mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-09-25 13:58:59 +02:00
removing whitespace all over
This commit is contained in:
@@ -5,7 +5,7 @@ contributors:
|
||||
filename: learnfsharp.fs
|
||||
---
|
||||
|
||||
F# is a general purpose functional/OO programming language. It's free and open source, and runs on Linux, Mac, Windows and more.
|
||||
F# is a general purpose functional/OO programming language. It's free and open source, and runs on Linux, Mac, Windows and more.
|
||||
|
||||
It has a powerful type system that traps many errors at compile time, but it uses type inference so that it reads more like a dynamic language.
|
||||
|
||||
@@ -90,7 +90,7 @@ let simplePatternMatch =
|
||||
| _ -> printfn "x is something else" // underscore matches anything
|
||||
|
||||
// F# doesn't allow nulls by default -- you must use an Option type
|
||||
// and then pattern match.
|
||||
// and then pattern match.
|
||||
// Some(..) and None are roughly analogous to Nullable wrappers
|
||||
let validValue = Some(99)
|
||||
let invalidValue = None
|
||||
@@ -115,7 +115,7 @@ printfn "A string %s, and something generic %A" "hello" [1;2;3;4]
|
||||
// into a string, similar to String.Format in C#.
|
||||
|
||||
// ================================================
|
||||
// More on functions
|
||||
// More on functions
|
||||
// ================================================
|
||||
|
||||
// F# is a true functional language -- functions are first
|
||||
@@ -124,30 +124,30 @@ printfn "A string %s, and something generic %A" "hello" [1;2;3;4]
|
||||
|
||||
// Modules are used to group functions together
|
||||
// Indentation is needed for each nested module.
|
||||
module FunctionExamples =
|
||||
module FunctionExamples =
|
||||
|
||||
// define a simple adding function
|
||||
let add x y = x + y
|
||||
|
||||
|
||||
// basic usage of a function
|
||||
let a = add 1 2
|
||||
printfn "1+2 = %i" a
|
||||
|
||||
|
||||
// partial application to "bake in" parameters
|
||||
let add42 = add 42
|
||||
let b = add42 1
|
||||
printfn "42+1 = %i" b
|
||||
|
||||
|
||||
// composition to combine functions
|
||||
let add1 = add 1
|
||||
let add2 = add 2
|
||||
let add3 = add1 >> add2
|
||||
let c = add3 7
|
||||
printfn "3+7 = %i" c
|
||||
|
||||
|
||||
// higher order functions
|
||||
[1..10] |> List.map add3 |> printfn "new list is %A"
|
||||
|
||||
|
||||
// lists of functions, and more
|
||||
let add6 = [add1; add2; add3] |> List.reduce (>>)
|
||||
let d = add6 7
|
||||
@@ -158,54 +158,54 @@ module FunctionExamples =
|
||||
// ================================================
|
||||
|
||||
// There are three types of ordered collection:
|
||||
// * Lists are most basic immutable collection.
|
||||
// * Arrays are mutable and more efficient when needed.
|
||||
// * Sequences are lazy and infinite (e.g. an enumerator).
|
||||
// * Lists are most basic immutable collection.
|
||||
// * Arrays are mutable and more efficient when needed.
|
||||
// * Sequences are lazy and infinite (e.g. an enumerator).
