mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-08-28 17:11:02 +02:00
Merge pull request #3189 from visr/julia1
[julia/en] update to run on julia 1.0
This commit is contained in:
@@ -2,17 +2,17 @@
|
|||||||
language: Julia
|
language: Julia
|
||||||
contributors:
|
contributors:
|
||||||
- ["Leah Hanson", "http://leahhanson.us"]
|
- ["Leah Hanson", "http://leahhanson.us"]
|
||||||
- ["Pranit Bauva", "http://github.com/pranitbauva1997"]
|
- ["Pranit Bauva", "https://github.com/pranitbauva1997"]
|
||||||
- ["Daniel YC Lin", "http://github.com/dlintw"]
|
- ["Daniel YC Lin", "https://github.com/dlintw"]
|
||||||
filename: learnjulia.jl
|
filename: learnjulia.jl
|
||||||
---
|
---
|
||||||
|
|
||||||
Julia is a new homoiconic functional language focused on technical computing.
|
Julia is a new homoiconic functional language focused on technical computing.
|
||||||
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
||||||
|
|
||||||
This is based on Julia 0.6.4
|
This is based on Julia 1.0.0
|
||||||
|
|
||||||
```ruby
|
```julia
|
||||||
|
|
||||||
# Single line comments start with a hash (pound) symbol.
|
# Single line comments start with a hash (pound) symbol.
|
||||||
#= Multiline comments can be written
|
#= Multiline comments can be written
|
||||||
@@ -27,38 +27,38 @@ This is based on Julia 0.6.4
|
|||||||
# Everything in Julia is an expression.
|
# Everything in Julia is an expression.
|
||||||
|
|
||||||
# There are several basic types of numbers.
|
# There are several basic types of numbers.
|
||||||
3 # => 3 (Int64)
|
3 # => 3 (Int64)
|
||||||
3.2 # => 3.2 (Float64)
|
3.2 # => 3.2 (Float64)
|
||||||
2 + 1im # => 2 + 1im (Complex{Int64})
|
2 + 1im # => 2 + 1im (Complex{Int64})
|
||||||
2//3 # => 2//3 (Rational{Int64})
|
2 // 3 # => 2 // 3 (Rational{Int64})
|
||||||
|
|
||||||
# All of the normal infix operators are available.
|
# All of the normal infix operators are available.
|
||||||
1 + 1 # => 2
|
1 + 1 # => 2
|
||||||
8 - 1 # => 7
|
8 - 1 # => 7
|
||||||
10 * 2 # => 20
|
10 * 2 # => 20
|
||||||
35 / 5 # => 7.0
|
35 / 5 # => 7.0
|
||||||
5 / 2 # => 2.5 # dividing an Int by an Int always results in a Float
|
5 / 2 # => 2.5 # dividing integers always results in a Float64
|
||||||
div(5, 2) # => 2 # for a truncated result, use div
|
div(5, 2) # => 2 # for a truncated result, use div
|
||||||
5 \ 35 # => 7.0
|
5 \ 35 # => 7.0
|
||||||
2 ^ 2 # => 4 # power, not bitwise xor
|
2^2 # => 4 # power, not bitwise xor
|
||||||
12 % 10 # => 2
|
12 % 10 # => 2
|
||||||
|
|
||||||
# Enforce precedence with parentheses
|
# Enforce precedence with parentheses
|
||||||
(1 + 3) * 2 # => 8
|
(1 + 3) * 2 # => 8
|
||||||
|
|
||||||
# Bitwise Operators
|
# Bitwise Operators
|
||||||
~2 # => -3 # bitwise not
|
~2 # => -3 # bitwise not
|
||||||
3 & 5 # => 1 # bitwise and
|
3 & 5 # => 1 # bitwise and
|
||||||
2 | 4 # => 6 # bitwise or
|
2 | 4 # => 6 # bitwise or
|
||||||
xor(2, 4) # => 6 # bitwise xor
|
xor(2, 4) # => 6 # bitwise xor
|
||||||
2 >>> 1 # => 1 # logical shift right
|
2 >>> 1 # => 1 # logical shift right
|
||||||
2 >> 1 # => 1 # arithmetic shift right
|
2 >> 1 # => 1 # arithmetic shift right
|
||||||
2 << 1 # => 4 # logical/arithmetic shift left
|
2 << 1 # => 4 # logical/arithmetic shift left
|
||||||
|
|
||||||
# You can use the bits function to see the binary representation of a number.
|
# Use the bitstring function to see the binary representation of a number.
|
||||||
bits(12345)
|
bitstring(12345)
|
||||||
# => "0000000000000000000000000000000000000000000000000011000000111001"
|
# => "0000000000000000000000000000000000000000000000000011000000111001"
|
||||||
bits(12345.0)
|
bitstring(12345.0)
|
||||||
# => "0100000011001000000111001000000000000000000000000000000000000000"
|
# => "0100000011001000000111001000000000000000000000000000000000000000"
|
||||||
|
|
||||||
# Boolean values are primitives
|
# Boolean values are primitives
|
||||||
@@ -66,48 +66,38 @@ true
|
|||||||
false
|
false
|
||||||
|
|
||||||
# Boolean operators
|
# Boolean operators
|
||||||
!true # => false
|
!true # => false
|
||||||
!false # => true
|
!false # => true
|
||||||
1 == 1 # => true
|
1 == 1 # => true
|
||||||
2 == 1 # => false
|
2 == 1 # => false
|
||||||
1 != 1 # => false
|
1 != 1 # => false
|
||||||
2 != 1 # => true
|
2 != 1 # => true
|
||||||
1 < 10 # => true
|
1 < 10 # => true
|
||||||
1 > 10 # => false
|
1 > 10 # => false
|
||||||
2 <= 2 # => true
|
2 <= 2 # => true
|
||||||
2 >= 2 # => true
|
2 >= 2 # => true
|
||||||
# Comparisons can be chained
|
# Comparisons can be chained
|
||||||
1 < 2 < 3 # => true
|
1 < 2 < 3 # => true
|
||||||
2 < 3 < 2 # => false
|
2 < 3 < 2 # => false
|
||||||
|
|
||||||
# Strings are created with "
|
# Strings are created with "
|
||||||
try
|
|
||||||
"This is a string."
