(255); // you can give in rgb values like fill(72, 240, 80) to get colors, else a single values determines the grayscale where fill(255) stands for #FFF(white) and fill(0) stands for #000(black)
fill(0); // fill sets the fill color, which will stay until it is changed
} else {
fill(255, 255, 255, 240); // fill(a, b, c, d) sets the fill color to rgba(a, b, c, d)
}
ellipse(mouseX, mouseY, 80, 80);
// mouseX and mouseY are the x and y position of the mouse, respectively
// the above code creates and ellipse under the mouse, and fills it with white or black
// some other 2d primitives (shapes) you can draw:
rect(9, 3, 23, 26); // x, y, width, height
noFill(); // sets the fill color to transparent
triangle(100, 400, 130, 200, 200, 300); // x1, y1, x2, y2, x3, y3
point(100, 300); // create a point at x, y
// there are more, but they are more complex.
}
/** Bouncing balls animation
* You can copy-paste this code into the online editor at
* https://editor.p5js.org/
*/
class Ball {
constructor(x, y, xvel, yvel, radius, col) {
this.position = createVector(x, y); // create a p5.Vector object which stores the x and y
this.velocity = createVector(xvel, yvel); // make a p5.Vector storing the velocity
this.radius = radius;
this.col = col; // p5 already uses the word color, so we use col instead
}
update() {
this.position.add(this.velocity); // you can add vectors with p5.Vector.add(p5.Vector)
if (this.position.x + this.radius > width) {
// flip the direction the ball is going in if it touches the edge
this.velocity.x *= -1;
}
if (this.position.x - this.radius < 0) {
this.velocity.x *= -1;
}
if (this.position.y + this.radius > height) {
this.velocity.y *= -1;
}
if (this.position.y - this.radius < 0) {
this.velocity.y *= -1;
}
}
ellipse(mouseX, mouseY, 80, 80);
// mouseX is the x-coordinate of the mouse's current position and mouseY is the y-coordinate of the mouse's current position
render() {
// you can figure out what this does by now
fill(this.col);
ellipse(this.position.x, this.position.y, this.radius);
}
}
// the above code creates a circle wherever mouse's current position and fills it either black or white based on the mouseIsPressed
let numBalls = 23;
let balls = [];
function setup() {
createCanvas(400, 400); // width, height
for (let i = 0; i < numBalls; i++) {
let r = random(255); // random number between 0 and 255
let g = random(255);
let b = random(255);
balls.push(
new Ball(
random(30, width), // x position
random(height), // y position
random(-4, 4), // x velocity
random(-4, 4), // y velocity
random(4, 10), // radius
color(r, g, b) // fill color for the ball
)
);
}
}
function draw() {
background(255);
for (let ball of balls) {
ball.update();
ball.render();
}
}
// So far, we have only seen the default rendering mode.
// This time, we will use the 'webgl' renderer
function setup() {
createCanvas(400, 400, WEBGL); // width, height, rendering mode
}
function draw() {
background(0);
stroke('#000');
fill('#aaf');
// rotate around the x, y, and z axes by the frame count divided by 50
rotateX(frameCount / 50);
rotateY(frameCount / 50);
rotateZ(frameCount / 50);
// frameCount is a p5.js variable that stores the amount of frames that have passed
box(50, 50, 50); // width, height, depth
}
```
@ -51,3 +153,9 @@ function draw() {
- [p5.js | get started](http://p5js.org/get-started/) The official documentation
- [Code! Programming for Beginners with p5.js - YouTube](https://www.youtube.com/watch?v=yPWkPOfnGsw&vl=en) Introduction and Coding challenges using Processing and p5.js by Coding Train
- [The Coding Train](https://codingtra.in/) A website with sketches made in p5 and processing
## Source
- [p5's source code](https://github.com/processing/p5.js)
- [p5.sound.js source](https://github.com/processing/p5.js-sound)

View File

@ -92,9 +92,10 @@ $escaped = "This contains a \t tab character.";
$unescaped = 'This just contains a slash and a t: \t';
// Enclose a variable in curly braces if needed
$apples = "I have {$number} apples to eat.";
$oranges = "I have ${number} oranges to eat.";
$money = "I have $${number} in the bank.";
$number = 23;
$apples = "I have {$number} apples to eat."; // => I have 23 apples to eat.
$oranges = "I have ${number} oranges to eat."; // => I have 23 oranges to eat.
$money = "I have $${number} in the bank."; // => I have $23 in the bank.
// Since PHP 5.3, nowdocs can be used for uninterpolated multi-liners
$nowdoc = <<<'END'
@ -109,7 +110,7 @@ $sgl_quotes
END;
// String concatenation is done with .
echo 'This string ' . 'is concatenated';
echo 'This string ' . 'is concatenated'; // Returns 'This string is concatenated'
// Strings can be passed in as parameters to echo
echo 'Multiple', 'Parameters', 'Valid'; // Returns 'MultipleParametersValid'

View File

@ -118,14 +118,15 @@ $False - 5 # => -5
2 -lt 3 -and 3 -lt 2 # => False
# (-is vs. -eq) -is checks if two objects are the same type.
# -eq checks if the objects have the same values.
# -eq checks if the objects have the same values, but sometimes doesn't work
# as expected.
# Note: we called '[Math]' from .NET previously without the preceeding
# namespaces. We can do the same with [Collections.ArrayList] if preferred.
[System.Collections.ArrayList]$a = @() # Point a at a new list
$a = (1,2,3,4)
$b = $a # => Point b at what a is pointing to
$b -is $a.GetType() # => True, a and b equal same type
$b -eq $a # => True, a and b values are equal
$b -eq $a # => None! See below
[System.Collections.Hashtable]$b = @{} # => Point a at a new hash table
$b = @{'one' = 1
'two' = 2}
@ -154,6 +155,13 @@ $age = 22
"$name's name is $($name.Length) characters long."
# => "Steve's name is 5 characters long."
# Strings can be compared with -eq, but are case insensitive. We can
# force with -ceq or -ieq.
"ab" -eq "ab" # => True
"ab" -eq "AB" # => True!
"ab" -ceq "AB" # => False
"ab" -ieq "AB" # => True
# Escape Characters in Powershell
# Many languages use the '\', but Windows uses this character for
# file paths. Powershell thus uses '`' to escape characters
@ -274,6 +282,10 @@ $array.AddRange($otherArray) # Now $array is [1, 2, 3, 4, 5, 6]
# Examine length with "Count" (Note: "Length" on arrayList = each items length)
$array.Count # => 6
# -eq doesn't compare array but extract the matching elements
$array = 1,2,3,1,1
$array -eq 1 # => 1,1,1
($array -eq 1).Count # => 3
# Tuples are like arrays but are immutable.
# To use Tuples in powershell, you must use the .NET tuple class.
@ -574,7 +586,7 @@ Get-Process | Foreach-Object ProcessName | Group-Object
1..10 | ForEach-Object { "Loop number $PSITEM" }
1..10 | Where-Object { $PSITEM -gt 5 } | ConvertTo-Json
# A notable pitfall of the pipeline is it's performance when
# A notable pitfall of the pipeline is its performance when
# compared with other options.
# Additionally, raw bytes are not passed through the pipeline,
# so passing an image causes some issues.

View File

@ -5,7 +5,7 @@ contributors:
translators:
- ["David Lima", "https://github.com/davelima"]
lang: pt-br
filename: asciidoc-pt.md
filename: asciidoc-pt.adoc
---
AsciiDoc é uma linguagem de marcação similar ao Markdown e pode ser

View File

@ -202,7 +202,7 @@ function string_functions( localvar, arr) {
# Ambas retornam o número de instâncias substituídas
localvar = "fooooobar"
sub("fo+", "Meet me at the ", localvar) # localvar => "Meet me at the bar"
gsub("e", ".", localvar) # localvar => "m..t m. at th. bar"
gsub("e", ".", localvar) # localvar => "M..t m. at th. bar"
# Localiza um texto que casa com uma expressão regular
# index() faz a mesma coisa, mas não permite uma expressão regular

104
pt-br/bc-pt.html.markdown Normal file
View File

@ -0,0 +1,104 @@
---
language: bc
contributors:
- ["Btup"]
translators:
- ["David Lima", "https://github.com/davelima"]
lang: pt-br
filename: learnbc-pt.bc
---
```c
/*Este é um comentário
multi-linhas*/
# Este é um comentário de uma única linha! (em bc GNU).
/*1. Variáveis e estruturas de controle*/
num = 45 /*Todas as variáveis apenas salvam dados do tipo double, e
você não pode salvar strings diretamente em constantes.*/
num 45; /*Você pode adicionar ponto-e-vírgula após cada linha.
Isto é opcional*/
/*Blocos são denotados usando os operadores {} (similar ao C):*/
while(num < 50) {
num += 1 /*equivalente a num=num+1.
a = a op b é equivalente a a op= b.*/
}
/*E existem os operadores ++ (incrementar) e -- (decrementar).*/
/* Existem 3 tipos especiais de variáveis:
scale: define a escala de números double.
ibase: define a base de da entrada.
obase: define a base da saída.
*/
/*Cláusulas If:*/
hora = read() /*Lê a entrada de um número*/
if(hora < 12) { /*Os operadores são idênticos ao C.*/
print "Bom dia\n" /*"print" imprime strings ou variáveis
separados por vírgula (,).*/
} else if(hora == 12) {
print "Olá\n"
/*Para escapar strings, inicie a string com \.
