1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-08-13 18:24:39 +02:00

[c++/en] remove using namespace std (#4738)

This commit is contained in:
rilysh
2024-05-17 23:16:56 +05:30
committed by GitHub
parent 89857f5e24
commit 825a2b0875

View File

@@ -31,7 +31,7 @@ one of the most widely-used programming languages.
// Comparison to C // Comparison to C
////////////////// //////////////////
// C++ is _almost_ a superset of C and shares its basic syntax for // C++ is almost a superset of C and shares its basic syntax for
// variable declarations, primitive types, and functions. // variable declarations, primitive types, and functions.
// Just like in C, your program's entry point is a function called // Just like in C, your program's entry point is a function called
@@ -55,24 +55,26 @@ int main(int argc, char** argv)
// However, C++ varies in some of the following ways: // However, C++ varies in some of the following ways:
// In C++, character literals are chars // In C++, character literals are chars, therefore the size is 1
sizeof('c') == sizeof(char) == 1 sizeof('c') == sizeof(char)
// In C, character literals are ints // In C, character literals are ints, therefore the size is 4
sizeof('c') == sizeof(int) sizeof('c') == sizeof(int)
// C++ has strict prototyping // C++ has strict prototyping
void func(); // function which accepts no arguments void func(); // function which accepts no arguments
void func(void); // same as earlier
// In C // In C
void func(); // function which may accept any number of arguments void func(); // function which may accept any number of arguments with unknown type
void func(void); // function which accepts no arguments
// Use nullptr instead of NULL in C++ // Use nullptr instead of NULL in C++
int* ip = nullptr; int* ip = nullptr;
// C standard headers are available in C++. // Most C standard headers are available in C++.
// C headers end in .h, while // C headers generally end with .h, while
// C++ headers are prefixed with "c" and have no ".h" suffix. // C++ headers are prefixed with "c" and have no ".h" suffix.
// The C++ standard version: // The C++ standard version:
@@ -101,7 +103,7 @@ void print(char const* myString)
void print(int myInt) void print(int myInt)
{ {
printf("My int is %d", myInt); printf("My int is %d\n", myInt);
} }
int main() int main()
@@ -193,22 +195,24 @@ int main()
#include <iostream> // Include for I/O streams #include <iostream> // Include for I/O streams
using namespace std; // Streams are in the std namespace (standard library)
int main() int main()
{ {
int myInt; int myInt;
// Prints to stdout (or terminal/screen) // Prints to stdout (or terminal/screen)
cout << "Enter your favorite number:\n"; // std::cout referring the access to the std namespace
std::cout << "Enter your favorite number:\n";
// Takes in input // Takes in input
cin >> myInt; std::cin >> myInt;
// cout can also be formatted // cout can also be formatted
cout << "Your favorite number is " << myInt << '\n'; std::cout << "Your favorite number is " << myInt << '\n';
// prints "Your favorite number is <myInt>" // prints "Your favorite number is <myInt>"
cerr << "Used for error messages"; std::cerr << "Used for error messages";
// flush string stream buffer with new line
std::cout << "I flushed it away" << std::endl;
} }
////////// //////////
@@ -218,22 +222,20 @@ int main()
// Strings in C++ are objects and have many member functions // Strings in C++ are objects and have many member functions
#include <string> #include <string>
using namespace std; // Strings are also in the namespace std (standard library) std::string myString = "Hello";
std::string myOtherString = " World";
string myString = "Hello";
string myOtherString = " World";
// + is used for concatenation. // + is used for concatenation.
cout << myString + myOtherString; // "Hello World" std::cout << myString + myOtherString; // "Hello World"
cout << myString + " You"; // "Hello You" std::cout << myString + " You"; // "Hello You"
// C++ string length can be found from either string::length() or string::size() // C++ string length can be found from either string::length() or string::size()
cout << myString.length() + myOtherString.size(); // Outputs 11 (= 5 + 6). cout << myString.length() + myOtherString.size(); // Outputs 11 (= 5 + 6).