|
"This is a string."
|
||||||
catch ; end
|
|
||||||
|
|
||||||
# Julia has several types of strings, including ASCIIString and UTF8String.
|
|
||||||
# More on this in the Types section.
|
|
||||||
|
|
||||||
# Character literals are written with '
|
# Character literals are written with '
|
||||||
try
|
|
||||||
'a'
|
'a'
|
||||||
catch ; end
|
|
||||||
|
|
||||||
# Some strings can be indexed like an array of characters
|
# Strings are UTF8 encoded. Only if they contain only ASCII characters can
|
||||||
try
|
# they be safely indexed.
|
||||||
"This is a string"[1] # => 'T' # Julia indexes from 1
|
ascii("This is a string")[1] # => 'T' # Julia indexes from 1
|
||||||
catch ; end
|
# Otherwise, iterating over strings is recommended (map, for loops, etc).
|
||||||
# However, this is will not work well for UTF8 strings,
|
|
||||||
# so iterating over strings is recommended (map, for loops, etc).
|
|
||||||
|
|
||||||
# $ can be used for string interpolation:
|
# $ can be used for string interpolation:
|
||||||
try
|
|
||||||
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
|
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
|
||||||
catch ; end
|
|
||||||
# You can put any Julia expression inside the parentheses.
|
# You can put any Julia expression inside the parentheses.
|
||||||
|
|
||||||
# Another way to format strings is the printf macro.
|
# Another way to format strings is the printf macro from the stdlib Printf.
|
||||||
@printf "%d is less than %f" 4.5 5.3 # 4 is less than 5.300000
|
using Printf
|
||||||
|
@printf "%d is less than %f\n" 4.5 5.3 # => 5 is less than 5.300000
|
||||||
|
|
||||||
# Printing is easy
|
# Printing is easy
|
||||||
println("I'm Julia. Nice to meet you!")
|
println("I'm Julia. Nice to meet you!")
|
||||||
@@ -115,29 +105,29 @@ println("I'm Julia. Nice to meet you!")
|
|||||||
# String can be compared lexicographically
|
# String can be compared lexicographically
|
||||||
"good" > "bye" # => true
|
"good" > "bye" # => true
|
||||||
"good" == "good" # => true
|
"good" == "good" # => true
|
||||||
"1 + 2 = 3" == "1 + 2 = $(1+2)" # => true
|
"1 + 2 = 3" == "1 + 2 = $(1 + 2)" # => true
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
## 2. Variables and Collections
|
## 2. Variables and Collections
|
||||||
####################################################
|
####################################################
|
||||||
|
|
||||||
# You don't declare variables before assigning to them.
|
# You don't declare variables before assigning to them.
|
||||||
some_var = 5 # => 5
|
some_var = 5 # => 5
|
||||||
some_var # => 5
|
some_var # => 5
|
||||||
|
|
||||||
# Accessing a previously unassigned variable is an error
|
# Accessing a previously unassigned variable is an error
|
||||||
try
|
try
|
||||||
some_other_var # => ERROR: some_other_var not defined
|
some_other_var # => ERROR: UndefVarError: some_other_var not defined
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Variable names start with a letter or underscore.
|
# Variable names start with a letter or underscore.
|
||||||
# After that, you can use letters, digits, underscores, and exclamation points.
|
# After that, you can use letters, digits, underscores, and exclamation points.
|
||||||
SomeOtherVar123! = 6 # => 6
|
SomeOtherVar123! = 6 # => 6
|
||||||
|
|
||||||
# You can also use certain unicode characters
|
# You can also use certain unicode characters
|
||||||
☃ = 8 # => 8
|
☃ = 8 # => 8
|
||||||
# These are especially handy for mathematical notation
|
# These are especially handy for mathematical notation
|
||||||
2 * π # => 6.283185307179586
|
2 * π # => 6.283185307179586
|
||||||
|
|
||||||
@@ -156,165 +146,168 @@ SomeOtherVar123! = 6 # => 6
|
|||||||
# functions are sometimes called mutating functions or in-place functions.
|
# functions are sometimes called mutating functions or in-place functions.
|
||||||
|
|
||||||
# Arrays store a sequence of values indexed by integers 1 through n:
|
# Arrays store a sequence of values indexed by integers 1 through n:
|
||||||
a = Int64[] # => 0-element Int64 Array
|
a = Int64[] # => 0-element Int64 Array
|
||||||
|
|
||||||
# 1-dimensional array literals can be written with comma-separated values.
|
# 1-dimensional array literals can be written with comma-separated values.
|
||||||
b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
|
b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||||
b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6]
|
b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||||
b[1] # => 4
|
b[1] # => 4
|
||||||
b[end] # => 6
|
b[end] # => 6
|
||||||
|
|
||||||
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
|
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
|
||||||
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
|
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
|
||||||
|
|
||||||
# Arrays of a particular Type
|
# Arrays of a particular type
|
||||||
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
|
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
|
||||||
|
|
||||||
# Add stuff to the end of a list with push! and append!
|
# Add stuff to the end of a list with push! and append!
|
||||||
push!(a,1) # => [1]
|
push!(a, 1) # => [1]
|
||||||
push!(a,2) # => [1,2]
|
push!(a, 2) # => [1,2]
|
||||||
push!(a,4) # => [1,2,4]
|
push!(a, 4) # => [1,2,4]
|
||||||
push!(a,3) # => [1,2,4,3]
|
push!(a, 3) # => [1,2,4,3]
|
||||||
append!(a,b) # => [1,2,4,3,4,5,6]
|
append!(a, b) # => [1,2,4,3,4,5,6]
|
||||||
|
|
||||||
# Remove from the end with pop
|
# Remove from the end with pop
|
||||||
pop!(b) # => 6 and b is now [4,5]
|
pop!(b) # => 6 and b is now [4,5]
|
||||||
|
|
||||||
# Let's put it back
|
# Let's put it back
|
||||||
push!(b,6) # b is now [4,5,6] again.