Para deixar o escape de strings mais claros,
aqui está uma lista simplificada das strings escapadas
que funcionarão com bc:
\b: backspace
\c: carriage return (enter)
\n: newline (nova linha)
\t: tab
\\: backslash (barra inertida)*/
} else {
/*Variáveis são globais por padrão.*/
istoEGlobal = 5
/*Para tornar uma variável local, use a palavra-chave "auto" em uma função.*/
}
/*Todas as variáveis por padrão tem o valor 0*/
num = variavelEmBranco /*num é igual a 0.*/
/*Assim como no C, "0" é considerado "false"*/
if(!num) {print "false\n"}
/*Diferente do C, bc não tem o operador ?:. Por exemplo,
este bloco de código causaria um erro:
a = (num) ? 1 : 0
Entretanto, você pode simular da seguinte forma:
a = (num) && (1) || (0) /*&& é "E", || é "OU"*/
*/
/*Loops For*/
num = 0
for(i = 1; i <= 100; i++) {/*Similar ao loop For do C.*/
num += i
}
/*2.Funções e arrays*/
define fac(n) { /*para definir uma função, use "define".*/
if(n == 1 || n == 0) {
return 1 /*retorna um valor*/
}
return n * fac(n - 1) /*recursão é permitido*/
}
/*Closures e funções anônimas não são permitidas*/
num = fac(4) /*24*/
/*Exemplo de variáveis locais:*/
define x(n) {
auto x
x = 1
return n + x
}
x(3) /*4*/
print x /*A variável "x" não será acessível de fora da função*/
/*Arrays são equivalentes aos arrays em C.*/
for(i = 0; i <= 3; i++) {
a[i] = 1
}
/*Para acessar um array, faça assim:*/
print a[0], " ", a[1], " ", a[2], " ", a[3], "\n"
quit /*Adicione essa linha no final do código
para garantir que o programa encerre. Essa linha é opcional.*/
```
Aproveite bem essa simples calculadora! (Ou essa linguagem de programação, para ser exato.)
Este programa inteiro foi escrito em GNU bc. Para rodá-lo, use ```bc learnbc-pt.bc```

View File

@ -363,7 +363,7 @@ void OwnedDog::print() const
{
Dog::print(); // Chame a função de impressão na classe Dog base de
std::cout << "Dog is owned by " << owner << "\n";
// Prints "Dog is <name> and weights <weight>"
// Imprime "Dog is <name> and weights <weight>"
// "Dog is owned by <owner>"
}

View File

@ -384,7 +384,6 @@ int main() {
// Por exemplo, quando um array é passado para uma função ou é atribuído a um
// ponteiro, ele transforma-se (convertido implicitamente) em um ponteiro.
// Exceções: quando o array é o argumento de um operador `&` (endereço-de):
// Exceptions: when the array is the argument of the `&` (address-of) operator:
int arr[10];
int (*ptr_to_arr)[10] = &arr; // &arr não é do tipo `int *`!
// É do tipo "ponteiro para array" (de `int`s).

View File

@ -153,7 +153,7 @@ on a new line! ""Wow!"", the masses cried";
intArray[1] = 1;
// Listas
// Listas são usadas frequentemente tanto quanto matriz por serem mais flexiveis
// Listas são usadas frequentemente tanto quanto matriz por serem mais flexíveis
// O formato de declarar uma lista é o seguinte:
// List<tipodado> <var nome> = new List<tipodado>();
List<int> intList = new List<int>();

262
pt-br/d-pt.html.markdown Normal file
View File

@ -0,0 +1,262 @@
---
language: D
filename: learnd-pt.d
contributors:
- ["Nick Papanastasiou", "www.nickpapanastasiou.github.io"]
translators:
- ["Julio Vanzelli", "https://github.com/JulioVanzelli"]
lang: pt-br
---
```d
// Você sabe o que está por vir...
module hello;
import std.stdio;
// args é opcional
void main(string[] args) {
writeln("Hello, World!");
}
```
Se você é como eu e passa muito tempo na Internet, é provável que tenha ouvido
sobre [D] (http://dlang.org/). A linguagem de programação D é moderna, de uso geral,
linguagem multiparadigma com suporte para tudo, desde recursos de baixo nível até
abstrações expressivas de alto nível.
D é desenvolvido ativamente por um grande grupo de pessoas super-inteligentes e é liderado por
[Walter Bright] (https://en.wikipedia.org/wiki/Walter_Bright) e
[Andrei Alexandrescu] (https://en.wikipedia.org/wiki/Andrei_Alexandrescu).
Com tudo isso fora do caminho, vamos dar uma olhada em alguns exemplos!
```d
import std.stdio;
void main() {
// Condicionais e loops funcionam como esperado.
for(int i = 0; i < 10000; i++) {
writeln(i);
}
// 'auto' pode ser usado para inferir tipos.
auto n = 1;
// literais numéricos podem usar '_' como um separador de dígitos para maior clareza.
while(n < 10_000) {
n += n;
}
do {
n -= (n / 2);
} while(n > 0);
// Por e enquanto são bons, mas em D-land preferimos loops 'foreach'.
// O '..' cria um intervalo contínuo, incluindo o primeiro valor
// mas excluindo o último.
foreach(n; 1..1_000_000) {
if(n % 2 == 0)
writeln(n);
}
// Há também 'foreach_reverse' quando você deseja fazer um loop para trás.
foreach_reverse(n; 1..int.max) {
if(n % 2 == 1) {
writeln(n);
} else {
writeln("No!");
}
}
}
```
Podemos definir novos tipos com `struct`,` class`, `union` e` enum`. Estruturas e uniões
são passados para funções por valor(ou seja, copiados) e as classes são passadas por referência. Além disso,
podemos usar modelos para parametrizar tudo isso em tipos e valores!
```d
// Aqui, 'T' é um parâmetro de tipo. Pense '<T>' em C++/C#/Java.
struct LinkedList(T) {
T data = null;
// Usar '!' para instanciar um tipo parametrizado. Mais uma vez, pense '<T>'.
LinkedList!(T)* next;
}
class BinTree(T) {
T data = null;
// Se houver apenas um parâmetro de modelo, podemos omitir os parênteses.
BinTree!T left;
BinTree!T right;
}
enum Day {
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
}
// Use o alias para criar abreviações para tipos.
alias IntList = LinkedList!int;
alias NumTree = BinTree!double;
// Também podemos criar modelos de funções!
T max(T)(T a, T b) {
if(a < b)
return b;
return a;
}
// Use a palavra-chave ref para garantir a passagem por referência. Ou seja, mesmo que 'a'
// e 'b' sejam tipos de valor, eles sempre serão passados por referência a 'swap ()'.
void swap(T)(ref T a, ref T b) {
auto temp = a;
a = b;
b = temp;
}
// Com os modelos, também podemos parametrizar valores, não apenas tipos.
class Matrix(uint m, uint n, T = int) {
T[m] rows;
T[n] columns;
}
auto mat = new Matrix!(3, 3); // O tipo 'T' foi padronizado como 'int'.
```
Falando em aulas, vamos falar sobre propriedades por um segundo. Uma propriedade
é aproximadamente uma função que pode agir como um valor I, para que possamos
ter a sintaxe das estruturas POD (`structure.x = 7`) com a semântica de
métodos getter e setter (`object.setX (7)`)!
```d
// Considere uma classe parametrizada nos tipos 'T' e 'U'.
class MyClass(T, U) {
T _data;
U _other;
}
// E os métodos "getter" e "setter", assim:
class MyClass(T, U) {
T _data;
U _other;
// Os construtores sempre são chamados de 'this'.
this(T t, U u) {
// This will call the setter methods below.
data = t;
other = u;
}
// getters
@property T data() {
return _data;
}
@property U other() {
return _other;
}
// setters
@property void data(T t) {
_data = t;
}
@property void other(U u) {
_other = u;
}
}
// E nós os usamos desta maneira:
void main() {
auto mc = new MyClass!(int, string)(7, "seven");
// Importe o módulo 'stdio' da biblioteca padrão para gravar no
// console (as importações podem ser locais para um escopo).
import std.stdio;
// Ligue para os getters para buscar os valores.
writefln("Earlier: data = %d, str = %s", mc.data, mc.other);
// Ligue para os setters para atribuir novos valores.
mc.data = 8;
mc.other = "eight";
// Ligue para os getters novamente para buscar os novos valores.
writefln("Later: data = %d, str = %s", mc.data, mc.other);
}
```
Com propriedades, podemos adicionar qualquer quantidade de lógica para
nossos métodos getter e setter, e mantenha a sintaxe limpa de
acessando membros diretamente!
Outras guloseimas orientadas a objetos à nossa disposição,
incluem interfaces, classes abstratas,
e métodos de substituição. D faz herança como Java:
Estenda uma classe, implemente quantas interfaces você desejar.
Vimos as instalações OOP de D, mas vamos mudar de marcha. D oferece
programação funcional com funções de primeira classe, `pura`
funções e dados imutáveis. Além disso, todos os seus favoritos
algoritmos funcionais (mapear, filtrar, reduzir e amigos) podem ser
encontrado no maravilhoso módulo `std.algorithm`!
```d
import std.algorithm : map, filter, reduce;
import std.range : iota; // cria uma gama exclusiva de final
void main() {
// Queremos imprimir a soma de uma lista de quadrados de ints pares
// de 1 a 100. Fácil!
// Basta passar expressões lambda como parâmetros de modelo!
// Você pode passar qualquer função que desejar, mas as lambdas são convenientes aqui.
auto num = iota(1, 101).filter!(x => x % 2 == 0)
.map!(y => y ^^ 2)
.reduce!((a, b) => a + b);
writeln(num);
}
```
Observe como conseguimos construir um bom pipeline haskelliano para calcular num?
Isso se deve a uma inovação em D, conhecida como Uniform Function Call Syntax (UFCS).
Com o UFCS, podemos optar por escrever uma chamada de função como método
ou chamada de função grátis! Walter escreveu um bom artigo sobre isso
[aqui.] (http://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394)
Em resumo, você pode chamar funções cujo primeiro parâmetro
é de algum tipo A em qualquer expressão do tipo A como método.
Eu gosto de paralelismo. Alguém mais gosta de paralelismo? Com certeza. Vamos fazer um pouco!
```d
// Digamos que queremos preencher uma matriz grande com a raiz quadrada de todos
// os números inteiros consecutivos começando de 1 (até o tamanho da matriz), e queremos
// fazer isso simultaneamente, aproveitando o número de núcleos que temos
// disponível.
import std.stdio;
import std.parallelism : parallel;
import std.math : sqrt;
void main() {
// Crie sua grande variedade
auto arr = new double[1_000_000];
// Use um índice, acesse todos os elementos da matriz por referência (porque vamos
// mudar cada elemento) e apenas chame paralelo na matriz!
foreach(i, ref elem; parallel(arr)) {
elem = sqrt(i + 1.0);
}
}
```

View File

@ -98,7 +98,7 @@ linhas.