// C++ strings are mutable. // C++ strings are mutable.
myString.append(" Dog"); myString.append(" Dog");
cout << myString; // "Hello Dog" std::cout << myString; // "Hello Dog"
// C++ can handle C-style strings with related functions using cstrings // C++ can handle C-style strings with related functions using cstrings
#include <cstring> #include <cstring>
@@ -254,35 +256,32 @@ cout << "Length = " << strlen(myOldString); // Length = 9
// No * is needed for dereferencing and // No * is needed for dereferencing and
// & (address of) is not used for assignment. // & (address of) is not used for assignment.
using namespace std; std::string foo = "I am foo";
std::string bar = "I am bar";
string foo = "I am foo"; std::string& fooRef = foo; // This creates a reference to foo.
string bar = "I am bar";
string& fooRef = foo; // This creates a reference to foo.
fooRef += ". Hi!"; // Modifies foo through the reference fooRef += ". Hi!"; // Modifies foo through the reference
cout << fooRef; // Prints "I am foo. Hi!" std::cout << fooRef; // Prints "I am foo. Hi!"
// Doesn't reassign "fooRef". This is the same as "foo = bar", and // Doesn't reassign "fooRef". This is the same as "foo = bar", and
// foo == "I am bar" // foo == "I am bar"
// after this line. // after this line.
cout << &fooRef << endl; //Prints the address of foo std::cout << &fooRef << '\n'; // Prints the address of foo
fooRef = bar; fooRef = bar;
cout << &fooRef << endl; //Still prints the address of foo std::cout << &fooRef << '\n'; // Still prints the address of foo
cout << fooRef; // Prints "I am bar" std::cout << fooRef << '\n'; // Prints "I am bar"
// The address of fooRef remains the same, i.e. it is still referring to foo. // The address of fooRef remains the same, i.e. it is still referring to foo.
const string& barRef = bar; // Create a const reference to bar. const std::string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified. // Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified. barRef += ". Hi!"; // Error, const references cannot be modified.
// Sidetrack: Before we talk more about references, we must introduce a concept // Sidetrack: Before we talk more about references, we must introduce a concept
// called a temporary object. Suppose we have the following code: // called a temporary object. Suppose we have the following code:
string tempObjectFun() { ... } std::string tempObjectFun() { ... }
string retVal = tempObjectFun(); std::string retVal = tempObjectFun();
// What happens in the second line is actually: // What happens in the second line is actually:
// - a string object is returned from tempObjectFun // - a string object is returned from tempObjectFun
@@ -307,7 +306,7 @@ foo(bar(tempObjectFun()))
void constReferenceTempObjectFun() { void constReferenceTempObjectFun() {
// constRef gets the temporary object, and it is valid until the end of this // constRef gets the temporary object, and it is valid until the end of this
// function. // function.
const string& constRef = tempObjectFun(); const std::string& constRef = tempObjectFun();
... ...
} }
@@ -315,17 +314,17 @@ void constReferenceTempObjectFun() {
// objects. You cannot have a variable of its type, but it takes precedence in // objects. You cannot have a variable of its type, but it takes precedence in
// overload resolution: // overload resolution:
void someFun(string& s) { ... } // Regular reference void someFun(std::string& s) { ... } // Regular reference
void someFun(string&& s) { ... } // Reference to temporary object void someFun(std::string&& s) { ... } // Reference to temporary object
string foo; std::string foo;
someFun(foo); // Calls the version with regular reference someFun(foo); // Calls the version with regular reference
someFun(tempObjectFun()); // Calls the version with temporary reference someFun(tempObjectFun()); // Calls the version with temporary reference
// For example, you will see these two versions of constructors for // For example, you will see these two versions of constructors for
// std::basic_string: // std::basic_string:
basic_string(const basic_string& other); std::basic_string(const basic_string& other);
basic_string(basic_string&& other); std::basic_string(basic_string&& other);
// Idea being if we are constructing a new string from a temporary object (which // Idea being if we are constructing a new string from a temporary object (which
// is going to be destroyed soon anyway), we can have a more efficient // is going to be destroyed soon anyway), we can have a more efficient
@@ -586,7 +585,7 @@ int main () {
// Point up calls the + (function) with right as its parameter // Point up calls the + (function) with right as its parameter
Point result = up + right; Point result = up + right;
// Prints "Result is upright (1,1)" // Prints "Result is upright (1,1)"
cout << "Result is upright (" << result.x << ',' << result.y << ")\n"; std::cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
return 0; return 0;
} }
@@ -654,7 +653,7 @@ barkThreeTimes(fluffy); // Prints "Fluffy barks" three times.