|
push!(b, 6) # b is now [4,5,6] again.
|
||||||
|
|
||||||
a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
||||||
|
|
||||||
# end is a shorthand for the last index. It can be used in any
|
# end is a shorthand for the last index. It can be used in any
|
||||||
# indexing expression
|
# indexing expression
|
||||||
a[end] # => 6
|
a[end] # => 6
|
||||||
|
|
||||||
# we also have shift and unshift
|
# we also have popfirst! and pushfirst!
|
||||||
shift!(a) # => 1 and a is now [2,4,3,4,5,6]
|
popfirst!(a) # => 1 and a is now [2,4,3,4,5,6]
|
||||||
unshift!(a,7) # => [7,2,4,3,4,5,6]
|
pushfirst!(a, 7) # => [7,2,4,3,4,5,6]
|
||||||
|
|
||||||
# Function names that end in exclamations points indicate that they modify
|
# Function names that end in exclamations points indicate that they modify
|
||||||
# their argument.
|
# their argument.
|
||||||
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
|
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
|
||||||
sort(arr) # => [4,5,6]; arr is still [5,4,6]
|
sort(arr) # => [4,5,6]; arr is still [5,4,6]
|
||||||
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
|
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
|
||||||
|
|
||||||
# Looking out of bounds is a BoundsError
|
# Looking out of bounds is a BoundsError
|
||||||
try
|
try
|
||||||
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
|
a[0]
|
||||||
a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
|
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [0]
|
||||||
|
a[end + 1]
|
||||||
|
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [8]
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Errors list the line and file they came from, even if it's in the standard
|
# Errors list the line and file they came from, even if it's in the standard
|
||||||
# library. If you built Julia from source, you can look in the folder base
|
# library. You can look in the folder share/julia inside the julia folder to
|
||||||
# inside the julia folder to find these files.
|
# find these files.
|
||||||
|
|
||||||
# You can initialize arrays from ranges
|
# You can initialize arrays from ranges
|
||||||
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
|
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
|
||||||
|
|
||||||
# You can look at ranges with slice syntax.
|
# You can look at ranges with slice syntax.
|
||||||
a[1:3] # => [1, 2, 3]
|
a[1:3] # => [1, 2, 3]
|
||||||
a[2:end] # => [2, 3, 4, 5]
|
a[2:end] # => [2, 3, 4, 5]
|
||||||
|
|
||||||
# Remove elements from an array by index with splice!
|
# Remove elements from an array by index with splice!
|
||||||
arr = [3,4,5]
|
arr = [3,4,5]
|
||||||
splice!(arr,2) # => 4 ; arr is now [3,5]
|
splice!(arr, 2) # => 4 ; arr is now [3,5]
|
||||||
|
|
||||||
# Concatenate lists with append!
|
# Concatenate lists with append!
|
||||||
b = [1,2,3]
|
b = [1,2,3]
|
||||||
append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
|
append!(a, b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
|
||||||
|
|
||||||
# Check for existence in a list with in
|
# Check for existence in a list with in
|
||||||
in(1, a) # => true
|
in(1, a) # => true
|
||||||
|
|
||||||
# Examine the length with length
|
# Examine the length with length
|
||||||
length(a) # => 8
|
length(a) # => 8
|
||||||
|
|
||||||
# Tuples are immutable.
|
# Tuples are immutable.
|
||||||
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
|
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||||
tup[1] # => 1
|
tup[1] # => 1
|
||||||
try:
|
try
|
||||||
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Many list functions also work on tuples
|
# Many array functions also work on tuples
|
||||||
length(tup) # => 3
|
length(tup) # => 3
|
||||||
tup[1:2] # => (1,2)
|
tup[1:2] # => (1,2)
|
||||||
in(2, tup) # => true
|
in(2, tup) # => true
|
||||||
|
|
||||||
# You can unpack tuples into variables
|
# You can unpack tuples into variables
|
||||||
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
|
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
|
||||||
|
|
||||||
# Tuples are created even if you leave out the parentheses
|
# Tuples are created even if you leave out the parentheses
|
||||||
d, e, f = 4, 5, 6 # => (4,5,6)
|
d, e, f = 4, 5, 6 # => (4,5,6)
|
||||||
|
|
||||||
# A 1-element tuple is distinct from the value it contains
|
# A 1-element tuple is distinct from the value it contains
|
||||||
(1,) == 1 # => false
|
(1,) == 1 # => false
|
||||||
(1) == 1 # => true
|
(1) == 1 # => true
|
||||||
|
|
||||||
# Look how easy it is to swap two values
|
# Look how easy it is to swap two values
|
||||||
e, d = d, e # => (5,4) # d is now 5 and e is now 4
|
e, d = d, e # => (5,4) # d is now 5 and e is now 4
|
||||||
|
|
||||||
|
|
||||||
# Dictionaries store mappings
|
# Dictionaries store mappings
|
||||||
empty_dict = Dict() # => Dict{Any,Any}()
|
empty_dict = Dict() # => Dict{Any,Any}()
|
||||||
|
|
||||||
# You can create a dictionary using a literal
|
# You can create a dictionary using a literal
|
||||||
filled_dict = Dict("one"=> 1, "two"=> 2, "three"=> 3)
|
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
|
||||||
# => Dict{ASCIIString,Int64}
|
# => Dict{String,Int64}
|
||||||
|
|
||||||
# Look up values with []
|
# Look up values with []
|
||||||
filled_dict["one"] # => 1
|
filled_dict["one"] # => 1
|
||||||
|
|
||||||
# Get all keys
|
# Get all keys
|
||||||
keys(filled_dict)
|
keys(filled_dict)