# Ranges são representados como `início..fim` (ambos inclusivos)
1..10 #=> 1..10
menor..maior = 1..10 # Pattern matching pode ser usada em ranges também
[lower, upper] #=> [1, 10]
[menor, maior] #=> [1, 10]
## ---------------------------
## -- Operadores
@ -167,7 +167,7 @@ else
"Isso será"
end
# Lembra do patter matching? Muitas estruturas de fluxo de controle em Elixir contam com ela.
# Lembra do pattern matching? Muitas estruturas de fluxo de controle em Elixir contam com ela.
# `case` nos permite comparar um valor com muitos patterns:
case {:um, :dois} do

View File

@ -0,0 +1,60 @@
---
category: tool
tool: emacs
filename: emacs.txt
contributors:
- ["Joseph Riad", "https://github.com/Joseph-Riad"]
translators:
- ["André de Santa Gabriel", "https://github.com/andredesanta"]
lang: pt-br
---
O Emacs começou sua vida como (https://www.gnu.org/software/emacs/emacs-paper.html) e cresceu
ao longo dos anos em um ecossistema completo. Muitas tarefas, geralmente
relegado a um conjunto diversificado de ferramentas pode ser realizado de dentro
Emacs em uma interface consistente e familiar. Exemplos incluem
gerenciamento de diretório, visualização de documentos PDF, edição de arquivos via SSH, gerenciamento de
repos git. Em suma, o Emacs é seu para fazer
o que você quiser: o espectro de usuários varia daqueles que o usam para
editar arquivos de texto para puristas extremos que o usam para substituir virtualmente seu
sistema operacional.
O Emacs é extensível através de um dialeto especializado do Lisp conhecido como Emacs
Lisp (Elisp), que possui muitas macros voltadas para a edição de texto e
gerenciamento de buffers de texto. Qualquer tecla (combinação) usada no Emacs está vinculada
para uma função Emacs Lisp e pode ser remapeado para qualquer outra função,
incluindo aqueles que você escreve
você mesmo.
# Conceitos básicos de Emacs
Aqui, discuto alguns conceitos e terminologia básicos do Emacs que podem ser
confusos para os recém-chegados (especialmente para as pessoas acostumadas à terminologia do Vim):
- O texto que o Emacs está editando é conhecido como **buffer**
- Um buffer não corresponde necessariamente a um arquivo real no disco. Pode ser apenas texto na memória.
- Quando um buffer corresponde a um arquivo no disco, dizemos que o buffer está **visitando** esse arquivo.
- O Emacs normalmente possui muitos buffers abertos ao mesmo tempo.
- A exibição do Emacs pode ser dividida em diferentes **windows**.
- Uma janela do sistema operacional para o Emacs é chamada de **frame**. Assim, quando o manual do Emacs fala sobre a abertura de um novo frame, esse essencialmente significa abrir uma nova janela do SO contendo uma (outra) instância do Emacs.
  
- Os conceitos convencionalmente conhecidos como recortar e colar são referido como **killing** e **yanking**, respectivamente no Emacs.
  
- A posição atual do cursor é chamada de **point** no Emacs. Tecnicamente, **point** é definido como a posição imediatamente antes do caractere onde o cursor está atualmente.
  
- Finalmente, cada buffer pode ter vários **modes** associados: o **major mode** e possivelmente vários **minor modes**.
  
- O **major mode** define o principal comportamento do Emacs no buffer atualmente selecionado. Isso pode ser pensado como o tipo de arquivo. Por exemplo, se você estiver editando um arquivo Python, os principais modes é (por padrão) `python-mode`, que faz com que o Emacs destaque a sintaxe Python e idente automaticamente seus blocos de código conforme exigido sintaticamente pelo seu código Python.
  
- **Minor modes** definem mudanças sutis no comportamento e várias alterações menores Os modos podem estar ativos ao mesmo tempo no mesmo buffer. Um exemplo menor modo é o modo flyspell, que destaca automaticamente os erros de ortografia no seu buffer.
# Recursos adicionais
- [The GNU Emacs Manual](https://www.gnu.org/software/emacs/manual/emacs.html)
- [Emacs Stack Exchange](https://emacs.stackexchange.com/)
- [Emacs Wiki](https://www.emacswiki.org/emacs/EmacsWiki)

View File

@ -77,7 +77,7 @@ pode incluir quebras de linha.` // mesmo tipo string
// literal não-ASCII. A linguagem Go utiliza de raiz a codificação UTF-8.
g := 'Σ' // tipo rune, um alias para int32, que contém um código unicode
f := 3.14195 // float64, número de vírgula flutuante de 64bit (IEEE-754)
f := 3.14159 // float64, número de vírgula flutuante de 64bit (IEEE-754)
c := 3 + 4i // complex128, representado internamente com dois float64s
// Declaração de variáveis, com inicialização.
@ -295,17 +295,17 @@ func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
## Leitura Recomendada
A principal fonte de informação é o [web site oficial Go](http://golang.org/).
A principal fonte de informação é o [web site oficial Go](https://go.dev/).
é possível seguir o tutorial, experimentar de forma iterativa, e ler muito.
A própria especificação da linguagem é altamente recomendada. É fácil de ler e
incrivelmente curta (em relação ao que é habitual hoje em dia).
Na lista de leitura para os aprendizes de Go deve constar o [código fonte da
biblioteca padrão](http://golang.org/src/pkg/). Exaustivamente documentado, é
biblioteca padrão](https://go.dev/src/). Exaustivamente documentado, é
a melhor demonstração de código fácil de ler e de perceber, do estilo Go, e da
sua escrita idiomática. Ou então clique no nome de uma função na [documentação]
(http://golang.org/pkg/) e veja o código fonte aparecer!
(https://go.dev/pkg/) e veja o código fonte aparecer!
Outra ótima fonte para aprender Go é o [Go by example](https://gobyexample.com/).
Apesar de ser em inglês, é possível recodificar os exemplos para aprender sobre

211
pt-br/pug-pt.html.markdown Normal file
View File

@ -0,0 +1,211 @@
---
language: Pug
contributors:
- ["Michael Warner", "https://github.com/MichaelJGW"]
filename: index-pt.pug
translators:
- ["Adaías Magdiel", "https://adaiasmagdiel.com/"]
lang: pt-br
---
## Começando com Pug
Pug é uma pequena linguagem que compila para HTML. Possui uma sintaxe limpa
com algumas funcionalidades adicionais, como declarações if e loops. Também pode ser utilizada
como uma linguagem de templates no lado do servidor para tecnologias como o Node.js.
### The Language
```pug
//- Comentário de uma linha
//- Comentário de
várias linhas
//- ---TAGS---
//- Básico
div
//- <div></div>
h1
//- <h1></h1>
minha-propriaTag
//- <minha-propriaTag></minha-propriaTag>
//- Tags irmãs
div
div
//- <div></div>
<div></div>
//- Tags aninhadas
div
div
//- <div>
<div></div>
</div>
//- Textos
h1 Olá, pessoas
//- <h1>Olá, pessoas</h1>
//- Texto de várias linhas
div.
Oi,
tudo bem?
//- <div>
Oi,
tudo bem?
</div>
//- ---ATRIBUTOS---
div(class="minha-class" id="meu-id" meu-proprio-atributo="data" enabled)
//- <div class="minha-class" id="meu-id" meu-proprio-atributo="data" enabled></div>
//- Abreviações
span.minha-class
//- <span class="minha-class"></span>
.minha-class
//- <div class="minha-class"></div>
div#meu-id
//- <div id="meu-id"></div>
div#meu-id.minha-class
//- <div class="minha-class" id="meu-id"></div>
//- ---JAVASCRIPT---
- const lang = "pug";
//- Javascript em várias linhas
-
const lang = "pug";
const awesome = true;
//- Classes com Javascript
- const myClass = ['class1', 'class2', 'class3']
div(class=myClass)
//- <div class="class1 class2 class3"></div>
//- Estilos com Javascript
- const myStyles = {'color':'white', 'background-color':'blue'}
div(styles=myStyles)
//- <div styles="{&quot;color&quot;:&quot;white&quot;,&quot;background-color&quot;:&quot;blue&quot;}"></div>
//- Atributos com Javascript
- const myAttributes = {"src": "photo.png", "alt": "My Photo"}
img&attributes(myAttributes)
//- <img src="photo.png" alt="My Photo">
- let disabled = false
input(type="text" disabled=disabled)
//- <input type="text">
- disabled = true
input(type="text" disabled=disabled)
//- <input type="text" disabled>
//- Templates com Javascript
- const name = "Bob";
h1 Olá, #{name}
h1= name
//- <h1>Olá, Bob</h1>
//- <h1>Bob</h1>
//- ---LOOPS---
//- 'each' e 'for' tem a mesma função, aqui nós usaremos apenas 'each'.
each value, i in [1,2,3]
p=value
//-
<p>1</p>
<p>2</p>
<p>3</p>
each value, index in [1,2,3]
p=value + '-' + index
//-
<p>1-0</p>
<p>2-1</p>
<p>3-2</p>
each value in []
p=value
//-
each value in []
p=value
else
p Sem valores
//- <p>Sem valores</p>
//- ---CONDICIONAIS---
- const number = 5
if number < 5
p o número é menor do que 5
else if number > 5
p o número é maior do que 5
else
p o número é 5
//- <p>o número é 5</p>
- const orderStatus = "Aguardando";
case orderStatus
when "Aguardando"
p.warn Seu pedido está em espera
when "Completado"
p.success Seu pedido foi completado.