|
||||
//
|
||||
// Other collections include immutable maps and sets
|
||||
// plus all the standard .NET collections
|
||||
|
||||
module ListExamples =
|
||||
module ListExamples =
|
||||
|
||||
// lists use square brackets
|
||||
// lists use square brackets
|
||||
let list1 = ["a";"b"]
|
||||
let list2 = "c" :: list1 // :: is prepending
|
||||
let list3 = list1 @ list2 // @ is concat
|
||||
|
||||
|
||||
// list comprehensions (aka generators)
|
||||
let squares = [for i in 1..10 do yield i*i]
|
||||
let squares = [for i in 1..10 do yield i*i]
|
||||
|
||||
// prime number generator
|
||||
let rec sieve = function
|
||||
| (p::xs) -> p :: sieve [ for x in xs do if x % p > 0 then yield x ]
|
||||
| [] -> []
|
||||
let primes = sieve [2..50]
|
||||
printfn "%A" primes
|
||||
|
||||
printfn "%A" primes
|
||||
|
||||
// pattern matching for lists
|
||||
let listMatcher aList =
|
||||
let listMatcher aList =
|
||||
match aList with
|
||||
| [] -> printfn "the list is empty"
|
||||
| [first] -> printfn "the list has one element %A " first
|
||||
| [first; second] -> printfn "list is %A and %A" first second
|
||||
| _ -> printfn "the list has more than two elements"
|
||||
| [] -> printfn "the list is empty"
|
||||
| [first] -> printfn "the list has one element %A " first
|
||||
| [first; second] -> printfn "list is %A and %A" first second
|
||||
| _ -> printfn "the list has more than two elements"
|
||||
|
||||
listMatcher [1;2;3;4]
|
||||
listMatcher [1;2]
|
||||
listMatcher [1]
|
||||
listMatcher []
|
||||
listMatcher []
|
||||
|
||||
// recursion using lists
|
||||
let rec sum aList =
|
||||
let rec sum aList =
|
||||
match aList with
|
||||
| [] -> 0
|
||||
| x::xs -> x + sum xs
|
||||
sum [1..10]
|
||||
|
||||
// -----------------------------------------
|
||||
// Standard library functions
|
||||
|
||||
// -----------------------------------------
|
||||
|
||||
// Standard library functions
|
||||
// -----------------------------------------
|
||||
|
||||
// map
|
||||
let add3 x = x + 3
|
||||
[1..10] |> List.map add3
|
||||
@@ -213,68 +213,68 @@ module ListExamples =
|
||||
// filter
|
||||
let even x = x % 2 = 0
|
||||
[1..10] |> List.filter even
|
||||
|
||||
|
||||
// many more -- see documentation
|
||||
|
||||
module ArrayExamples =
|
||||
|
||||
module ArrayExamples =
|
||||
|
||||
// arrays use square brackets with bar
|
||||
let array1 = [| "a";"b" |]
|
||||
let first = array1.[0] // indexed access using dot
|
||||
|
||||
|
||||
// pattern matching for arrays is same as for lists
|
||||
let arrayMatcher aList =
|
||||
let arrayMatcher aList =
|
||||
match aList with
|
||||
| [| |] -> printfn "the array is empty"
|
||||
| [| first |] -> printfn "the array has one element %A " first
|
||||
| [| first; second |] -> printfn "array is %A and %A" first second
|
||||
| _ -> printfn "the array has more than two elements"
|
||||
| [| |] -> printfn "the array is empty"
|
||||
| [| first |] -> printfn "the array has one element %A " first
|
||||
| [| first; second |] -> printfn "array is %A and %A" first second
|
||||
| _ -> printfn "the array has more than two elements"
|
||||
|
||||
arrayMatcher [| 1;2;3;4 |]
|
||||
|
||||
// Standard library functions just as for List
|
||||
|
||||
[| 1..10 |]
|
||||
|
||||
[| 1..10 |]
|
||||
|> Array.map (fun i -> i+3)
|
||||
|> Array.filter (fun i -> i%2 = 0)
|
||||
|> Array.iter (printfn "value is %i. ")
|
||||
|
||||
|
||||
module SequenceExamples =
|
||||
|
||||
|
||||
module SequenceExamples =
|
||||
|
||||
// sequences use curly braces
|
||||
let seq1 = seq { yield "a"; yield "b" }
|
||||
|
||||
// sequences can use yield and
|
||||
|
||||
// sequences can use yield and
|
||||
// can contain subsequences
|
||||
let strange = seq {
|
||||
// "yield! adds one element
|
||||
yield 1; yield 2;
|
||||
|
||||
|
||||
// "yield!" adds a whole subsequence
|
||||
yield! [5..10]
|
||||
yield! [5..10]
|
||||
yield! seq {
|
||||
for i in 1..10 do
|
||||
for i in 1..10 do
|
||||
if i%2 = 0 then yield i }}
|
||||
// test
|
||||
strange |> Seq.toList
|
||||
|
||||
// test
|
||||
strange |> Seq.toList
|
||||
|
||||
|
||||
// Sequences can be created using "unfold"
|
||||
// Here's the fibonacci series