|
||||||
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
|
||||||
|
# "two", "one", "three"
|
||||||
# Note - dictionary keys are not sorted or in the order you inserted them.
|
# Note - dictionary keys are not sorted or in the order you inserted them.
|
||||||
|
|
||||||
# Get all values
|
# Get all values
|
||||||
values(filled_dict)
|
values(filled_dict)
|
||||||
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
# => Base.ValueIterator{Dict{String,Int64}} with 3 entries. Values: 2, 1, 3
|
||||||
# Note - Same as above regarding key ordering.
|
# Note - Same as above regarding key ordering.
|
||||||
|
|
||||||
# Check for existence of keys in a dictionary with in, haskey
|
# Check for existence of keys in a dictionary with in, haskey
|
||||||
in(("one" => 1), filled_dict) # => true
|
in(("one" => 1), filled_dict) # => true
|
||||||
in(("two" => 3), filled_dict) # => false
|
in(("two" => 3), filled_dict) # => false
|
||||||
haskey(filled_dict, "one") # => true
|
haskey(filled_dict, "one") # => true
|
||||||
haskey(filled_dict, 1) # => false
|
haskey(filled_dict, 1) # => false
|
||||||
|
|
||||||
# Trying to look up a non-existent key will raise an error
|
# Trying to look up a non-existent key will raise an error
|
||||||
try
|
try
|
||||||
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
|
filled_dict["four"] # => KeyError: key "four" not found
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Use the get method to avoid that error by providing a default value
|
# Use the get method to avoid that error by providing a default value
|
||||||
# get(dictionary,key,default_value)
|
# get(dictionary, key, default_value)
|
||||||
get(filled_dict,"one",4) # => 1
|
get(filled_dict, "one", 4) # => 1
|
||||||
get(filled_dict,"four",4) # => 4
|
get(filled_dict, "four", 4) # => 4
|
||||||
|
|
||||||
# Use Sets to represent collections of unordered, unique values
|
# Use Sets to represent collections of unordered, unique values
|
||||||
empty_set = Set() # => Set{Any}()
|
empty_set = Set() # => Set{Any}()
|
||||||
# Initialize a set with values
|
# Initialize a set with values
|
||||||
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
|
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
|
||||||
|
|
||||||
# Add more values to a set
|
# Add more values to a set
|
||||||
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
|
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
|
||||||
|
|
||||||
# Check if the values are in the set
|
# Check if the values are in the set
|
||||||
in(2, filled_set) # => true
|
in(2, filled_set) # => true
|
||||||
in(10, filled_set) # => false
|
in(10, filled_set) # => false
|
||||||
|
|
||||||
# There are functions for set intersection, union, and difference.
|
# There are functions for set intersection, union, and difference.
|
||||||
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
|
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
|
||||||
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
intersect(filled_set, other_set) # => Set([4, 3, 5])
|
||||||
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
|
||||||
setdiff(Set([1,2,3,4]),Set([2,3,5])) # => Set{Int64}(1,4)
|
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
|
||||||
|
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
@@ -337,7 +330,7 @@ end
|
|||||||
|
|
||||||
# For loops iterate over iterables.
|
# For loops iterate over iterables.
|
||||||
# Iterable types include Range, Array, Set, Dict, and AbstractString.
|
# Iterable types include Range, Array, Set, Dict, and AbstractString.
|
||||||
for animal=["dog", "cat", "mouse"]
|
for animal = ["dog", "cat", "mouse"]
|
||||||
println("$animal is a mammal")
|
println("$animal is a mammal")
|
||||||
# You can use $ to interpolate variables or expression into strings
|
# You can use $ to interpolate variables or expression into strings
|
||||||
end
|
end
|
||||||
@@ -355,15 +348,16 @@ end
|
|||||||
# cat is a mammal
|
# cat is a mammal
|
||||||
# mouse is a mammal
|
# mouse is a mammal
|
||||||
|
|
||||||
for a in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal")
|
for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
|
||||||
println("$(a[1]) is a $(a[2])")
|
from, to = pair
|
||||||
|
println("$from is a $to")
|
||||||
end
|
end
|
||||||
# prints:
|
# prints:
|
||||||
# dog is a mammal
|
# dog is a mammal
|
||||||
# cat is a mammal
|
# cat is a mammal
|
||||||
# mouse is a mammal
|
# mouse is a mammal
|
||||||
|
|
||||||
for (k,v) in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal")
|
for (k, v) in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
|
||||||
println("$k is a $v")
|
println("$k is a $v")
|
||||||
end
|
end
|
||||||
# prints:
|
# prints:
|
||||||
@@ -372,10 +366,11 @@ end
|
|||||||
# mouse is a mammal
|
# mouse is a mammal
|
||||||
|
|
||||||
# While loops loop while a condition is true
|
# While loops loop while a condition is true
|
||||||
x = 0
|
let x = 0
|
||||||
while x < 4
|
while x < 4
|
||||||
println(x)
|
println(x)
|
||||||
x += 1 # Shorthand for x = x + 1
|
x += 1 # Shorthand for x = x + 1
|
||||||
|
end
|
||||||
end
|
end
|
||||||
# prints:
|
# prints:
|
||||||
# 0
|
# 0
|
||||||
@@ -385,9 +380,9 @@ end
|
|||||||
|
|
||||||
# Handle exceptions with a try/catch block
|
# Handle exceptions with a try/catch block
|
||||||
try
|
try
|
||||||
error("help")
|
error("help")
|
||||||
catch e
|
catch e
|
||||||
println("caught it $e")
|
println("caught it $e")
|
||||||
end
|
end
|
||||||
# => caught it ErrorException("help")
|
# => caught it ErrorException("help")
|
||||||
|
|
||||||
@@ -407,15 +402,15 @@ function add(x, y)
|
|||||||
x + y
|
x + y
|
||||||
end
|
end
|
||||||
|
|
||||||
add(5, 6) # => 11 after printing out "x is 5 and y is 6"
|
add(5, 6) # => 11 after printing out "x is 5 and y is 6"
|
||||||
|
|
||||||
# Compact assignment of functions
|
# Compact assignment of functions
|
||||||
f_add(x, y) = x + y # => "f (generic function with 1 method)"
|
f_add(x, y) = x + y # => "f (generic function with 1 method)"
|
||||||
f_add(3, 4) # => 7
|
f_add(3, 4) # => 7
|
||||||
|
|
||||||
# Function can also return multiple values as tuple
|
# Function can also return multiple values as tuple
|
||||||
fn(x, y) = x + y, x - y
|
fn(x, y) = x + y, x - y
|
||||||
fn(3, 4) # => (7, -1)
|
fn(3, 4) # => (7, -1)
|
||||||
|
|
||||||
# You can define functions that take a variable number of
|
# You can define functions that take a variable number of
|
||||||
# positional arguments
|
# positional arguments
|
||||||
@@ -425,41 +420,41 @@ function varargs(args...)