when -1
p.error Ocorreu algum erro
default
p Nenhum registro de pedido encontrado
//- <p class="warn">Seu pedido está em espera</p>
//- --INCLUINDO CONTEÚDOS--
//- Caminho do arquivo -> "includes/nav.pug"
h1 Indústrias ACME
nav
a(href="index.html") Início
a(href="about.html") Sobre Nós
//- Caminho do arquivo -> "index.pug"
html
body
include includes/nav.pug
//-
<html>
<body>
<h1>Indústrias ACME</h1>
<nav><a href="index.html">Início</a><a href="about.html">Sobre Nós</a></nav>
</body>
</html>
//- Importando Javascript e CSS
script
include scripts/index.js
style
include styles/theme.css
//- ---MIXIN---
mixin basic
div Olá
+basic
//- <div>Olá</div>
mixin comment(nome, comentario)
div
span.comment-name= nome
div.comment-text= comentario
+comment("Gil", "Tudo é divino, tudo é maravilhoso")
//-
<div>
<span class="comment-name">Gil</span>
<div class="comment-text">Tudo é divino, tudo é maravilhoso</div>
</div>
```
### Saiba Mais
- [Site Oficial](https://pugjs.org/)
- [Documentação](https://pugjs.org/api/getting-started.html)
- [Repositório no Github](https://github.com/pugjs/pug)

View File

@ -4,6 +4,7 @@ filename: learnsass-pt.scss
contributors:
- ["Laura Kyle", "https://github.com/LauraNK"]
- ["Sean Corrales", "https://github.com/droidenator"]
- ["Thalles Augusto", "https://github.com/Theslladev"]
translators:
- ["Gabriel Gomes", "https://github.com/gabrielgomesferraz"]
- ["Cássio Böck", "https://github.com/cassiobsilva"]
@ -16,7 +17,7 @@ Sass (e outros pré-processadores, como [Less](http://lesscss.org/)) ajudam os d
Sass tem duas opções de sintaxe diferentes para escolher. SCSS, que tem a mesma sintaxe de CSS, mas com os recursos adicionais de Sass. Ou Sass (a sintaxe original), que usa o recuo, em vez de chaves e ponto e vírgula.
Este tutorial é escrito usando SCSS.
Se você já está familiarizado com CSS3, você será capaz de pegar Sass de forma relativamente rápida. Ele não fornece quaisquer novas opções de estilo, mas sim as ferramentas para escrever sua CSS de forma mais eficiente e fazer a manutenção mais fácilmente.
Se você já está familiarizado com CSS3, você será capaz de pegar Sass de forma relativamente rápida. Ele não fornece quaisquer novas opções de estilo, mas sim as ferramentas para escrever sua CSS de forma mais eficiente e fazer a manutenção mais facilmente.
```scss
@ -249,7 +250,7 @@ ul {
/* '&' será substituído pelo selector pai (parent). */
/* Você também pode aninhar pseudo-classes. */
/* Tenha em mente que o excesso de nidificação vai fazer seu código menos sustentável.
Essas práticas também recomendam não vai mais de 3 níveis de profundidade quando nidificação.
Essas práticas também recomendam não mais de 3 níveis de profundidade quando nidificação.
Por exemplo: */
@ -379,7 +380,7 @@ body {
/* Sass fornece os seguintes operadores: +, -, *, /, e %. estes podem
   ser úteis para calcular os valores diretamente no seu arquivos Sass em vez
de usar valores que você já calculados manualmente. O exemplo abaixo é
de usar valores que você já calcula manualmente. O exemplo abaixo é
de um projeto simples de duas colunas. */
$content-area: 960px;

View File

@ -0,0 +1,129 @@
---
category: Algorithms & Data Structures
name: Set theory
lang: pt-br
contributors:
- ["Andrew Ryan Davis", "https://github.com/AndrewDavis1191"]
translators:
- ["Bárbara Luz", "https://github.com/barbluz"]
---
Teoria de conjuntos é uma área da matemática que estuda conjuntos, suas operações e propriedades.
- Um conjunto é uma coleção de itens disjuntos.
## Símbolos básicos
### Operações
- a operação de união ``, significa "ou"
- a operação de interseção `∩`, que significa "e"
- a operação de exclusão `\`, significa "sem" ou "menos"
- a operação de conjunto complementar `'`, que significa "o inverso de"
- a operação de produto cartesiano `×`,que significa "o produto cartesiano de"
### Outros símbolos
- `:` ou `|`, símbolos que significam "tal que"
- o símbolo de pertencimento `∈`, que significa "pertence a"
- o símbolo `⊆`, que significa "subconjunto de" (neste caso, o subconjunto pode ser igual ao conjunto)
- o símbolo `⊂`, que significa "subconjunto próprio" (neste caso, o subconjunto não pode ser igual ao conjunto)
### Conjuntos canônicos
- `∅`, o conjunto vazio, isto é, o conjunto que não possui itens
- ``, o conjunto de todos os números naturais
- ``, o conjunto de todos os números inteiros
- ``, o conjunto de todos os números racionais
- ``, o conjunto de todos os números reais
Existem algumas ressalvas sobre os conjuntos canônicos:
- Apesar de o conjunto vazio não conter itens, o conjunto vazio é subconjunto de si mesmo (e portanto de todos os outros conjuntos)
- Matemáticos geralmente não concordam sobre o zero ser um número natural e os livros tipicamente explicitam se o autor considera ou não o zero como um número natural
### Cardinalidade
A cardinalidade (ou tamanho) de um conjunto é determinado pela quantidade de itens no conjunto. O operador de cardinalidade é `|...|`
Por exemplo, se `S = {1, 2, 4}`, então `|S| = 3`.
### O Conjunto Vazio
- o conjunto vazio pode ser contruído em notação de conjuntos utilizando condições impossíveis, como por exemplo: `∅ = { x : x ≠ x }`, ou `∅ = { x : x ∈ N, x < 0 }`
- o conjunto vazio é sempre único (ou seja, existe um e apenas um conjunto vazio)
- o conjunto vazio é subconjunto de todos os conjuntos
- a cardinalidade do conjunto vazio é `0`, ou seja, `|∅| = 0`.
## Representando conjuntos
### Definição Literal
Um conjunto pode ser contruído literalmente fornecendo uma lista completa dos itens contigos no conjunto. Por exemplo `S = { a, b, c, d }`
Listas longas podem ser encurtadas com reticências, desde que o contexto seja claro. Por exemplo, `E = { 2, 4, 6, 8, ... }` é claramente o conjunto de todos os números pares, contendo um número infinito de objetos, embora só tenhamos escrito explicitamente quatro deles.
### Definição por compreensão
Conjuntos também podem ser descritos de uma maneira mais descritiva, baseando-se em sujeito e predicado, de forma tal que `S = {sujeito : predicado}`. Por exemplo:
```
A = { x : x é uma vogal } = { a, e, i, o, u } (lê-se x, tal que x é uma vogal)
B = { x : x ∈ N, x < 10 } = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
C = { x : x = 2k, k ∈ N } = { 0, 2, 4, 6, 8, ... }
```
Ou pode-se também aplicar uma função ao sujeito, ex:
```
D = { 2x : x ∈ N } = { 0, 2, 4, 6, 8, ... }
```
## Relações
### Pertencimento
- Se um valor `a` está contido num conjunto `A`, então dizemos que `a` pertence a `A` e denotamos por `a ∈ A`
- Se o valor `a` não está contido no conjunto `A`, então dizemos que `a` não pertence a `A` e denotamos por `a ∉ A`
### Igualdade
- Se dois conjuntos contém os mesmos itens, então dizemos que os conjuntos são iguals, ex. `A = B`
- A ordenação não importa quando vamos avaliar a igualdade, ex: `{ 1, 2, 3, 4 } = { 2, 3, 1, 4 }`
- Conjuntos são disjuntos, o que significa que os elementos não podem ser repetidos, ex: `{ 1, 2, 2, 3, 4, 3, 4, 2 } = { 1, 2, 3, 4 }`
- Dois conjuntos `A` e `B` são iguais se, e somente se, `A ⊆ B` e `B ⊆ A`
### Conjuntos especiais
O Conjunto das Partes
- Seja `A` um conjunto qualquer. O conjunto que contém todos os possíveis subconjuntos de `A` é chamado "conjunto das partes" e é denotado como `P(A)`. Se o conjunto `A` contém `n` elementos, então o conjunto das partes conterá `2^n` elementos.
```
P(A) = { x : x ⊆ A }
```
## Operações entre dois conjuntos
### União
Dados dois conjuntos `A` e `B`, a união entre esses dois conjuntos são os itens que aparecem em `A` ou em `B`, denotado por `A B`.
```
A B = { x : x ∈ A x ∈ B }
```
### Interseção
Dados dois conjuntos `A` e `B`, a interseção entre esses dois conjuntos são os itens que aparecem em `A` e em `B`, denotado por `A ∩ B`.
```
A ∩ B = { x : x ∈ A, x ∈ B }
```
### Diferença
Dados dois conjuntos `A` e `B`, o conjunto da diferença entre `A` e `B` são todos os itens de `A` que não pertencem a `B`.
```
A \ B = { x : x ∈ A, x ∉ B }
```
### Diferença simétrica
Dados dois conjuntos `A` e `B`, a diferença simétrica são todos os itens entre `A` e `B` que não aparecem na interseção desses dois conjuntos.
```
A △ B = { x : ((x ∈ A) ∩ (x ∉ B)) ((x ∈ B) ∩ (x ∉ A)) }
A △ B = (A \ B) (B \ A)
```
### Produto Cartesiano
Dados dois conjuntos `A` e `B`, o produto cartesiano de `A` e `B` consiste no conjunto contendo todas as combinações dos itens de `A` e `B`.
```
A × B = { (x, y) | x ∈ A, y ∈ B }
```

232
pt-br/toml-pt.html.markdown Normal file
View File

@ -0,0 +1,232 @@
---
language: toml
filename: learntoml-pt.toml
contributors:
- ["Alois de Gouvello", "https://github.com/aloisdg"]
translators:
- ["Adaías Magdiel", "https://adaiasmagdiel.com/"]
lang: pt-br
---
TOML significa Tom's Obvious, Minimal Language. É uma linguagem de serialização de dados projetada para ser um formato de arquivo de configuração mínimo que é fácil de ler devido à semântica óbvia.