|
||||
let fib = Seq.unfold (fun (fst,snd) ->
|
||||
Some(fst + snd, (snd, fst + snd))) (0,1)
|
||||
|
||||
// test
|
||||
// test
|
||||
let fib10 = fib |> Seq.take 10 |> Seq.toList
|
||||
printf "first 10 fibs are %A" fib10
|
||||
|
||||
|
||||
printf "first 10 fibs are %A" fib10
|
||||
|
||||
|
||||
// ================================================
|
||||
// Data Types
|
||||
// Data Types
|
||||
// ================================================
|
||||
|
||||
module DataTypeExamples =
|
||||
module DataTypeExamples =
|
||||
|
||||
// All data is immutable by default
|
||||
|
||||
@@ -282,33 +282,33 @@ module DataTypeExamples =
|
||||
// -- Use a comma to create a tuple
|
||||
let twoTuple = 1,2
|
||||
let threeTuple = "a",2,true
|
||||
|
||||
|
||||
// Pattern match to unpack
|
||||
let x,y = twoTuple //sets x=1 y=2
|
||||
|
||||
// ------------------------------------
|
||||
// Record types have named fields
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
// Record types have named fields
|
||||
// ------------------------------------
|
||||
|
||||
// Use "type" with curly braces to define a record type
|
||||
type Person = {First:string; Last:string}
|
||||
|
||||
// Use "let" with curly braces to create a record
|
||||
|
||||
// Use "let" with curly braces to create a record
|
||||
let person1 = {First="John"; Last="Doe"}
|
||||
|
||||
// Pattern match to unpack
|
||||
let {First=first} = person1 //sets first="john"
|
||||
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
// Union types (aka variants) have a set of choices
|
||||
// Only case can be valid at a time.
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
|
||||
// Use "type" with bar/pipe to define a union type
|
||||
type Temp =
|
||||
type Temp =
|
||||
| DegreesC of float
|
||||
| DegreesF of float
|
||||
|
||||
|
||||
// Use one of the cases to create one
|
||||
let temp1 = DegreesF 98.6
|
||||
let temp2 = DegreesC 37.0
|
||||
@@ -317,29 +317,29 @@ module DataTypeExamples =
|
||||
let printTemp = function
|
||||
| DegreesC t -> printfn "%f degC" t
|
||||
| DegreesF t -> printfn "%f degF" t
|
||||
|
||||
printTemp temp1
|
||||
|
||||
printTemp temp1
|
||||
printTemp temp2
|
||||
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
// Recursive types
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
|
||||
// Types can be combined recursively in complex ways
|
||||
// Types can be combined recursively in complex ways
|
||||
// without having to create subclasses
|
||||
type Employee =
|
||||
type Employee =
|
||||
| Worker of Person
|
||||
| Manager of Employee list
|
||||
|
||||
let jdoe = {First="John";Last="Doe"}
|
||||
let worker = Worker jdoe
|
||||
|
||||
// ------------------------------------
|
||||
|
||||
// ------------------------------------
|
||||
// Modelling with types
|
||||
// ------------------------------------
|
||||
|
||||
// ------------------------------------
|
||||
|
||||
// Union types are great for modelling state without using flags
|
||||
type EmailAddress =
|
||||
type EmailAddress =
|
||||
| ValidEmailAddress of string
|
||||
| InvalidEmailAddress of string
|
||||
|
||||
@@ -350,40 +350,40 @@ module DataTypeExamples =
|
||||
|
||||
// The combination of union types and record types together
|
||||
// provide a great foundation for domain driven design.
|
||||
// You can create hundreds of little types that accurately
|
||||
// You can create hundreds of little types that accurately
|
||||
// reflect the domain.
|
||||
|
||||
type CartItem = { ProductCode: string; Qty: int }
|
||||
type Payment = Payment of float
|
||||
type ActiveCartData = { UnpaidItems: CartItem list }
|
||||
type PaidCartData = { PaidItems: CartItem list; Payment: Payment}
|
||||
|
||||
type ShoppingCart =
|
||||
|
||||
type ShoppingCart =
|
||||
| EmptyCart // no data
|
||||
| ActiveCart of ActiveCartData
|
||||
| PaidCart of PaidCartData
|
||||
| PaidCart of PaidCartData
|
||||
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
// Built in behavior for types
|
||||
// ------------------------------------
|
||||
// ------------------------------------
|
||||
|
||||
// Core types have useful "out-of-the-box" behavior, no coding needed.
