1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-08-06 14:56:54 +02:00

one more quick run over the code

This commit is contained in:
Martijn Visser
2018-08-15 16:54:03 +02:00
parent c8ad0d0809
commit 9fab30a26a

View File

@@ -81,29 +81,18 @@ false
2 < 3 < 2 # => false
# Strings are created with "
try
"This is a string."
catch ; end
# Julia has several types of strings, including ASCIIString and UTF8String.
# More on this in the Types section.
# Character literals are written with '
try
'a'
catch ; end
# Some strings can be indexed like an array of characters
try
"This is a string"[1] # => 'T' # Julia indexes from 1
catch ; end
# However, this is will not work well for UTF8 strings,
# so iterating over strings is recommended (map, for loops, etc).
# Strings are UTF8 encoded. Only if they contain only ASCII characters can
# they be safely indexed.
ascii("This is a string")[1] # => 'T' # Julia indexes from 1
# Otherwise, iterating over strings is recommended (map, for loops, etc).
# $ can be used for string interpolation:
try
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
catch ; end
# You can put any Julia expression inside the parentheses.
# Another way to format strings is the printf macro from the stdlib Printf.
@@ -168,7 +157,7 @@ b[end] # => 6
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
# Arrays of a particular Type
# Arrays of a particular type
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
# Add stuff to the end of a list with push! and append!
@@ -202,15 +191,17 @@ sort!(arr) # => [4,5,6]; arr is now [4,5,6]
# Looking out of bounds is a BoundsError
try
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
a[end + 1] # => ERROR: BoundsError() in getindex at array.jl:270
a[0]
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [0]
a[end + 1]
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [8]
catch e
println(e)
end
# Errors list the line and file they came from, even if it's in the standard
# library. If you built Julia from source, you can look in the folder base
# inside the julia folder to find these files.
# library. You can look in the folder share/julia inside the julia folder to
# find these files.
# You can initialize arrays from ranges
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
@@ -242,7 +233,7 @@ catch e
println(e)
end
# Many list functions also work on tuples
# Many array functions also work on tuples
length(tup) # => 3
tup[1:2] # => (1,2)
in(2, tup) # => true
@@ -266,19 +257,20 @@ empty_dict = Dict() # => Dict{Any,Any}()
# You can create a dictionary using a literal
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
# => Dict{ASCIIString,Int64}
# => Dict{String,Int64}
# Look up values with []
filled_dict["one"] # => 1
# Get all keys
keys(filled_dict)
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
# "two", "one", "three"
# Note - dictionary keys are not sorted or in the order you inserted them.
# Get all values
values(filled_dict)
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# => Base.ValueIterator{Dict{String,Int64}} with 3 entries. Values: 2, 1, 3
# Note - Same as above regarding key ordering.
# Check for existence of keys in a dictionary with in, haskey
@@ -289,7 +281,7 @@ haskey(filled_dict, 1) # => false
# Trying to look up a non-existent key will raise an error
try
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
filled_dict["four"] # => KeyError: key "four" not found
catch e
println(e)
end
@@ -302,20 +294,20 @@ get(filled_dict, "four", 4) # => 4
# Use Sets to represent collections of unordered, unique values
empty_set = Set() # => Set{Any}()
# Initialize a set with values
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
# Add more values to a set
push!(filled_set, 5) # => Set{Int64}(5,4,2,3,1)
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
# Check if the values are in the set
in(2, filled_set) # => true
in(10, filled_set) # => false
# There are functions for set intersection, union, and difference.
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set{Int64}(1,4)
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
intersect(filled_set, other_set) # => Set([4, 3, 5])
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
@@ -356,8 +348,9 @@ end
# cat is a mammal
# mouse is a mammal
for a in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
println("$(a[1]) is a $(a[2])")
for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
from, to = pair
println("$from is a $to")
end
# prints:
# dog is a mammal
@@ -705,7 +698,7 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
square_area(l) = l * l # square_area (generic function with 1 method)
square_area(5) #25
square_area(5) # => 25
# What happens when we feed square_area an integer?
code_native(square_area, (Int32,))