É uma alternativa ao YAML e JSON. Tem como objetivo ser mais amigável para humanos do que JSON e mais simples que YAML. TOML é projetado para mapear de forma inequívoca para uma tabela de hash e deve ser fácil de converter em estruturas de dados em uma ampla variedade de linguagens.
Cuidado, a especificação do TOML ainda passa por muitas mudanças. Até que seja marcado como 1.0, você deve assumir que é instável e agir de acordo. Este documento segue o TOML v0.4.0.
```toml
# Comentários em TOML são feitos desta forma.
###################
# TIPOS ESCALARES #
###################
# Nosso objeto raiz (que continuará por todo o documento) será um mapa,
# que é equivalente a um dicionário, hash ou objeto em outras linguagens.
# A chave, o sinal de igual e o valor precisam estar na mesma linha
# (embora alguns valores possam ser quebrados em várias linhas).
chave = "valor"
string = "Olá"
number = 42
float = 3.14
boolean = true
dateTime = 2002-07-16T20:32:00-03:00
scientificNotation = 1e+12
"chaves podem estar entre aspas" = true # Tanto " quanto ' são aceitáveis
"chaves podem conter" = "letras, números, underscores e hífens"
# Uma chave não pode ser vazia, mas uma chave vazia entre aspas é permitido
"" = "blank" # VÁLIDO mas não é recomendado
'' = 'blank' # VÁLIDO mas não é recomendado
##########
# String #
##########
# Todas as strings precisam ter apenas caracteres UTF-8 válidos.
# Podemos escapar caracteres e alguns deles têm uma sequência de escape compacta.
# Por exemplo: \t adiciona uma tabulação. Leia a spec para conhecer todos.
basicString = "São cercadas por aspas. \"Sou digno de citação\". Nome\tJosé."
multiLineString = """
são cercadas por três aspas
em cada lado e permitem novas linhas."""
literalString = 'são cercadas por aspas simples. Escape de caracteres não é permitido.'
multiLineString = '''
são cercadas por três aspas simples em cada lado
e permitem novas linhas. Escape de caracteres também não é permitido.
A primeira quebra de linha é removida em strings brutas
Todo outro espaço em branco
é preservado. #! foi preservado?
'''
# Para dados binários é recomendado que você use Base64, outra codificação ASCII ou UTF8.
# A manipulação dessa codificação será específico da aplicação.
############
# Inteiros #
############
## Inteiros podem começar com um +, um -, ou nada.
## Zeros à frente não são permitidos.
## Formatos em hexadecimal, octal e binário são permitidos.
## Não são permitidos valores que não podem ser expressados como uma série de dígitos.
int1 = +42
int2 = 0
int3 = -21
int4 = 0xcafebabe
int5 = 0o755
int6 = 0b11011100
integerRange = 64
## Você pode usar underscores para melhorar a legibilidade.
## Cada underscore precisa estar entre, pelo menos, um dígito.
int7 = 5_349_221
int8 = 1_2_3_4_5 # VÁLIDO, mas não é recomendado
#########
# Float #
#########
# Floats são inteiros seguidos por uma fração e/ou de um expoente.
flt1 = 3.1415
flt2 = -5e6
flt3 = 6.626E-34
#############
# Booleanos #
#############
bool1 = true
bool2 = false
booleanosPrecisamEstarEmMinusculo = true
############
# Datetime #
############
date1 = 1979-05-27T07:32:00Z # Tempo UTC, seguindo especificação RFC 3339/ISO 8601
date2 = 1979-05-26T15:32:00+08:00 # com um deslocamento segundo a RFC 3339/ISO 8601
date3 = 1979-05-27T07:32:00 # sem deslocamento
date4 = 1979-05-27 # sem as horas e sem deslocamento
####################
# TIPOS DE COLEÇÃO #
####################
#########
# Array #
#########
array1 = [ 1, 2, 3 ]
array2 = [ "Vírgulas", "são", "delimitadores" ]
array3 = [ "Não misture", "tipos", "diferentes" ]
array4 = [ [ 1.2, 2.4 ], ["todas as", 'strings', """são do mesmo""", '''tipo'''] ]
array5 = [
"Espaços em branco", "são", "ignorados"
]
##########
# Tabela #
##########
# Tabelas (ou tabelas de hash, ou dicionários) é uma coleção de pares chave/valor.
# Eles aparecem entre colchetes em uma linha separada.
# Tabelas vazias são permitidas e simplesmente não possuem chave/valor associado.
[tabela]
# Abaixo disso, e até a próxima tabela ou final do arquivo, estão as chaves/valores dessa tabela.
# Os pares de chave/valor dentro das tabelas não têm garantia de estar em nenhuma ordem específica.
[table-1]
chave1 = "algum texto"
chave2 = 123
[table-2]
chave1 = "outro texto"
chave2 = 456
# Pontos são proibidos em chaves simples porque são usados para indicar tabelas aninhadas.
# As regras de nomenclatura para cada parte separada por ponto são as mesmas que para chaves.
[dog."tater.man"]
type = "pug"
# Na terra do JSON, você teria a seguinte estrutura:
# { "dog": { "tater.man": { "type": "pug" } } }
# Espaços em branco em torno das partes separadas por pontos são ignorados, de qualquer forma,
# é sempre recomendado não utilizar espaços em branco desnecessários.
[a.b.c] # isso é o recomendado
[ d.e.f ] # mesmo que [d.e.f]
[ j . "ʞ" . 'l' ] # mesmo que [j."ʞ".'l']
# Você não precisa especificar todas as super-tabelas se não quiser. TOML sabe
# como lidar com isso para você.
# [x] você
# [x.y] não precisa
# [x.y.z] disso
[x.y.z.w] # para isso funcionar
# Mesmo que uma super-tabela não tenha sido definida diretamente e não tenha definido uma
# chave específica, ainda é possível escrever nela.
[a.b]
c = 1
[a]
d = 2
# Irá gerar o seguinte JSON:
# { "a": {"b": {"c": 1}, "d": 2 } }
# Você não pode definir uma chave ou tabela mais de uma vez. É inválido fazer isso.
# NÃO FAÇA ISSO
[a]
b = 1
[a]
c = 2
# NEM MESMO ISSO
[a]
b = 1
[a.b]
c = 2
# O nome de todas as tabelas não pode ser vazio.
[] # INVÁLIDO
[a.] # INVÁLIDO
[a..b] # INVÁLIDO
[.b] # INVÁLIDO
[.] # INVÁLIDO
####################
# Tabelas em linha #
####################
tabelasEmLinha = { sãoFechadasCom = "{ e }", precisamEstarEmUmaLinha = true }
ponto = { x = 1, y = 2 }
####################
# Array de Tabelas #
####################
# Um array de tabelas pode ser expresso usando um nome de tabela entre colchetes duplos.
# Cada tabela com o mesmo nome entre colchetes duplos será um item no array.
# As tabelas são inseridas na ordem em que são encontradas.
[[produtos]]
nome = "array de tabelas"
sku = 738594937
tabelasVaziasSaoPermitidas = true
[[produtos]]
[[produtos]]
nome = "Unhas"
sku = 284758393
color = "cinza"
```

View File

@ -28,12 +28,12 @@ module Module1
Console.WriteLine ("2. Entrada Olá Mundo" )
Console.WriteLine ("3. Cálculando números inteiros " )
Console.WriteLine ("4. Calculando números decimais " )
Console.WriteLine ("5 . Calculadora de Trabalho " )
Console.WriteLine ("5. Calculadora de Trabalho " )
Console.WriteLine ("6. Usando Do While Loops " )
Console.WriteLine ("7. Usando Para While Loops " )
Console.WriteLine ("8 . Declarações condicionais " )
Console.WriteLine ("8. Declarações condicionais " )
Console.WriteLine ("9. Selecione uma bebida" )
Console.WriteLine ("50 . About" )
Console.WriteLine ("50. About" )
Console.WriteLine ("Por favor, escolha um número da lista acima " )
Seleção Dim As String = Console.ReadLine
Select A seleção dos casos
@ -76,7 +76,7 @@ module Module1
End Sub
' Um - Eu estou usando números para ajudar com a navegação acima quando eu voltar
' depois de construí-lo .
' depois de construí-lo.
" Nós usamos subs privadas para separar diferentes seções do programa.
Private Sub HelloWorldOutput ()
@ -94,12 +94,12 @@ module Module1
Console.Title = " Olá Mundo YourName | Saiba X em Y Minutes"
' Variáveis
'Os dados inseridos por um usuário precisam ser armazenados.
' As variáveis também começar com um Dim e terminar com um Como VariableType .
' As variáveis também começar com um Dim e terminar com um Como VariableType.
' Neste tutorial, nós queremos saber qual é o seu nome, e faça o programa
' Responder ao que é dito.
Nome de usuário Dim As String
" Nós usamos string como string é uma variável de texto baseado .
" Nós usamos string como string é uma variável de texto baseado.
Console.WriteLine (" Olá, Qual é o seu nome? ") ' Peça ao usuário seu nome.
username = Console.ReadLine () ' armazena o nome do usuário.
Console.WriteLine (" Olá " + username) ' A saída é "Olá < seu nome >".
@ -124,10 +124,10 @@ module Module1
'Quatro
Sub CalculatingDecimalNumbers particulares ()
Console.Title = " Calculando com duplo | Saiba X em Y Minutes"
' Claro que gostaria de ser capaz de somar decimais .
' Claro que gostaria de ser capaz de somar decimais.
" Por isso, poderia mudar o acima de Integer para Double.
" Digite um número inteiro , 1,2 , 2,4 , 50,1 , 104,9 ect
" Digite um número inteiro como 1, 2, 50, 104, etc
Console.Write ("Primeiro número:")
Dim a As Double = Console.ReadLine
Console.Write ("Segundo número:") 'Enter segundo número inteiro.
@ -141,9 +141,9 @@ module Module1
' Cinco
Private Sub WorkingCalculator ()
Console.Title = " A Calculadora de Trabalho | Saiba X em Y Minutes"
" No entanto, se você gostaria que a calculadora para subtrair, dividir , múltiplos e
" No entanto, se você gostaria que a calculadora para subtrair, dividir, múltiplos e
' somar.