// Template parameters don't have to be classes: // Template parameters don't have to be classes:
template<int Y> template<int Y>
void printMessage() { void printMessage() {
cout << "Learn C++ in " << Y << " minutes!" << endl; std::cout << "Learn C++ in " << Y << " minutes!\n";
} }
// And you can explicitly specialize templates for more efficient code. Of // And you can explicitly specialize templates for more efficient code. Of
@@ -663,7 +662,7 @@ void printMessage() {
// even if you explicitly specified all parameters. // even if you explicitly specified all parameters.
template<> template<>
void printMessage<10>() { void printMessage<10>() {
cout << "Learn C++ faster in only 10 minutes!" << endl; std::cout << "Learn C++ faster in only 10 minutes!\n";
} }
printMessage<20>(); // Prints "Learn C++ in 20 minutes!" printMessage<20>(); // Prints "Learn C++ in 20 minutes!"
@@ -716,6 +715,9 @@ void doSomethingWithAFile(const char* filename)
// To begin with, assume nothing can fail. // To begin with, assume nothing can fail.
FILE* fh = fopen(filename, "r"); // Open the file in read mode. FILE* fh = fopen(filename, "r"); // Open the file in read mode.
if (fh == NULL) {
// Handle possible error
}
doSomethingWithTheFile(fh); doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh); doSomethingElseWithIt(fh);
@@ -855,9 +857,9 @@ delete ptr;
// Usage of "std::shared_ptr": // Usage of "std::shared_ptr":
void foo() void foo()
{ {
// It's no longer necessary to delete the Dog. // It's no longer necessary to delete the Dog.
std::shared_ptr<Dog> doggo(new Dog()); std::shared_ptr<Dog> doggo(new Dog());
doggo->bark(); doggo->bark();
} }
// Beware of possible circular references!!! // Beware of possible circular references!!!
@@ -893,22 +895,23 @@ doggo_two = doggo_one; // p2 references p1
// Vector (Dynamic array) // Vector (Dynamic array)
// Allow us to Define the Array or list of objects at run time // Allow us to Define the Array or list of objects at run time
#include <vector> #include <vector>
string val; std::string val;
vector<string> my_vector; // initialize the vector std::vector<string> my_vector; // initialize the vector
cin >> val; std::cin >> val;
my_vector.push_back(val); // will push the value of 'val' into vector ("array") my_vector my_vector.push_back(val); // will push the value of 'val' into vector ("array") my_vector
my_vector.push_back(val); // will push the value into the vector again (now having two elements) my_vector.push_back(val); // will push the value into the vector again (now having two elements)
// To iterate through a vector we have 2 choices: // To iterate through a vector we have 2 choices:
// Either classic looping (iterating through the vector from index 0 to its last index): // Either classic looping (iterating through the vector from index 0 to its last index):
for (int i = 0; i < my_vector.size(); i++) { for (int i = 0; i < my_vector.size(); i++) {
cout << my_vector[i] << endl; // for accessing a vector's element we can use the operator [] std::cout << my_vector[i] << '\n'; // for accessing a vector's element we can use the operator []
} }
// or using an iterator: // or using an iterator:
vector<string>::iterator it; // initialize the iterator for vector vector<string>::iterator it; // initialize the iterator for vector
for (it = my_vector.begin(); it != my_vector.end(); ++it) { for (it = my_vector.begin(); it != my_vector.end(); ++it) {
cout << *it << endl; std::cout << *it << '\n';
} }
// Set // Set
@@ -917,7 +920,7 @@ for (it = my_vector.begin(); it != my_vector.end(); ++it) {
// without any other functions or code. // without any other functions or code.