|
|||||||
end
|
end
|
||||||
# => varargs (generic function with 1 method)
|
# => varargs (generic function with 1 method)
|
||||||
|
|
||||||
varargs(1,2,3) # => (1,2,3)
|
varargs(1, 2, 3) # => (1,2,3)
|
||||||
|
|
||||||
# The ... is called a splat.
|
# The ... is called a splat.
|
||||||
# We just used it in a function definition.
|
# We just used it in a function definition.
|
||||||
# It can also be used in a function call,
|
# It can also be used in a function call,
|
||||||
# where it will splat an Array or Tuple's contents into the argument list.
|
# where it will splat an Array or Tuple's contents into the argument list.
|
||||||
add([5,6]...) # this is equivalent to add(5,6)
|
add([5,6]...) # this is equivalent to add(5,6)
|
||||||
|
|
||||||
x = (5,6) # => (5,6)
|
x = (5, 6) # => (5,6)
|
||||||
add(x...) # this is equivalent to add(5,6)
|
add(x...) # this is equivalent to add(5,6)
|
||||||
|
|
||||||
|
|
||||||
# You can define functions with optional positional arguments
|
# You can define functions with optional positional arguments
|
||||||
function defaults(a,b,x=5,y=6)
|
function defaults(a, b, x=5, y=6)
|
||||||
return "$a $b and $x $y"
|
return "$a $b and $x $y"
|
||||||
end
|
end
|
||||||
|
|
||||||
defaults('h','g') # => "h g and 5 6"
|
defaults('h', 'g') # => "h g and 5 6"
|
||||||
defaults('h','g','j') # => "h g and j 6"
|
defaults('h', 'g', 'j') # => "h g and j 6"
|
||||||
defaults('h','g','j','k') # => "h g and j k"
|
defaults('h', 'g', 'j', 'k') # => "h g and j k"
|
||||||
try
|
try
|
||||||
defaults('h') # => ERROR: no method defaults(Char,)
|
defaults('h') # => ERROR: no method defaults(Char,)
|
||||||
defaults() # => ERROR: no methods defaults()
|
defaults() # => ERROR: no methods defaults()
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# You can define functions that take keyword arguments
|
# You can define functions that take keyword arguments
|
||||||
function keyword_args(;k1=4,name2="hello") # note the ;
|
function keyword_args(;k1=4, name2="hello") # note the ;
|
||||||
return Dict("k1"=>k1,"name2"=>name2)
|
return Dict("k1" => k1, "name2" => name2)
|
||||||
end
|
end
|
||||||
|
|
||||||
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
|
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
|
||||||
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
|
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
|
||||||
keyword_args() # => ["name2"=>"hello","k1"=>4]
|
keyword_args() # => ["name2"=>"hello","k1"=>4]
|
||||||
|
|
||||||
# You can combine all kinds of arguments in the same function
|
# You can combine all kinds of arguments in the same function
|
||||||
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
||||||
@@ -483,7 +478,7 @@ function create_adder(x)
|
|||||||
end
|
end
|
||||||
|
|
||||||
# This is "stabby lambda syntax" for creating anonymous functions
|
# This is "stabby lambda syntax" for creating anonymous functions
|
||||||
(x -> x > 2)(3) # => true
|
(x -> x > 2)(3) # => true
|
||||||
|
|
||||||
# This function is identical to create_adder implementation above.
|
# This function is identical to create_adder implementation above.
|
||||||
function create_adder(x)
|
function create_adder(x)
|
||||||
@@ -499,15 +494,15 @@ function create_adder(x)
|
|||||||
end
|
end
|
||||||
|
|
||||||
add_10 = create_adder(10)
|
add_10 = create_adder(10)
|
||||||
add_10(3) # => 13
|
add_10(3) # => 13
|
||||||
|
|
||||||
|
|
||||||
# There are built-in higher order functions
|
# There are built-in higher order functions
|
||||||
map(add_10, [1,2,3]) # => [11, 12, 13]
|
map(add_10, [1,2,3]) # => [11, 12, 13]