' Copie e cole o código acima novamente .
' Copie e cole o código acima novamente.
Console.Write ("Primeiro número:")
Dim a As Double = Console.ReadLine
Console.Write ("Segundo número:") 'Enter segundo número inteiro.
@ -153,7 +153,7 @@ module Module1
Dim e As Integer = a - b
Dim f As Integer = a / b
" Ao adicionar as linhas abaixo , somos capazes de calcular a subtração ,
" Ao adicionar as linhas abaixo, somos capazes de calcular a subtração,
' multply bem como dividir os valores de a e b
Console.Gravar ( a.ToString ( ) + " + " + b.ToString ( ) )
'Queremos pad as respostas para a esquerda por três espaços.
@ -172,8 +172,8 @@ module Module1
Sub UsingDoWhileLoops particulares ()
' Assim como o sub privado anterior
' Desta vez, perguntar se o usuário deseja continuar ( Sim ou Não ? )
' Estamos usando Do While Loop , como não temos certeza se o usuário quer usar o
'programa mais de uma vez .
' Estamos usando Do While Loop, como não temos certeza se o usuário quer usar o
'programa mais de uma vez.
Console.Title = " UsingDoWhileLoops | Saiba X em Y Minutes"
Dim resposta As String ' Nós usamos a variável " String" como a resposta é um texto
Do ' Começamos o programa com
@ -195,12 +195,12 @@ module Module1
Console.Write ( a.ToString () + "/" + b.ToString ())
Console.WriteLine (" =" + e.ToString.PadLeft (3) )
Console.ReadLine ()
' Faça a pergunta , se o usuário deseja continuar? Infelizmente,
' Faça a pergunta, se o usuário deseja continuar? Infelizmente,
"é sensível a maiúsculas.
Console.Write ( "Deseja continuar? (Sim / não )")
" O programa pega a variável e imprime e começa de novo.
answer = Console.ReadLine
" O comando para a variável para trabalhar seria , neste caso, " sim "
" O comando para a variável para trabalhar seria, neste caso, " sim "
Loop While resposta = "yes"
End Sub
@ -233,7 +233,7 @@ module Module1
outro
Console.WriteLine (" Olá " + nome do usuário)
Console.WriteLine (" Você check-out www.learnxinyminutes.com " )
Console.ReadLine () ' Fins e imprime a declaração acima .
Console.ReadLine () ' Fins e imprime a declaração acima.
End If
End Sub
@ -242,15 +242,15 @@ module Module1
Console.Title = "Se Declaração / Else | Saiba X em Y Minutes"
'Às vezes é importante ter em conta mais de duas alternativas.
'Às vezes, há um bom número de outros.
'Quando este for o caso , mais do que uma if seria necessária .
'Uma instrução if é ótimo para máquinas de venda automática . Quando o usuário digita um código.
' A1 , A2, A3 , ect para selecionar um item.
'Quando este for o caso, mais do que uma if seria necessária.
'Uma instrução if é ótimo para máquinas de venda automática. Quando o usuário digita um código.
' A1, A2, A3, etc para selecionar um item.
'Todas as opções podem ser combinadas em uma única if.
Seleção Dim Valor String = Console.ReadLine ' para a seleção
Console.WriteLine (" A1. Para Soda " )
Console.WriteLine (" A2. Para Fanta " )
Console.WriteLine (" A3 . Para Guaraná" )
Console.WriteLine (" A3. Para Guaraná" )
Console.WriteLine (" A4. Para Coca Diet" )
Console.ReadLine ()
Se a seleção = "A1" Então

View File

@ -74,7 +74,8 @@ um_mapa_aninhado:
# Mapas não tem que ter chaves com string.
0.25: uma chave com valor flutuante
# As chaves podem ser também objetos multi linhas, utilizando ? para indicar o começo de uma chave.
# As chaves podem ser complexas, como sequência de várias linhas
# Utilizando ? seguido por espaço para indicar o começo de uma chave complexa.
? |
Esta é uma chave
que tem várias linhas
@ -91,13 +92,13 @@ um_mapa_aninhado:
uma_sequencia:
- Item 1
- Item 2
- 0.5 # sequencias podem conter tipos diferentes.
- 0.5 # sequências podem conter tipos diferentes.
- Item 4
- chave: valor
outra_chave: outro_valor
-
- Esta é uma sequencia
- dentro de outra sequencia
- Esta é uma sequência
- dentro de outra sequência
- - - Indicadores de sequência aninhadas
- podem ser recolhidas
@ -170,7 +171,7 @@ conjunto:
? item3
ou: {item1, item2, item3}
# Como Python, são apenas conjuntos de mapas com valors nulos; o acima é equivalente a:
# Como Python, são apenas conjuntos de mapas com valores nulos; o acima é equivalente a:
conjunto2:
item1: null
item2: null

View File

@ -0,0 +1,473 @@
---
language: kotlin
filename: LearnKotlin-pt.kt
lang: pt-pt
contributors:
- ["S Webber", "https://github.com/s-webber"]
translators:
- ["André Martins", "https://github.com/chriptus13"]
---
Kotlin é uma linguagem de programação de tipificação estática para a JVM, Android e browser. Ela é 100% interoperável com Java.
[Lê mais aqui.](https://kotlinlang.org/)
```kotlin
// Comentários de linha começam com //
/*
Comentários de múltiplas linhas são assim.
*/
// A palavra-chave "package" funciona da mesma forma que em Java.
package com.learnxinyminutes.kotlin
/*
O ponto de entrada de um programa em Kotlin é a função chamada "main".
Esta função tem como único parâmetro um array contendo todos os argumentos passados na linha de comandos.
Desde a versão 1.3 que esta pode também ser definida sem parâmetros.
*/
fun main(args: Array<String>) {
/*
A declaração de variáveis é feita usando "var" ou "val".
Variáveis declaradas com "val" não podem ser redefinidas, as declaradas com "var" podem.
*/
val fooVal = 10 // não podemos redefinir mais tarde o valor de fooVal para algo diferente
var fooVar = 10
fooVar = 20 // fooVar pode ser redefinida
/*
Na maioria dos casos, o Kotlin pode determinar (inferir) o tipo de uma variável,
assim não precisamos de o dizer explicitamente sempre.
Para especificar o tipo explicitamente fazemos assim:
*/
val foo: Int = 7
/*
As Strings são representadas de uma forma semelhante ao Java.
O escape é feito com barras invertidas.
*/
val fooString = "A minha String está aqui!"
val barString = "Imprimir numa nova linha?\nSem problemas!"
val bazString = "Adicionar um tab?\tSem problemas!"
println(fooString)
println(barString)
println(bazString)
/*
Uma raw string é delimitada por aspas triplas (""").
Raw strings podem conter caracteres de nova linha ou qualquer outro.
*/
val fooRawString = """
fun helloWorld(val name : String) {
println("Hello, world!")
}
"""
println(fooRawString)
/*
As strings podem também conter template expressions.
Uma template expression começa com o símbolo do dollar ($).
*/
val fooTemplateString = "$fooString tem ${fooString.length} caracteres"
println(fooTemplateString) // => A minha String está aqui! tem 25 caracteres
/*
Para que uma variável possa ter o valor de null esta tem de ser
especificada explicitamente como nullable.
Uma variável pode ser marcada como nullable adicionando um ? ao seu tipo.
A variable can be specified as nullable by appending a ? to its type.
Usando o operador ?. podemos facilmente aceder a propriedades de
uma variável nullable, se esta for null o resultado da expressão será também ele null.
Podemos também usar o operador ?: para especificar um valor alternativo
no caso da variavél ser null.
*/
var fooNullable: String? = "abc"
println(fooNullable?.length) // => 3
println(fooNullable?.length ?: -1) // => 3
fooNullable = null
println(fooNullable?.length) // => null
println(fooNullable?.length ?: -1) // => -1
/*
As funções são declaradas usando a palavra-chave "fun".
Os parâmetros da função são especificados entre parênteses a seguir ao nome da função.
Estes parâmetros podem opcionalmente ter um valor por omissão.
O tipo de retorno da função, se necessário, é especificado após os parâmetros.
*/
fun hello(name: String = "world"): String {
return "Hello, $name!"
}
println(hello("foo")) // => Hello, foo!
println(hello(name = "bar")) // => Hello, bar!
println(hello()) // => Hello, world!
/*
Para que uma função receba um número variável de parâmetros podemos
marcar um, e apenas um, parâmetro com a palavra-chave "vararg".
*/
fun varargExample(vararg names: Int) {
println("Argument has ${names.size} elements")
}
varargExample() // => A chamada à função tem 0 argumentos
varargExample(1) // => A chamada à função tem 1 argumentos
varargExample(1, 2, 3) // => A chamada à função tem 3 argumentos
/*
Quando uma função consiste em apenas uma expressão as chavetas podem ser omitidas
O corpo da mesma é especificado após o símbolo de igual (=).
*/
fun odd(x: Int): Boolean = x % 2 == 1
println(odd(6)) // => false
println(odd(7)) // => true
// Se o tipo de retorno da função pode ser inferido então não é necessário especificá-lo.
fun even(x: Int) = x % 2 == 0
println(even(6)) // => true
println(even(7)) // => false
// As funções podem ter outras funções como parâmetros e/ou como retorno.
fun not(f: (Int) -> Boolean): (Int) -> Boolean {
return {n -> !f.invoke(n)}
}
// O operador :: pode ser usado para referênciar funções existentes.
val notOdd = not(::odd)
val notEven = not(::even)
/*
Expressões lambda podem ser usadas da seguinte forma.
Os lambdas quando passados a outras funções podem estar
fora dos parênteses da chamada, caso sejam o último parâmetro.
*/
val notZero = not {n -> n == 0}
/*
Se o lambda apenas tiver um parâmetro então a sua
declaração pode ser omitida (em conjunto com "->").
O nome por omissão do parâmetro será "it".
