diff --git a/asymptotic-notation.html.markdown b/asymptotic-notation.html.markdown index 6a6df968..a1dfe9e1 100644 --- a/asymptotic-notation.html.markdown +++ b/asymptotic-notation.html.markdown @@ -155,7 +155,7 @@ Small-o, commonly written as **o**, is an Asymptotic Notation to denote the upper bound (that is not asymptotically tight) on the growth rate of runtime of an algorithm. -`f(n)` is o(g(n)), if for some real constants c (c > 0) and n0 (n0 > 0), `f(n)` is < `c g(n)` +`f(n)` is o(g(n)), if for all real constants c (c > 0) and n0 (n0 > 0), `f(n)` is < `c g(n)` for every input size n (n > n0). The definitions of O-notation and o-notation are similar. The main difference @@ -168,7 +168,7 @@ Small-omega, commonly written as **ω**, is an Asymptotic Notation to denote the lower bound (that is not asymptotically tight) on the growth rate of runtime of an algorithm. -`f(n)` is ω(g(n)), if for some real constants c (c > 0) and n0 (n0 > 0), `f(n)` is > `c g(n)` +`f(n)` is ω(g(n)), if for all real constants c (c > 0) and n0 (n0 > 0), `f(n)` is > `c g(n)` for every input size n (n > n0). The definitions of Ω-notation and ω-notation are similar. The main difference diff --git a/bash.html.markdown b/bash.html.markdown index d1e6bf25..cb805da7 100644 --- a/bash.html.markdown +++ b/bash.html.markdown @@ -25,7 +25,7 @@ Nearly all examples below can be a part of a shell script or executed directly i [Read more here.](http://www.gnu.org/software/bash/manual/bashref.html) ```bash -#!/bin/bash +#!/usr/bin/env bash # First line of the script is shebang which tells the system how to execute # the script: http://en.wikipedia.org/wiki/Shebang_(Unix) # As you already figured, comments start with #. Shebang is also a comment. diff --git a/citron.html.markdown b/citron.html.markdown new file mode 100644 index 00000000..bd3c398c --- /dev/null +++ b/citron.html.markdown @@ -0,0 +1,212 @@ +--- +language: citron +filename: learncitron.ctr +contributors: + - ["AnotherTest", ""] +lang: en-us +--- +```ruby +# Comments start with a '#' +# All comments encompass a single line + +########################################### +## 1. Primitive Data types and Operators +########################################### + +# You have numbers +3. # 3 + +# Numbers are all doubles in interpreted mode + +# Mathematical operator precedence is not respected. +# binary 'operators' are evaluated in ltr order +1 + 1. # 2 +8 - 4. # 4 +10 + 2 * 3. # 36 + +# Division is always floating division +35 / 2 # 17.5. + +# Integer division is non-trivial, you may use floor +(35 / 2) floor # 17. + +# Booleans are primitives +True. +False. + +# Boolean messages +True not. # False +False not. # True +1 = 1. # True +1 !=: 1. # False +1 < 10. # True + +# Here, `not` is a unary message to the object `Boolean` +# Messages are comparable to instance method calls +# And they have three different forms: +# 1. Unary messages: Length > 1, and they take no arguments: + False not. +# 2. Binary Messages: Length = 1, and they take a single argument: + False & True. +# 3. Keyword messages: must have at least one ':', they take as many arguments +# as they have `:` s + False either: 1 or: 2. # 2 + +# Strings +'This is a string'. +'There are no character types exposed to the user'. +# "You cannot use double quotes for strings" <- Error + +# Strins can be summed +'Hello, ' + 'World!'. # 'Hello, World!' + +# Strings allow access to their characters +'This is a beautiful string' at: 0. # 'T' + +########################################### +## intermission: Basic Assignment +########################################### + +# You may assign values to the current scope: +var name is value. # assignes `value` into `name` + +# You may also assign values into the current object's namespace +my name is value. # assigns `value` into the current object's `name` property + +# Please note that these names are checked at compile (read parse if in interpreted mode) time +# but you may treat them as dynamic assignments anyway + +########################################### +## 2. Lists(Arrays?) and Tuples +########################################### + +# Arrays are allowed to have multiple types +Array new < 1 ; 2 ; 'string' ; Nil. # Array new < 1 ; 2 ; 'string' ; Nil + +# Tuples act like arrays, but are immutable. +# Any shenanigans degrade them to arrays, however +[1, 2, 'string']. # [1, 2, 'string'] + +# They can interoperate with arrays +[1, 'string'] + (Array new < 'wat'). # Array new < 1 ; 'string' ; 'wat' + +# Indexing into them +[1, 2, 3] at: 1. # 2 + +# Some array operations +var arr is Array new < 1 ; 2 ; 3. + +arr head. # 1 +arr tail. # Array new < 2 ; 3. +arr init. # Array new < 1 ; 2. +arr last. # 3 +arr push: 4. # Array new < 1 ; 2 ; 3 ; 4. +arr pop. # 4 +arr pop: 1. # 2, `arr` is rebound to Array new < 1 ; 3. + +# List comprehensions +[x * 2 + y,, arr, arr + [4, 5],, x > 1]. # Array ← 7 ; 9 ; 10 ; 11 +# fresh variable names are bound as they are encountered, +# so `x` is bound to the values in `arr` +# and `y` is bound to the values in `arr + [4, 5]` +# +# The general format is: [expr,, bindings*,, predicates*] + + +#################################### +## 3. Functions +#################################### + +# A simple function that takes two variables +var add is {:a:b ^a + b.