|
||||
// * Immutability
|
||||
// * Pretty printing when debugging
|
||||
// * Equality and comparison
|
||||
// * Serialization
|
||||
|
||||
|
||||
// Pretty printing using %A
|
||||
printfn "twoTuple=%A,\nPerson=%A,\nTemp=%A,\nEmployee=%A"
|
||||
printfn "twoTuple=%A,\nPerson=%A,\nTemp=%A,\nEmployee=%A"
|
||||
twoTuple person1 temp1 worker
|
||||
|
||||
// Equality and comparison built in.
|
||||
// Here's an example with cards.
|
||||
type Suit = Club | Diamond | Spade | Heart
|
||||
type Rank = Two | Three | Four | Five | Six | Seven | Eight
|
||||
| Nine | Ten | Jack | Queen | King | Ace
|
||||
type Rank = Two | Three | Four | Five | Six | Seven | Eight
|
||||
| Nine | Ten | Jack | Queen | King | Ace
|
||||
|
||||
let hand = [ Club,Ace; Heart,Three; Heart,Ace;
|
||||
let hand = [ Club,Ace; Heart,Three; Heart,Ace;
|
||||
Spade,Jack; Diamond,Two; Diamond,Ace ]
|
||||
|
||||
// sorting
|
||||
@@ -391,27 +391,27 @@ module DataTypeExamples =
|
||||
List.max hand |> printfn "high card is %A"
|
||||
List.min hand |> printfn "low card is %A"
|
||||
|
||||
|
||||
|
||||
// ================================================
|
||||
// Active patterns
|
||||
// ================================================
|
||||
|
||||
module ActivePatternExamples =
|
||||
module ActivePatternExamples =
|
||||
|
||||
// F# has a special type of pattern matching called "active patterns"
|
||||
// where the pattern can be parsed or detected dynamically.
|
||||
// F# has a special type of pattern matching called "active patterns"
|
||||
// where the pattern can be parsed or detected dynamically.
|
||||
|
||||
// "banana clips" are the syntax for active patterns
|
||||
|
||||
|
||||
// for example, define an "active" pattern to match character types...
|
||||
let (|Digit|Letter|Whitespace|Other|) ch =
|
||||
let (|Digit|Letter|Whitespace|Other|) ch =
|
||||
if System.Char.IsDigit(ch) then Digit
|
||||
else if System.Char.IsLetter(ch) then Letter
|
||||
else if System.Char.IsWhiteSpace(ch) then Whitespace
|
||||
else Other
|
||||
else Other
|
||||
|
||||
// ... and then use it to make parsing logic much clearer
|
||||
let printChar ch =
|
||||
let printChar ch =
|
||||
match ch with
|
||||
| Digit -> printfn "%c is a Digit" ch
|
||||
| Letter -> printfn "%c is a Letter" ch
|
||||
@@ -424,52 +424,52 @@ module ActivePatternExamples =
|
||||
// -----------------------------------
|
||||
// FizzBuzz using active patterns
|
||||
// -----------------------------------
|
||||
|
||||
|
||||
// You can create partial matching patterns as well
|
||||
// Just use undercore in the defintion, and return Some if matched.
|
||||
let (|MultOf3|_|) i = if i % 3 = 0 then Some MultOf3 else None
|
||||
let (|MultOf5|_|) i = if i % 5 = 0 then Some MultOf5 else None
|
||||
|
||||
// the main function
|
||||
let fizzBuzz i =
|
||||
let fizzBuzz i =
|
||||
match i with
|
||||
| MultOf3 & MultOf5 -> printf "FizzBuzz, "
|
||||
| MultOf3 -> printf "Fizz, "
|
||||
| MultOf5 -> printf "Buzz, "
|
||||
| MultOf3 & MultOf5 -> printf "FizzBuzz, "
|
||||
| MultOf3 -> printf "Fizz, "
|
||||
| MultOf5 -> printf "Buzz, "
|
||||
| _ -> printf "%i, " i
|
||||
|
||||
|
||||
// test
|
||||
[1..20] |> List.iter fizzBuzz
|
||||
|
||||
[1..20] |> List.iter fizzBuzz
|
||||
|
||||
// ================================================
|
||||
// Conciseness
|
||||
// Conciseness
|
||||
// ================================================
|
||||
|
||||
module AlgorithmExamples =
|
||||
module AlgorithmExamples =
|
||||
|
||||
// F# has a high signal/noise ratio, so code reads
|
||||
// F# has a high signal/noise ratio, so code reads
|
||||
// almost like the actual algorithm
|
||||
|
||||
// ------ Example: define sumOfSquares function ------
|
||||