#include<set> #include<set>
set<int> ST; // Will initialize the set of int data type std::set<int> ST; // Will initialize the set of int data type
ST.insert(30); // Will insert the value 30 in set ST ST.insert(30); // Will insert the value 30 in set ST
ST.insert(10); // Will insert the value 10 in set ST ST.insert(10); // Will insert the value 10 in set ST
ST.insert(20); // Will insert the value 20 in set ST ST.insert(20); // Will insert the value 20 in set ST
@@ -929,9 +932,9 @@ ST.insert(30); // Will insert the value 30 in set ST
ST.erase(20); // Will erase element with value 20 ST.erase(20); // Will erase element with value 20
// Set ST: 10 30 // Set ST: 10 30
// To iterate through Set we use iterators // To iterate through Set we use iterators
set<int>::iterator it; std::set<int>::iterator it;
for(it=ST.begin();it!=ST.end();it++) { for(it = ST.begin(); it != ST.end(); it++) {
cout << *it << endl; std::cout << *it << '\n';
} }
// Output: // Output:
// 10 // 10
@@ -939,7 +942,7 @@ for(it=ST.begin();it!=ST.end();it++) {
// To clear the complete container we use Container_name.clear() // To clear the complete container we use Container_name.clear()
ST.clear(); ST.clear();
cout << ST.size(); // will print the size of set ST std::cout << ST.size(); // will print the size of set ST
// Output: 0 // Output: 0
// NOTE: for duplicate elements we can use multiset // NOTE: for duplicate elements we can use multiset
@@ -951,7 +954,7 @@ cout << ST.size(); // will print the size of set ST
// and a mapped value, following a specific order. // and a mapped value, following a specific order.
#include<map> #include<map>
map<char, int> mymap; // Will initialize the map with key as char and value as int std::map<char, int> mymap; // Will initialize the map with key as char and value as int
mymap.insert(pair<char,int>('A',1)); mymap.insert(pair<char,int>('A',1));
// Will insert value 1 for key A // Will insert value 1 for key A
@@ -959,16 +962,16 @@ mymap.insert(pair<char,int>('Z',26));
// Will insert value 26 for key Z // Will insert value 26 for key Z
// To iterate // To iterate
map<char,int>::iterator it; std::map<char,int>::iterator it;
for (it=mymap.begin(); it!=mymap.end(); ++it) for (it=mymap.begin(); it!=mymap.end(); ++it)
std::cout << it->first << "->" << it->second << std::endl; std::cout << it->first << "->" << it->second << '\n';
// Output: // Output:
// A->1 // A->1
// Z->26 // Z->26
// To find the value corresponding to a key // To find the value corresponding to a key
it = mymap.find('Z'); it = mymap.find('Z');
cout << it->second; std::cout << it->second;
// Output: 26 // Output: 26
@@ -1006,7 +1009,7 @@ fooMap.find(Foo(1)); //true
// For example, consider sorting a vector of pairs using the second // For example, consider sorting a vector of pairs using the second
// value of the pair // value of the pair
vector<pair<int, int> > tester; std::vector<pair<int, int> > tester;
tester.push_back(make_pair(3, 6)); tester.push_back(make_pair(3, 6));
tester.push_back(make_pair(1, 9)); tester.push_back(make_pair(1, 9));
tester.push_back(make_pair(5, 0)); tester.push_back(make_pair(5, 0));
@@ -1014,7 +1017,7 @@ tester.push_back(make_pair(5, 0));
// Pass a lambda expression as third argument to the sort function // Pass a lambda expression as third argument to the sort function
// sort is from the <algorithm> header // sort is from the <algorithm> header