}. + +# this function will resolve all its names except the formal arguments +# in the context it is called in. + +# Using the function +add applyTo: 3 and: 5. # 8 +add applyAll: [3, 5]. # 8 + +# Also a (customizable -- more on this later) pseudo-operator allows for a shorthand +# of function calls +# By default it is REF[args] + +add[3, 5]. # 8 + +# To customize this behaviour, you may simply use a compiler pragma: +#:callShorthand () + +# And then you may use the specified operator. +# Note that the allowed 'operator' can only be made of any of these: []{}() +# And you may mix-and-match (why would anyone do that?) + +add(3, 5). # 8 + +# You may also use functions as operators in the following way: + +3 `add` 5. # 8 +# This call binds as such: add[(3), 5] +# because the default fixity is left, and the default precedance is 1 + +# You may change the precedence/fixity of this operator with a pragma +#:declare infixr 1 add + +3 `add` 5. # 8 +# now this binds as such: add[3, (5)]. + +# There is another form of functions too +# So far, the functions were resolved in a dynamic fashion +# But a lexically scoped block is also possible +var sillyAdd is {\:x:y add[x,y].}. + +# In these blocks, you are not allowed to declare new variables +# Except with the use of Object::'letEqual:in:` +# And the last expression is implicitly returned. + +# You may also use a shorthand for lambda expressions +var mul is \:x:y x * y. + +# These capture the named bindings that are not present in their +# formal parameters, and retain them. (by ref) + +########################################### +## 5. Control Flow +########################################### + +# inline conditional-expressions +var citron is 1 = 1 either: 'awesome' or: 'awful'. # citron is 'awesome' + +# multiple lines is fine too +var citron is 1 = 1 + either: 'awesome' + or: 'awful'. + +# looping +10 times: {:x + Pen writeln: x. +}. # 10. -- side effect: 10 lines in stdout, with numbers 0 through 9 in them + +# Citron properly supports tail-call recursion in lexically scoped blocks +# So use those to your heart's desire + +# mapping most data structures is as simple as `fmap:` +[1, 2, 3, 4] fmap: \:x x + 1. # [2, 3, 4, 5] + +# You can use `foldl:accumulator:` to fold a list/tuple +[1, 2, 3, 4] foldl: (\:acc:x acc * 2 + x) accumulator: 4. # 90 + +# That expression is the same as +(2 * (2 * (2 * (2 * 4 + 1) + 2) + 3) + 4) + +################################### +## 6. IO +################################### + +# IO is quite simple +# With `Pen` being used for console output +# and Program::'input' and Program::'waitForInput' being used for console input + +Pen writeln: 'Hello, ocean!' # prints 'Hello, ocean!\n' to the terminal + +Pen writeln: Program waitForInput. # reads a line and prints it back +``` diff --git a/common-lisp.html.markdown b/common-lisp.html.markdown index e2cf62fb..76e7735b 100644 --- a/common-lisp.html.markdown +++ b/common-lisp.html.markdown @@ -16,7 +16,7 @@ popular and recent book is [Land of Lisp](http://landoflisp.com/). A new book ab -```common-lisp +```lisp ;;;----------------------------------------------------------------------------- ;;; 0. Syntax diff --git a/cs-cz/markdown.html.markdown b/cs-cz/markdown.html.markdown index 568e4343..35becf94 100644 --- a/cs-cz/markdown.html.markdown +++ b/cs-cz/markdown.html.markdown @@ -13,7 +13,7 @@ Markdown byl vytvořen Johnem Gruberem v roce 2004. Je zamýšlen jako lehce či a psatelná syntaxe, která je jednoduše převeditelná do HTML (a dnes i do mnoha dalších formátů) -```markdown +```md diff --git a/markdown.html.markdown b/markdown.html.markdown index ece2567c..cf4286e2 100644 --- a/markdown.html.markdown +++ b/markdown.html.markdown @@ -197,7 +197,7 @@ inside your code end ``` -Inline code can be created using the backtick character ` +Inline code can be created using the backtick character `` ` `` ```md John didn't even know what the `go_to()` function did! diff --git a/mips.html.markdown b/mips.html.markdown new file mode 100644 index 00000000..1133f769 --- /dev/null +++ b/mips.html.markdown @@ -0,0 +1,366 @@ +--- +language: "MIPS Assembly" +filename: MIPS.asm +contributors: + - ["Stanley Lim", "https://github.com/Spiderpig86"] +--- + +The MIPS (Microprocessor without Interlocked Pipeline Stages) Assembly language +is designed to work with the MIPS microprocessor paradigm designed by J. L. +Hennessy in 1981. These RISC processors are used in embedded systems such as +gateways and routers. + +[Read More](https://en.wikipedia.org/wiki/MIPS_architecture) + +```assembly +# Comments are denoted with a '#' + +# Everything that occurs after a '#' will be ignored by the assembler's lexer. + +# Programs typically contain a .data and .text sections + +.data # Section where data is stored in memory (allocated in RAM), similar to + # variables in higher level languages + + # Declarations follow a ( label: .type value(s) ) form of declaration + hello_world: .asciiz "Hello World\n" # Declare a null terminated string + num1: .word 42 # Integers are referred to as words + # (32 bit value) + + arr1: .word 1, 2, 3, 4, 5 # Array of words + arr2: .byte 'a', 'b' # Array of chars (1 byte each) + buffer: .space 60 # Allocates space in the RAM + # (not cleared to 0) + + # Datatype sizes + _byte: .byte 'a' # 1 byte + _halfword: .half 53 # 2 bytes + _word: .word 3 # 4 bytes + _float: .float 3.14 # 4 bytes + _double: .double 7.0 # 8 bytes + + .align 2 # Memory alignment of data, where + # number indicates byte alignment in + # powers of 2. (.align 2 represents + # word alignment since 2^2 = 4 bytes) + +.text # Section that contains instructions + # and program logic +.globl _main # Declares an instruction label as + # global, making it accessible to + # other files + + _main: # MIPS programs execute instructions + # sequentially, where the code under + # this label will be executed firsts + + # Let's print "hello world" + la $a0, hello_world # Load address of string stored in + # memory + li $v0, 4 # Load the syscall value (indicating + # type of functionality) + syscall # Perform the specified syscall with + # the given argument ($a0) + + # Registers (used to hold data during program execution) + # $t0 - $t9 # Temporary registers used for + # intermediate calculations inside + # subroutines (not saved across + # function calls) + + # $s0 - $s7 # Saved registers where values are + # saved across subroutine calls. + # Typically saved in stack + + # $a0 - $a3 # Argument registers for passing in + # arguments for subroutines + # $v0 - $v1 # Return registers for returning + # values to caller function + + # Types of load/store instructions + la $t0, label # Copy the address of a value in + # memory specified by the label into + # register $t0 + lw $t0, label # Copy a word value from memory + lw $t1, 4($s0) # Copy a word value from an address + # stored in a register with an offset + # of 4 bytes (addr + 4) + lb $t2, label # Copy a byte value to the lower order + # portion of the register $t2 + lb $t2, 0($s0) # Copy a byte value from the source + # address in $s0 with offset 0 + # Same idea with 'lh' for halfwords + + sw $t0, label # Store word value into memory address + # mapped by label + sw $t0, 8($s0) # Store word value into address + # specified in $s0 and offset of 8 bytes + # Same idea using 'sb' and 'sh' for bytes and halfwords. 'sa' does not exist + +### Math ### + _math: + # Remember to load your values into a register + lw $t0, num # From the data section + li $t0, 5 # Or from an immediate (constant) + li $t1, 6 + add $t2, $t0, $t1 # $t2 = $t0 + $t1 + sub $t2, $t0, $t1 # $t2 = $t0 - $t1 + mul $t2, $t0, $t1 # $t2 = $t0 * $t1 + div $t2, $t0, $t1 # $t2 = $t0 / $t1 (Might not be + # supported in some versons of MARS) + div $t0, $t1 # Performs $t0 / $t1. Get the quotient + # using 'mflo' and remainder using 'mfhi' + + # Bitwise Shifting + sll $t0, $t0, 2 # Bitwise shift to the left with + # immediate (constant value) of 2 + sllv $t0, $t1, $t2 # Shift left by a variable amount in + # register + srl $t0, $t0, 5 # Bitwise shift to the right (does + # not sign preserve, sign-extends with 0) + srlv $t0, $t1, $t2 # Shift right by a variable amount in + # a register + sra $t0, $t0, 7 # Bitwise arithmetic shift to the right + # (preserves sign) + srav $t0, $t1, $t2 # Shift right by a variable amount + # in a register + + # Bitwise operators + and $t0, $t1, $t2 # Bitwise AND + andi $t0, $t1, 0xFFF # Bitwise AND with immediate + or $t0, $t1, $t2 # Bitwise OR + ori $t0, $t1, 0xFFF # Bitwise OR with immediate + xor $t0, $t1, $t2 # Bitwise XOR + xori $t0, $t1, 0xFFF # Bitwise XOR with immediate + nor $t0, $t1, $t2 # Bitwise NOR + +## BRANCHING ## + _branching: + # The basic format of these branching instructions typically follow + #