let sumOfSquares n =
|
||||
let sumOfSquares n =
|
||||
[1..n] // 1) take all the numbers from 1 to n
|
||||
|> List.map square // 2) square each one
|
||||
|> List.sum // 3) sum the results
|
||||
|
||||
// test
|
||||
sumOfSquares 100 |> printfn "Sum of squares = %A"
|
||||
|
||||
// ------ Example: define a sort function ------
|
||||
// test
|
||||
sumOfSquares 100 |> printfn "Sum of squares = %A"
|
||||
|
||||
// ------ Example: define a sort function ------
|
||||
let rec sort list =
|
||||
match list with
|
||||
// If the list is empty
|
||||
| [] ->
|
||||
// If the list is empty
|
||||
| [] ->
|
||||
[] // return an empty list
|
||||
// If the list is not empty
|
||||
| firstElem::otherElements -> // take the first element
|
||||
let smallerElements = // extract the smaller elements
|
||||
// If the list is not empty
|
||||
| firstElem::otherElements -> // take the first element
|
||||
let smallerElements = // extract the smaller elements
|
||||
otherElements // from the remaining ones
|
||||
|> List.filter (fun e -> e < firstElem)
|
||||
|> List.filter (fun e -> e < firstElem)
|
||||
|> sort // and sort them
|
||||
let largerElements = // extract the larger ones
|
||||
otherElements // from the remaining ones
|
||||
@@ -479,13 +479,13 @@ module AlgorithmExamples =
|
||||
List.concat [smallerElements; [firstElem]; largerElements]
|
||||
|
||||
// test
|
||||
sort [1;5;23;18;9;1;3] |> printfn "Sorted = %A"
|
||||
sort [1;5;23;18;9;1;3] |> printfn "Sorted = %A"
|
||||
|
||||
// ================================================
|
||||
// Asynchronous Code
|
||||
// ================================================
|
||||
|
||||
module AsyncExample =
|
||||
module AsyncExample =
|
||||
|
||||
// F# has built-in features to help with async code
|
||||
// without encountering the "pyramid of doom"
|
||||
@@ -495,23 +495,23 @@ module AsyncExample =
|
||||
open System.Net
|
||||
open System
|
||||
open System.IO
|
||||
open Microsoft.FSharp.Control.CommonExtensions
|
||||
open Microsoft.FSharp.Control.CommonExtensions
|
||||
|
||||
// Fetch the contents of a URL asynchronously
|
||||
let fetchUrlAsync url =
|
||||
async { // "async" keyword and curly braces
|
||||
let fetchUrlAsync url =
|
||||
async { // "async" keyword and curly braces
|
||||
// creates an "async" object
|
||||
let req = WebRequest.Create(Uri(url))
|
||||
use! resp = req.AsyncGetResponse()
|
||||
let req = WebRequest.Create(Uri(url))
|
||||
use! resp = req.AsyncGetResponse()
|
||||
// use! is async assignment
|
||||
use stream = resp.GetResponseStream()
|
||||
use stream = resp.GetResponseStream()
|
||||
// "use" triggers automatic close()
|
||||
// on resource at end of scope
|
||||
use reader = new IO.StreamReader(stream)
|
||||
let html = reader.ReadToEnd()
|
||||
printfn "finished downloading %s" url
|
||||
use reader = new IO.StreamReader(stream)
|
||||
let html = reader.ReadToEnd()
|
||||
printfn "finished downloading %s" url
|
||||
}
|
||||
|
||||
|
||||
// a list of sites to fetch
|
||||
let sites = ["http://www.bing.com";
|
||||
"http://www.google.com";
|
||||
@@ -520,7 +520,7 @@ module AsyncExample =
|
||||
"http://www.yahoo.com"]
|
||||
|
||||
// do it
|
||||
sites
|
||||
sites
|
||||
|> List.map fetchUrlAsync // make a list of async tasks
|
||||
|> Async.Parallel // set up the tasks to run in parallel
|
||||
|> Async.RunSynchronously // start them off
|
||||
@@ -529,58 +529,58 @@ module AsyncExample =
|
||||
// .NET compatability
|
||||
// ================================================
|
||||
|
||||
module NetCompatibilityExamples =
|
||||
module NetCompatibilityExamples =
|
||||
|
||||
// F# can do almost everything C# can do, and it integrates
|
||||
// seamlessly with .NET or Mono libraries.