|
||||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||||
|
|
||||||
# We can use list comprehensions
|
# We can use list comprehensions
|
||||||
[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
|
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||||
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
|
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
|
||||||
|
|
||||||
@@ -518,11 +513,11 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
|||||||
# Julia has a type system.
|
# Julia has a type system.
|
||||||
# Every value has a type; variables do not have types themselves.
|
# Every value has a type; variables do not have types themselves.
|
||||||
# You can use the `typeof` function to get the type of a value.
|
# You can use the `typeof` function to get the type of a value.
|
||||||
typeof(5) # => Int64
|
typeof(5) # => Int64
|
||||||
|
|
||||||
# Types are first-class values
|
# Types are first-class values
|
||||||
typeof(Int64) # => DataType
|
typeof(Int64) # => DataType
|
||||||
typeof(DataType) # => DataType
|
typeof(DataType) # => DataType
|
||||||
# DataType is the type that represents types, including itself.
|
# DataType is the type that represents types, including itself.
|
||||||
|
|
||||||
# Types are used for documentation, optimizations, and dispatch.
|
# Types are used for documentation, optimizations, and dispatch.
|
||||||
@@ -530,78 +525,77 @@ typeof(DataType) # => DataType
|
|||||||
|
|
||||||
# Users can define types
|
# Users can define types
|
||||||
# They are like records or structs in other languages.
|
# They are like records or structs in other languages.
|
||||||
# New types are defined using the `type` keyword.
|
# New types are defined using the `struct` keyword.
|
||||||
|
|
||||||
# type Name
|
# struct Name
|
||||||
# field::OptionalType
|
# field::OptionalType
|
||||||
# ...
|
# ...
|
||||||
# end
|
# end
|
||||||
type Tiger
|
struct Tiger
|
||||||
taillength::Float64
|
taillength::Float64
|
||||||
coatcolor # not including a type annotation is the same as `::Any`
|
coatcolor # not including a type annotation is the same as `::Any`
|
||||||
end
|
end
|
||||||
|
|
||||||
# The default constructor's arguments are the properties
|
# The default constructor's arguments are the properties
|
||||||
# of the type, in the order they are listed in the definition
|
# of the type, in the order they are listed in the definition
|
||||||
tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange")
|
tigger = Tiger(3.5, "orange") # => Tiger(3.5,"orange")
|
||||||
|
|
||||||
# The type doubles as the constructor function for values of that type
|
# The type doubles as the constructor function for values of that type
|
||||||
sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire")
|
sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6,"fire")
|
||||||
|
|
||||||
# These struct-style types are called concrete types
|
# These struct-style types are called concrete types
|
||||||
# They can be instantiated, but cannot have subtypes.
|
# They can be instantiated, but cannot have subtypes.
|
||||||
# The other kind of types is abstract types.
|
# The other kind of types is abstract types.
|
||||||
|
|
||||||
# abstract Name
|
# abstract Name
|
||||||
abstract type Cat end # just a name and point in the type hierarchy
|
abstract type Cat end # just a name and point in the type hierarchy
|
||||||
|
|
||||||
# Abstract types cannot be instantiated, but can have subtypes.
|
# Abstract types cannot be instantiated, but can have subtypes.
|
||||||
|
using InteractiveUtils # defines the subtype and supertype function
|
||||||
# For example, Number is an abstract type
|
# For example, Number is an abstract type
|
||||||
subtypes(Number) # => 2-element Array{Any,1}:
|
subtypes(Number) # => 2-element Array{Any,1}:
|
||||||
# Complex{T<:Real}
|
# Complex{T<:Real}
|
||||||
# Real
|
# Real
|
||||||
subtypes(Cat) # => 0-element Array{Any,1}
|
subtypes(Cat) # => 0-element Array{Any,1}
|
||||||
|
|
||||||
# AbstractString, as the name implies, is also an abstract type
|
# AbstractString, as the name implies, is also an abstract type
|
||||||
subtypes(AbstractString) # 6-element Array{Union{DataType, UnionAll},1}:
|
subtypes(AbstractString) # 4-element Array{Any,1}:
|
||||||
# Base.SubstitutionString
|
# String
|
||||||
# Base.Test.GenericString
|
# SubString
|
||||||
# DirectIndexString
|
# SubstitutionString
|
||||||
# RevString
|
# Test.GenericString
|
||||||
# String
|
|
||||||
# SubString
|
|
||||||
|
|
||||||
# Every type has a super type; use the `supertype` function to get it.
|
# Every type has a super type; use the `supertype` function to get it.
|
||||||
typeof(5) # => Int64
|
typeof(5) # => Int64
|
||||||
supertype(Int64) # => Signed
|
supertype(Int64) # => Signed
|
||||||
supertype(Signed) # => Integer
|
supertype(Signed) # => Integer
|
||||||
supertype(Integer) # => Real
|
supertype(Integer) # => Real
|
||||||
supertype(Real) # => Number
|
supertype(Real) # => Number
|
||||||
supertype(Number) # => Any
|
supertype(Number) # => Any
|
||||||
supertype(supertype(Signed)) # => Real
|
supertype(supertype(Signed)) # => Real
|
||||||
supertype(Any) # => Any
|
supertype(Any) # => Any
|
||||||
# All of these type, except for Int64, are abstract.
|
# All of these type, except for Int64, are abstract.
|
||||||
typeof("fire") # => String
|
typeof("fire") # => String
|
||||||
supertype(String) # => AbstractString
|
supertype(String) # => AbstractString
|
||||||
# Likewise here with String
|
# Likewise here with String
|
||||||
supertype(DirectIndexString) # => AbstractString
|
supertype(SubString) # => AbstractString
|
||||||
|
|
||||||
# <: is the subtyping operator
|
# <: is the subtyping operator
|
||||||
type Lion <: Cat # Lion is a subtype of Cat
|
struct Lion <: Cat # Lion is a subtype of Cat
|
||||||
mane_color
|
mane_color
|
||||||
roar::AbstractString
|
roar::AbstractString
|
||||||
end
|
end
|
||||||
|
|
||||||
# You can define more constructors for your type
|
# You can define more constructors for your type
|
||||||
# Just define a function of the same name as the type
|
# Just define a function of the same name as the type
|
||||||
# and call an existing constructor to get a value of the correct type
|
# and call an existing constructor to get a value of the correct type
|
||||||
Lion(roar::AbstractString) = Lion("green",roar)
|
Lion(roar::AbstractString) = Lion("green", roar)
|
||||||
# This is an outer constructor because it's outside the type definition
|
# This is an outer constructor because it's outside the type definition
|
||||||
|
|
||||||
type Panther <: Cat # Panther is also a subtype of Cat
|
struct Panther <: Cat # Panther is also a subtype of Cat
|
||||||
eye_color
|
eye_color
|
||||||
Panther() = new("green")
|
Panther() = new("green")