*/
val notPositive = not {it > 0}
for (i in 0..4) {
println("${notOdd(i)} ${notEven(i)} ${notZero(i)} ${notPositive(i)}")
}
// Para declararmos classes usa-se a palavra-chave "class".
class ExampleClass(val x: Int) {
fun aMethod(y: Int): Int {
return x + y
}
infix fun infixMemberFunction(y: Int): Int {
return x * y
}
}
/*
Para se instanciar uma classe usamos o constructor.
De notar que em Kotlin não existe a palavra-chave "new" como no Java.
*/
val fooExampleClass = ExampleClass(7)
// Os métodos da classe podem então ser chamados usando o ponto.
println(fooExampleClass.aMethod(4)) // => 11
/*
Uma função marcada com a palavra-chave "infix" pode ser chamada
usando a notação infixa.
*/
println(fooExampleClass infixMemberFunction 4) // => 28
/*
Data classes são uma forma concisa de criar classes que apenas contêm dados.
Neste tipo de classes os métodos "hashCode"/"equals" e "toString" são gerados
automáticamente.
*/
data class DataClassExample (val x: Int, val y: Int, val z: Int)
val fooData = DataClassExample(1, 2, 4)
println(fooData) // => DataClassExample(x=1, y=2, z=4)
// Instâncias deste tipo de classes têm acesso ao método "copy".
val fooCopy = fooData.copy(y = 100)
println(fooCopy) // => DataClassExample(x=1, y=100, z=4)
// Os objectos podem ser desconstruídos para variáveis.
val (a, b, c) = fooCopy
println("$a $b $c") // => 1 100 4
// desconstrucção dentro de um ciclo "for"
for ((a, b, c) in listOf(fooData)) {
println("$a $b $c") // => 1 2 4
}
val mapData = mapOf("a" to 1, "b" to 2)
// Instâncias de Map.Entry podem também ser desconstruídas.
for ((key, value) in mapData) {
println("$key -> $value")
}
// A função "with" é semelhante ao bloco "with" do JavaScript.
data class MutableDataClassExample (var x: Int, var y: Int, var z: Int)
val fooMutableData = MutableDataClassExample(7, 4, 9)
with (fooMutableData) {
x -= 2
y += 2
z--
}
println(fooMutableData) // => MutableDataClassExample(x=5, y=6, z=8)
/*
Podemos criar listas usando a função "listOf".
No Kotlin, por padrão, as listas são imútaveis - não podendo
assim adicionar ou remover elementos das mesmas.
*/
val fooList = listOf("a", "b", "c")
println(fooList.size) // => 3
println(fooList.first()) // => a
println(fooList.last()) // => c
// Os elementos de uma lista podem ser acedidos usando o seu índice.
println(fooList[1]) // => b
// Listas mútaveis podem ser criadas usando a função "mutableListOf".
val fooMutableList = mutableListOf("a", "b", "c")
fooMutableList.add("d")
println(fooMutableList.last()) // => d
println(fooMutableList.size) // => 4
// Podemos criar conjuntos usando a função "setOf".
val fooSet = setOf("a", "b", "c")
println(fooSet.contains("a")) // => true
println(fooSet.contains("z")) // => false
// Podemos criar mapas usando a função "mapOf" e através da função infixa "to".
val fooMap = mapOf("a" to 8, "b" to 7, "c" to 9)
// Os valores do mapa podem ser acedidos usando a sua chave.
println(fooMap["a"]) // => 8
/*
No Kotlin as sequências representam collecções de dados avaliadas de forma lazy.
Podemos cirar uma sequência usando a função "generateSequence".
*/
val fooSequence = generateSequence(1, { it + 1 })
val x = fooSequence.take(10).toList()
println(x) // => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
// Um exemplo de uso das sequências para gerar os números de Fibonacci:
fun fibonacciSequence(): Sequence<Long> {
var a = 0L
var b = 1L
fun next(): Long {
val result = a + b
a = b
b = result
return a
}
return generateSequence(::next)
}
val y = fibonacciSequence().take(10).toList()
println(y) // => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
// O Kotlin fornece funções de ordem superior convenientes para a manipulação de colecções.
val z = (1..9).map {it * 3}
.filter {it < 20}
.groupBy {it % 2 == 0}
.mapKeys {if (it.key) "even" else "odd"}
println(z) // => {odd=[3, 9, 15], even=[6, 12, 18]}
// Um ciclo "for" pode ser usado com qualquer coisa que forneça um iterador.
for (c in "hello") {
println(c)
}
// Um ciclo "while" funciona da mesma forma que em outras linguagens.
var ctr = 0
while (ctr < 5) {
println(ctr)
ctr++
}
do {
println(ctr)
ctr++
} while (ctr < 10)
/*
Um "if" pode ser usado como uma expressão que produz um valor.
Por esta razão o operador ternário não é necessário no Kotlin.
*/
val num = 5
val message = if (num % 2 == 0) "even" else "odd"
println("$num is $message") // => 5 is odd
// O bloco "when" pode ser usado como alternativa para cadeias de "if-else if".
val i = 10
when {
i < 7 -> println("first block")
fooString.startsWith("hello") -> println("second block")
else -> println("else block")
}
// O "when" pode ser usado como um "switch" do Java.
when (i) {
0, 21 -> println("0 or 21")
in 1..20 -> println("in the range 1 to 20")
else -> println("none of the above")
}
// O "when" pode também ser usado como expressão para produzir um valor.
var result = when (i) {
0, 21 -> "0 or 21"
in 1..20 -> "in the range 1 to 20"
else -> "none of the above"
}
println(result)
/*
Podemos utilizar o operador "is" para verificar se um objecto é de um certo tipo.
Se um objecto passar a verificação do tipo pode ser usado como sendo desse tipo
sem conversão explicita, sendo isto chamado de smart cast.
*/
fun smartCastExample(x: Any) : Boolean {
if (x is Boolean) {
// x is automatically cast to Boolean
return x
} else if (x is Int) {
// x is automatically cast to Int
return x > 0
} else if (x is String) {
// x is automatically cast to String
return x.isNotEmpty()
} else {
return false
}
}
println(smartCastExample("Hello, world!")) // => true
println(smartCastExample("")) // => false
println(smartCastExample(5)) // => true
println(smartCastExample(0)) // => false
println(smartCastExample(true)) // => true
// Os smart casts funcionam também com o bloco "when".
fun smartCastWhenExample(x: Any) = when (x) {
is Boolean -> x
is Int -> x > 0
is String -> x.isNotEmpty()
else -> false
}
/*
Extensões são uma forma de adicionar funcionalidade a classes existentes.
Isto é semelhante aos métodos de extensão do C#.
*/
fun String.remove(c: Char): String {
return this.filter {it != c}
}
println("Hello, world!".remove('l')) // => Hello, world!
}
// Enum classes são o equivalente aos tipos enum do Java.
enum class EnumExample {
A, B, C // As constantes da enumeração são separadas por vírgula.
}
fun printEnum() = println(EnumExample.A) // => A
/*
Como cada constante é uma instância da classe enum,
estas podem ser inicializadas da seguinte forma:
*/
enum class EnumExample(val value: Int) {
A(value = 1),
B(value = 2),
C(value = 3)
}
fun printProperty() = println(EnumExample.A.value) // => 1
/*
Cada constante de enumerações tem propriedades para
obter o nome e o ordinal (posição) na respectiva classe.
*/
fun printName() = println(EnumExample.A.name) // => A
fun printPosition() = println(EnumExample.A.ordinal) // => 0
/*
A palavra-chave "object" pode ser usada para criar objectos singleton.
Estes não podem ser instânciados, porém podem ser referênciados como uma
única instância através do seu nome.
São semelhantes aos objectos singleton do Scala.
*/
object ObjectExample {
fun hello(): String {
return "hello"
}
override fun toString(): String {
return "Hello, it's me, ${ObjectExample::class.simpleName}"
}
}
fun useSingletonObject() {
println(ObjectExample.hello()) // => hello
// Em Kotlin o tipo "Any" é a raíz da hierárquia de classes, tal como o tipo "Object" em Java.
val someRef: Any = ObjectExample
println(someRef) // => Hello, it's me, ObjectExample
}
/*
O operador !! serve para realizar um assert de not-null. Este converte qualquer
valor nullable para non-null ou lança exceção se o mesmo for null.
*/
var b: String? = "abc"
val l = b!!.length // lançaria exceção caso "b" fosse null
// O modificador "operator" permite fazer overload dos operadores
// [Ver lista de operadores](https://kotlinlang.org/docs/operator-overloading.html)
data class Counter(var value: Int) {
// overload para Counter += Int
operator fun plusAssign(increment: Int) {
this.value += increment
}
// overload para Counter++ e ++Counter
operator fun inc() = Counter(value + 1)
// overload para Counter + Counter
operator fun plus(other: Counter) = Counter(this.value + other.value)
// overload para Counter * Counter
operator fun times(other: Counter) = Counter(this.value * other.value)
// overload para Counter * Int
operator fun times(value: Int) = Counter(this.value * value)
// overload para Counter in Counter
operator fun contains(other: Counter) = other.value == this.value
// overload para Counter[Int] = Int
operator fun set(index: Int, value: Int) {
this.value = index + value
}
// overload para invocação da instância Counter
operator fun invoke() = println("The value of the counter is $value")
}
/* Podemos também dar overload dos operadores através de métodos de extensão */
// overload para -Counter
operator fun Counter.unaryMinus() = Counter(-this.value)
fun operatorOverloadingDemo() {
var counter1 = Counter(0)
var counter2 = Counter(5)
counter1 += 7
println(counter1) // => Counter(value=7)
println(counter1 + counter2) // => Counter(value=12)
println(counter1 * counter2) // => Counter(value=35)
println(counter2 * 2) // => Counter(value=10)
println(counter1 in Counter(5)) // => false
println(counter1 in Counter(7)) // => true
counter1[26] = 10
println(counter1) // => Counter(value=36)
counter1() // => The value of the counter is 36
println(-counter2) // => Counter(value=-5)
}
```
### Leituras Adicionais
* [Tutoriais de Kotlin](https://kotlinlang.org/docs/tutorials/)
* [Experimenta Kotlin no browser](https://play.kotlinlang.org/)
* [Recursos adicionais](http://kotlin.link/)

View File

@ -158,13 +158,13 @@ case orderStatus
//- <p class="warn">Your order is pending</p>
//- --INCLUDE--
//- File path -> "includes/nav.png"
//- File path -> "includes/nav.pug"
h1 Company Name
nav
a(href="index.html") Home
a(href="about.html") About Us
//- File path -> "index.png"
//- File path -> "index.pug"
html
body
include includes/nav.pug

View File

@ -185,7 +185,7 @@ print("Hello, World", end="!") # => Hello, World!