|
||||
|
||||
// ------- work with existing library functions -------
|
||||
|
||||
|
||||
let (i1success,i1) = System.Int32.TryParse("123");
|
||||
if i1success then printfn "parsed as %i" i1 else printfn "parse failed"
|
||||
|
||||
// ------- Implement interfaces on the fly! -------
|
||||
|
||||
|
||||
// create a new object that implements IDisposable
|
||||
let makeResource name =
|
||||
{ new System.IDisposable
|
||||
let makeResource name =
|
||||
{ new System.IDisposable
|
||||
with member this.Dispose() = printfn "%s disposed" name }
|
||||
|
||||
let useAndDisposeResources =
|
||||
let useAndDisposeResources =
|
||||
use r1 = makeResource "first resource"
|
||||
printfn "using first resource"
|
||||
printfn "using first resource"
|
||||
for i in [1..3] do
|
||||
let resourceName = sprintf "\tinner resource %d" i
|
||||
use temp = makeResource resourceName
|
||||
printfn "\tdo something with %s" resourceName
|
||||
use temp = makeResource resourceName
|
||||
printfn "\tdo something with %s" resourceName
|
||||
use r2 = makeResource "second resource"
|
||||
printfn "using second resource"
|
||||
printfn "done."
|
||||
printfn "using second resource"
|
||||
printfn "done."
|
||||
|
||||
// ------- Object oriented code -------
|
||||
|
||||
|
||||
// F# is also a fully fledged OO language.
|
||||
// It supports classes, inheritance, virtual methods, etc.
|
||||
|
||||
// interface with generic type
|
||||
type IEnumerator<'a> =
|
||||
type IEnumerator<'a> =
|
||||
abstract member Current : 'a
|
||||
abstract MoveNext : unit -> bool
|
||||
abstract MoveNext : unit -> bool
|
||||
|
||||
// abstract base class with virtual methods
|
||||
[<AbstractClass>]
|
||||
type Shape() =
|
||||
type Shape() =
|
||||
//readonly properties
|
||||
abstract member Width : int with get
|
||||
abstract member Height : int with get
|
||||
//non-virtual method
|
||||
member this.BoundingArea = this.Height * this.Width
|
||||
//virtual method with base implementation
|
||||
abstract member Print : unit -> unit
|
||||
abstract member Print : unit -> unit
|
||||
default this.Print () = printfn "I'm a shape"
|
||||
|
||||
// concrete class that inherits from base class and overrides
|
||||
type Rectangle(x:int, y:int) =
|
||||
// concrete class that inherits from base class and overrides
|
||||
type Rectangle(x:int, y:int) =
|
||||
inherit Shape()
|
||||
override this.Width = x
|
||||
override this.Height = y
|
||||
@@ -590,20 +590,20 @@ module NetCompatibilityExamples =
|
||||
let r = Rectangle(2,3)
|
||||
printfn "The width is %i" r.Width
|
||||
printfn "The area is %i" r.BoundingArea
|
||||
r.Print()
|
||||
r.Print()
|
||||
|
||||
// ------- extension methods -------
|
||||
|
||||
|
||||
//Just as in C#, F# can extend existing classes with extension methods.
|
||||
type System.String with
|
||||
member this.StartsWithA = this.StartsWith "A"
|
||||
|
||||
//test
|
||||
let s = "Alice"
|
||||
printfn "'%s' starts with an 'A' = %A" s s.StartsWithA
|
||||
|
||||
printfn "'%s' starts with an 'A' = %A" s s.StartsWithA
|
||||
|
||||
// ------- events -------
|
||||
|
||||
|
||||
type MyButton() =
|
||||
let clickEvent = new Event<_>()
|
||||
|
||||
@@ -615,11 +615,11 @@ module NetCompatibilityExamples =
|
||||
|
||||
// test
|
||||
let myButton = new MyButton()
|
||||
myButton.OnClick.Add(fun (sender, arg) ->
|
||||
myButton.OnClick.Add(fun (sender, arg) ->
|
||||
printfn "Click event with arg=%O" arg)
|
||||
|
||||
myButton.TestEvent("Hello World!")
|
||||
|
||||
|
||||
```
|
||||
|
||||
## More Information
|
||||
|
Reference in New Issue
Block a user