|
||||||
# Panthers will only have this constructor, and no default constructor.
|
# Panthers will only have this constructor, and no default constructor.
|
||||||
end
|
end
|
||||||
# Using inner constructors, like Panther does, gives you control
|
# Using inner constructors, like Panther does, gives you control
|
||||||
# over how values of the type can be created.
|
# over how values of the type can be created.
|
||||||
@@ -619,35 +613,35 @@ end
|
|||||||
|
|
||||||
# Definitions for Lion, Panther, Tiger
|
# Definitions for Lion, Panther, Tiger
|
||||||
function meow(animal::Lion)
|
function meow(animal::Lion)
|
||||||
animal.roar # access type properties using dot notation
|
animal.roar # access type properties using dot notation
|
||||||
end
|
end
|
||||||
|
|
||||||
function meow(animal::Panther)
|
function meow(animal::Panther)
|
||||||
"grrr"
|
"grrr"
|
||||||
end
|
end
|
||||||
|
|
||||||
function meow(animal::Tiger)
|
function meow(animal::Tiger)
|
||||||
"rawwwr"
|
"rawwwr"
|
||||||
end
|
end
|
||||||
|
|
||||||
# Testing the meow function
|
# Testing the meow function
|
||||||
meow(tigger) # => "rawwr"
|
meow(tigger) # => "rawwr"
|
||||||
meow(Lion("brown","ROAAR")) # => "ROAAR"
|
meow(Lion("brown", "ROAAR")) # => "ROAAR"
|
||||||
meow(Panther()) # => "grrr"
|
meow(Panther()) # => "grrr"
|
||||||
|
|
||||||
# Review the local type hierarchy
|
# Review the local type hierarchy
|
||||||
issubtype(Tiger,Cat) # => false
|
Tiger <: Cat # => false
|
||||||
issubtype(Lion,Cat) # => true
|
Lion <: Cat # => true
|
||||||
issubtype(Panther,Cat) # => true
|
Panther <: Cat # => true
|
||||||
|
|
||||||
# Defining a function that takes Cats
|
# Defining a function that takes Cats
|
||||||
function pet_cat(cat::Cat)
|
function pet_cat(cat::Cat)
|
||||||
println("The cat says $(meow(cat))")
|
println("The cat says $(meow(cat))")
|
||||||
end
|
end
|
||||||
|
|
||||||
pet_cat(Lion("42")) # => prints "The cat says 42"
|
pet_cat(Lion("42")) # => prints "The cat says 42"
|
||||||
try
|
try
|
||||||
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
|
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
@@ -657,129 +651,132 @@ end
|
|||||||
# In Julia, all of the argument types contribute to selecting the best method.
|
# In Julia, all of the argument types contribute to selecting the best method.
|
||||||
|
|
||||||
# Let's define a function with more arguments, so we can see the difference
|
# Let's define a function with more arguments, so we can see the difference
|
||||||
function fight(t::Tiger,c::Cat)
|
function fight(t::Tiger, c::Cat)
|
||||||
println("The $(t.coatcolor) tiger wins!")
|
println("The $(t.coatcolor) tiger wins!")
|
||||||
end
|
end
|
||||||
# => fight (generic function with 1 method)
|
# => fight (generic function with 1 method)
|
||||||
|
|
||||||
fight(tigger,Panther()) # => prints The orange tiger wins!
|
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||||
fight(tigger,Lion("ROAR")) # => prints The orange tiger wins!
|
fight(tigger, Lion("ROAR")) # => prints The orange tiger wins!
|
||||||
|
|
||||||
# Let's change the behavior when the Cat is specifically a Lion
|
# Let's change the behavior when the Cat is specifically a Lion
|
||||||
fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!")
|
fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
|
||||||
# => fight (generic function with 2 methods)
|
# => fight (generic function with 2 methods)
|
||||||
|
|
||||||
fight(tigger,Panther()) # => prints The orange tiger wins!
|
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||||
fight(tigger,Lion("ROAR")) # => prints The green-maned lion wins!
|
fight(tigger, Lion("ROAR")) # => prints The green-maned lion wins!
|
||||||
|
|
||||||
# We don't need a Tiger in order to fight
|
# We don't need a Tiger in order to fight
|
||||||
fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))")
|
fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))")
|
||||||
# => fight (generic function with 3 methods)
|
# => fight (generic function with 3 methods)
|
||||||
|
|
||||||
fight(Lion("balooga!"),Panther()) # => prints The victorious cat says grrr
|
fight(Lion("balooga!"), Panther()) # => prints The victorious cat says grrr
|
||||||
try
|
try
|
||||||
fight(Panther(),Lion("RAWR"))
|
fight(Panther(), Lion("RAWR"))
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
# => MethodError(fight, (Panther("green"), Lion("green", "RAWR")), 0x000000000000557b)
|
# => MethodError(fight, (Panther("green"), Lion("green", "RAWR")),
|
||||||
|
# 0x000000000000557b)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Also let the cat go first
|
# Also let the cat go first
|
||||||
fight(c::Cat,l::Lion) = println("The cat beats the Lion")
|
fight(c::Cat, l::Lion) = println("The cat beats the Lion")
|
||||||
|
|
||||||
# This warning is because it's unclear which fight will be called in:
|
# This warning is because it's unclear which fight will be called in:
|
||||||
try
|
try
|
||||||
fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The victorious cat says rarrr
|
fight(Lion("RAR"), Lion("brown", "rarrr"))
|
||||||
|
# => prints The victorious cat says rarrr
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
# => MethodError(fight, (Lion("green", "RAR"), Lion("brown", "rarrr")), 0x000000000000557c)
|
# => MethodError(fight, (Lion("green", "RAR"), Lion("brown", "rarrr")),
|
||||||
|
# 0x000000000000557c)
|
||||||
end
|
end
|
||||||
# The result may be different in other versions of Julia
|
# The result may be different in other versions of Julia
|
||||||
|
|
||||||
fight(l::Lion,l2::Lion) = println("The lions come to a tie")
|
fight(l::Lion, l2::Lion) = println("The lions come to a tie")