input_string_var = input("Enter some data: ") # Returns the data as a string
# There are no declarations, only assignments.
# Convention is to use lower_case_with_underscores
# Convention in naming variables is snake_case style
some_var = 5
some_var # => 5
@ -226,7 +226,7 @@ li[4] # Raises an IndexError
li[1:3] # Return list from index 1 to 3 => [2, 4]
li[2:] # Return list starting from index 2 => [4, 3]
li[:3] # Return list from beginning until index 3 => [1, 2, 4]
li[::2] # Return list selecting every second entry => [1, 4]
li[::2] # Return list selecting elements with a step size of 2 => [1, 4]
li[::-1] # Return list in reverse order => [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]
@ -603,7 +603,7 @@ all_the_args(1, 2, a=3, b=4) prints:
"""
# When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
# Use * to expand args (tuples) and use ** to expand kwargs (dictionaries).
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # equivalent: all_the_args(1, 2, 3, 4)
@ -655,6 +655,22 @@ def create_adder(x):
add_10 = create_adder(10)
add_10(3) # => 13
# Closures in nested functions:
# We can use the nonlocal keyword to work with variables in nested scope which shouldn't be declared in the inner functions.
def create_avg():
total = 0
count = 0
def avg(n):
nonlocal total, count
total += n
count += 1
return total/count
return avg
avg = create_avg()
avg(3) # => 3.0
avg(5) # (3+5)/2 => 4.0
avg(7) # (8+7)/3 => 5.0
# There are also anonymous functions
(lambda x: x > 2)(3) # => True
(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
@ -685,8 +701,8 @@ print(math.sqrt(16)) # => 4.0
# You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7)) # => 4.0
print(floor(3.7)) # => 3.0
print(ceil(3.7)) # => 4
print(floor(3.7)) # => 3
# You can import all functions from a module.
# Warning: this is not recommended
@ -733,7 +749,9 @@ class Human:
self.name = name
# Initialize property
self._age = 0
self._age = 0 # the leading underscore indicates the "age" property is
# intended to be used internally
# do not rely on this to be enforced: it's a hint to other devs
# An instance method. All methods take "self" as the first argument
def say(self, msg):
@ -876,7 +894,8 @@ if __name__ == '__main__':
if type(sup) is Superhero:
print('I am a superhero')
# Get the Method Resolution search Order used by both getattr() and super()
# Get the "Method Resolution Order" used by both getattr() and super()
# (the order in which classes are searched for an attribute or method)
# This attribute is dynamic and can be updated
print(Superhero.__mro__) # => (<class '__main__.Superhero'>,
# => <class 'human.Human'>, <class 'object'>)
@ -958,8 +977,7 @@ class Batman(Superhero, Bat):
if __name__ == '__main__':
sup = Batman()
# Get the Method Resolution search Order used by both getattr() and super().
# This attribute is dynamic and can be updated
# The Method Resolution Order
print(Batman.__mro__) # => (<class '__main__.Batman'>,
# => <class 'superhero.Superhero'>,
# => <class 'human.Human'>,
@ -1016,31 +1034,67 @@ gen_to_list = list(values)
print(gen_to_list) # => [-1, -2, -3, -4, -5]
# Decorators
# In this example `beg` wraps `say`. If say_please is True then it
# will change the returned message.
from functools import wraps
# Decorators are a form of syntactic sugar.
# They make code easier to read while accomplishing clunky syntax.
# Wrappers are one type of decorator.
# They're really useful for adding logging to existing functions without needing to modify them.
def beg(target_function):
@wraps(target_function)
def log_function(func):
def wrapper(*args, **kwargs):
msg, say_please = target_function(*args, **kwargs)
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
print("Entering function", func.__name__)
result = func(*args, **kwargs)
print("Exiting function", func.__name__)
return result
return wrapper
@log_function # equivalent:
def my_function(x,y): # def my_function(x,y):
return x+y # return x+y
# my_function = log_function(my_function)
# The decorator @log_function tells us as we begin reading the function definition
# for my_function that this function will be wrapped with log_function.
# When function definitions are long, it can be hard to parse the non-decorated
# assignment at the end of the definition.
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
my_function(1,2) # => "Entering function my_function"
# => "3"
# => "Exiting function my_function"
# But there's a problem.
# What happens if we try to get some information about my_function?
print(my_function.__name__) # => 'wrapper'
print(my_function.__code__.co_argcount) # => 0. The argcount is 0 because both arguments in wrapper()'s signature are optional.
# Because our decorator is equivalent to my_function = log_function(my_function)
# we've replaced information about my_function with information from wrapper
# Fix this using functools
from functools import wraps
def log_function(func):
@wraps(func) # this ensures docstring, function name, arguments list, etc. are all copied
# to the wrapped function - instead of being replaced with wrapper's info
def wrapper(*args, **kwargs):
print("Entering function", func.__name__)
result = func(*args, **kwargs)
print("Exiting function", func.__name__)
return result
return wrapper
@log_function
def my_function(x,y):
return x+y
my_function(1,2) # => "Entering function my_function"
# => "3"
# => "Exiting function my_function"
print(my_function.__name__) # => 'my_function'
print(my_function.__code__.co_argcount) # => 2
print(say()) # Can you buy me a beer?
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
```
### Free Online

View File

@ -8,7 +8,7 @@ filename: restructuredtext.rst
RST, Restructured Text, is a file format created by the Python community to write documentation. It is part of [Docutils](https://docutils.sourceforge.io/rst.html).
RST is a markdown language like HTML but is much more lightweight and easier to read.
RST is a markup language like HTML but is much more lightweight and easier to read.
## Installation

View File

@ -48,7 +48,7 @@ f(n) — время выполнения. Тогда для данного ал
С помощью О-символики можно оценить функцию или алгоритм
несколькими различными способами. Например, можно оценить алгоритм исходя
из нижней оценки, верхней оценки, тождественной оценки. Чаще всего встречается
анализ на основе верхней оценки. Как правило не используется нижняя оценка,
анализ на основе верхней оценки. Как правило, не используется нижняя оценка,
потому что она не подходит под планируемые условия. Отличный пример — алгоритмы
сортировки, особенно добавление элементов в древовидную структуру. Нижняя оценка
большинства таких алгоритмов может быть дана как одна операция. В то время как в
@ -155,8 +155,8 @@ c (c > 0) и n<sub>0</sub> (n<sub>0</sub> > 0), такие, что `f(n)` >= `c
### Примечание
Асимптотические оценки, сделаные при помощи О Большого и Омега Большого, могут
как являться, так и не являться точными. Для того, чтобы обозначить, что границы не
Асимптотические оценки, сделанные при помощи О Большого и Омега Большого, могут
как являться, так и не являться точными. Для того чтобы обозначить, что границы не
являются асимптотически точными, используются записи О Малое и Омега Малое.
### О Малое

View File

@ -55,7 +55,7 @@ def search(arr, x):
### На заметку
Существует и другая форма двоичного поиска, которая можеть быть полезна.
Существует и другая форма двоичного поиска, которая может быть полезна.
## На почитать

View File

@ -17,7 +17,7 @@ C++ - компилируемый, статически типизированн
- "лучшая замена C"
- язык с поддержкой абстракции данных
- язык с поддержкой объектно-ориентированого программирования
- язык с поддержкой объектно-ориентированного программирования
- язык с поддержкой обобщенного программирования
Хотя его синтаксис может показаться более трудным или сложным для понимания, чем в более современных языках,

View File

@ -476,7 +476,7 @@ void str_reverse_through_pointer(char *str_in) {
Если у вас появился вопрос, почитайте [compl.lang.c Frequently Asked Questions](http://c-faq.com).
Очень важно использовать правильные отступы и ставить пробелы в нужных местах.
Читаемый код лучше чем красивый или быстрый код.
Читаемый код лучше, чем красивый или быстрый код.
Чтобы научиться писать хороший код, почитайте [Linux kernel coding style](https://www.kernel.org/doc/Documentation/CodingStyle).
Также не забывайте, что [Google](http://google.com) и [Яндекс](http://yandex.ru) – ваши хорошие друзья.

View File

@ -14,7 +14,8 @@ Common Lisp - мультипарадигменный язык программи
спектра задач.
Его частенько называют программируемым языком программирования.
Идеальная отправная точка - книга [Common Lisp на практике (перевод)](http://lisper.ru/pcl/).
Идеальная отправная точка - книга
[Common Lisp на практике (перевод)](https://github.com/pcl-ru/pcl-ru/releases/download/v1.1/pcl-ru.pdf).
Ещё одна популярная книга [Land of Lisp](http://landoflisp.com/).
И одна из последних книг [Common Lisp Recipes](http://weitz.de/cl-recipes/) вобрала в себя лучшие
архитектурные решения на основе опыта коммерческой работки автора.
@ -674,7 +675,7 @@ nil ; ложь; а ещё пустой список () тож
## Для чтения
На русском
- [Practical Common Lisp](http://www.gigamonkeys.com/book/)
- [Practical Common Lisp](https://github.com/pcl-ru/pcl-ru/releases/download/v1.1/pcl-ru.pdf)
На английском
- [Practical Common Lisp](http://www.gigamonkeys.com/book/)
@ -685,7 +686,7 @@ nil ; ложь; а ещё пустой список () тож
На русском
- [Lisper.ru](http://lisper.ru/)
- [Сообщество в Telegram](https://t.me/lisp_forever)
На английском

Some files were not shown because too many files have changed in this diff Show More