sort(tester.begin(), tester.end(), [](const pair<int, int>& lhs, const pair<int, int>& rhs) { std::sort(tester.begin(), tester.end(), [](const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second < rhs.second; return lhs.second < rhs.second;
}); });
@@ -1028,7 +1031,7 @@ sort(tester.begin(), tester.end(), [](const pair<int, int>& lhs, const pair<int,
// 4. same as 3, but by value [=] // 4. same as 3, but by value [=]
// Example: // Example:
vector<int> dog_ids; std::vector<int> dog_ids;
// number_of_dogs = 3; // number_of_dogs = 3;
for(int i = 0; i < 3; i++) { for(int i = 0; i < 3; i++) {
dog_ids.push_back(i); dog_ids.push_back(i);
@@ -1133,33 +1136,33 @@ const int maxL = 15;
auto second = make_tuple(maxN, maxL); auto second = make_tuple(maxN, maxL);
// Printing elements of 'first' tuple // Printing elements of 'first' tuple
cout << get<0>(first) << " " << get<1>(first) << '\n'; //prints : 10 A std::cout << get<0>(first) << " " << get<1>(first) << '\n'; //prints : 10 A
// Printing elements of 'second' tuple // Printing elements of 'second' tuple
cout << get<0>(second) << " " << get<1>(second) << '\n'; // prints: 1000000000 15 std::cout << get<0>(second) << " " << get<1>(second) << '\n'; // prints: 1000000000 15
// Unpacking tuple into variables // Unpacking tuple into variables
int first_int; int first_int;
char first_char; char first_char;
tie(first_int, first_char) = first; tie(first_int, first_char) = first;
cout << first_int << " " << first_char << '\n'; // prints : 10 A std::cout << first_int << " " << first_char << '\n'; // prints : 10 A
// We can also create tuple like this. // We can also create tuple like this.
tuple<int, char, double> third(11, 'A', 3.14141); tuple<int, char, double> third(11, 'A', 3.14141);
// tuple_size returns number of elements in a tuple (as a constexpr) // tuple_size returns number of elements in a tuple (as a constexpr)
cout << tuple_size<decltype(third)>::value << '\n'; // prints: 3 std::cout << tuple_size<decltype(third)>::value << '\n'; // prints: 3
// tuple_cat concatenates the elements of all the tuples in the same order. // tuple_cat concatenates the elements of all the tuples in the same order.
auto concatenated_tuple = tuple_cat(first, second, third); auto concatenated_tuple = tuple_cat(first, second, third);
// concatenated_tuple becomes = (10, 'A', 1e9, 15, 11, 'A', 3.14141) // concatenated_tuple becomes = (10, 'A', 1e9, 15, 11, 'A', 3.14141)
cout << get<0>(concatenated_tuple) << '\n'; // prints: 10 std::cout << get<0>(concatenated_tuple) << '\n'; // prints: 10
cout << get<3>(concatenated_tuple) << '\n'; // prints: 15 std::cout << get<3>(concatenated_tuple) << '\n'; // prints: 15
cout << get<5>(concatenated_tuple) << '\n'; // prints: 'A' std::cout << get<5>(concatenated_tuple) << '\n'; // prints: 'A'
/////////////////////////////////// ///////////////////////////////////
@@ -1207,7 +1210,7 @@ compl 4 // Performs a bitwise not
4 xor 3 // Performs bitwise xor 4 xor 3 // Performs bitwise xor
``` ```
Further Reading: ## Further Reading:
* An up-to-date language reference can be found at [CPP Reference](http://cppreference.com/w/cpp). * An up-to-date language reference can be found at [CPP Reference](http://cppreference.com/w/cpp).
* A tutorial for beginners or experts, covering many modern features and good practices: [LearnCpp.com](https://www.learncpp.com/) * A tutorial for beginners or experts, covering many modern features and good practices: [LearnCpp.com](https://www.learncpp.com/)