|
||||||
fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The lions come to a tie
|
fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
|
||||||
|
|
||||||
|
|
||||||
# Under the hood
|
# Under the hood
|
||||||
# You can take a look at the llvm and the assembly code generated.
|
# You can take a look at the llvm and the assembly code generated.
|
||||||
|
|
||||||
square_area(l) = l * l # square_area (generic function with 1 method)
|
square_area(l) = l * l # square_area (generic function with 1 method)
|
||||||
|
|
||||||
square_area(5) #25
|
square_area(5) # => 25
|
||||||
|
|
||||||
# What happens when we feed square_area an integer?
|
# What happens when we feed square_area an integer?
|
||||||
code_native(square_area, (Int32,))
|
code_native(square_area, (Int32,))
|
||||||
# .section __TEXT,__text,regular,pure_instructions
|
# .section __TEXT,__text,regular,pure_instructions
|
||||||
# Filename: none
|
# Filename: none
|
||||||
# Source line: 1 # Prologue
|
# Source line: 1 # Prologue
|
||||||
# push RBP
|
# push RBP
|
||||||
# mov RBP, RSP
|
# mov RBP, RSP
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# movsxd RAX, EDI # Fetch l from memory?
|
# movsxd RAX, EDI # Fetch l from memory?
|
||||||
# imul RAX, RAX # Square l and store the result in RAX
|
# imul RAX, RAX # Square l and store the result in RAX
|
||||||
# pop RBP # Restore old base pointer
|
# pop RBP # Restore old base pointer
|
||||||
# ret # Result will still be in RAX
|
# ret # Result will still be in RAX
|
||||||
|
|
||||||
code_native(square_area, (Float32,))
|
code_native(square_area, (Float32,))
|
||||||
# .section __TEXT,__text,regular,pure_instructions
|
# .section __TEXT,__text,regular,pure_instructions
|
||||||
# Filename: none
|
# Filename: none
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# push RBP
|
# push RBP
|
||||||
# mov RBP, RSP
|
# mov RBP, RSP
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
|
# vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
|
||||||
# pop RBP
|
# pop RBP
|
||||||
# ret
|
# ret
|
||||||
|
|
||||||
code_native(square_area, (Float64,))
|
code_native(square_area, (Float64,))
|
||||||
# .section __TEXT,__text,regular,pure_instructions
|
# .section __TEXT,__text,regular,pure_instructions
|
||||||
# Filename: none
|
# Filename: none
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# push RBP
|
# push RBP
|
||||||
# mov RBP, RSP
|
# mov RBP, RSP
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
|
# vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
|
||||||
# pop RBP
|
# pop RBP
|
||||||
# ret
|
# ret
|
||||||
#
|
#
|
||||||
# Note that julia will use floating point instructions if any of the
|
# Note that julia will use floating point instructions if any of the
|
||||||
# arguments are floats.
|
# arguments are floats.
|
||||||
# Let's calculate the area of a circle
|
# Let's calculate the area of a circle
|
||||||
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
|
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
|
||||||
circle_area(5) # 78.53981633974483
|
circle_area(5) # 78.53981633974483
|
||||||
|
|
||||||
code_native(circle_area, (Int32,))
|
code_native(circle_area, (Int32,))
|
||||||
# .section __TEXT,__text,regular,pure_instructions
|
# .section __TEXT,__text,regular,pure_instructions
|
||||||
# Filename: none
|
# Filename: none
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# push RBP
|
# push RBP
|
||||||
# mov RBP, RSP
|
# mov RBP, RSP
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
|
# vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
|
||||||
# movabs RAX, 4593140240 # Load pi
|
# movabs RAX, 4593140240 # Load pi
|
||||||
# vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
|
# vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
|
||||||
# vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
|
# vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
|
||||||
# pop RBP
|
# pop RBP
|
||||||
# ret
|
# ret
|
||||||
#
|
#
|
||||||
|
|
||||||
code_native(circle_area, (Float64,))
|
code_native(circle_area, (Float64,))
|
||||||
# .section __TEXT,__text,regular,pure_instructions
|
# .section __TEXT,__text,regular,pure_instructions
|
||||||
# Filename: none
|
# Filename: none
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# push RBP
|
# push RBP
|
||||||
# mov RBP, RSP
|
# mov RBP, RSP
|
||||||
# movabs RAX, 4593140496
|
# movabs RAX, 4593140496
|
||||||
# Source line: 1
|
# Source line: 1
|
||||||
# vmulsd XMM1, XMM0, QWORD PTR [RAX]
|
# vmulsd XMM1, XMM0, QWORD PTR [RAX]
|
||||||
# vmulsd XMM0, XMM1, XMM0
|
# vmulsd XMM0, XMM1, XMM0
|
||||||
# pop RBP
|
# pop RBP
|
||||||
# ret
|
# ret
|
||||||
#
|
#
|
||||||
```
|
```
|
||||||
|
|
||||||
## Further Reading
|
## Further Reading
|
||||||
|
|
||||||
You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/#Manual-1)
|
You can get a lot more detail from the [Julia Documentation](https://docs.julialang.org/)
|
||||||
|
|
||||||
The best place to get help with Julia is the (very friendly) [Discourse forum](https://discourse.julialang.org/).
|
The best place to get help with Julia is the (very friendly) [Discourse forum](https://discourse.julialang.org/).
|
||||||
|
Reference in New Issue
Block a user